Usage of Object Matching Algorithms Combined with Mixed Reality for Enhanced Decision Making in Orbital Reconstruction—A Technical Note
Abstract
:1. Introduction
2. Methods and Results
2.1. Case Demonstration
2.2. Planning Procedure
2.3. Decision Making and Patient Education
2.4. Surgical Procedure and Clinical Outcome
3. Discussion
3.1. Surgical Decision Making
3.2. Patient Education and Shared Decision Making
3.3. Medical Education
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, E.; el-Attar, A.; Moos, K.F. An Analysis of 2067 Cases of Zygomatico-Orbital Fracture. J. Oral Maxillofac. Surg. 1985, 43, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Metzger, M.C.; Schön, R.; Schulze, D.; Carvalho, C.; Gutwald, R.; Schmelzeisen, R. Individual Preformed Titanium Meshes for Orbital Fractures. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 102, 442–447. [Google Scholar] [CrossRef]
- Gosau, M.; Schöneich, M.; Draenert, F.G.; Ettl, T.; Driemel, O.; Reichert, T.E. Retrospective Analysis of Orbital Floor Fractures—Complications, Outcome, and Review of Literature. Clin. Oral Investig. 2011, 15, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.; Tan, Y. Assessment of Internal Orbital Reconstructions for Pure Blowout Fractures: Cranial Bone Grafts versus Titanium Mesh. J. Oral Maxillofac. Surg. 2003, 61, 442–453. [Google Scholar] [CrossRef]
- Schmelzeisen, R.; Husstedt, H.; Zumkeller, M.; Rittierodt, M. Preserving and Improving the Profile in Primary and Secondary Orbital Reconstruction. Mund Kiefer Gesichtschir. 1997, 1 (Suppl. S1), S87–S89. [Google Scholar]
- Kormi, E.; Männistö, V.; Lusila, N.; Naukkarinen, H.; Suojanen, J. Accuracy of Patient-Specific Meshes as a Reconstruction of Orbital Floor Blow-Out Fractures. J. Craniofacial Surg. 2021, 32, e116–e119. [Google Scholar] [CrossRef]
- Scolozzi, P. Applications of 3D Orbital Computer-Assisted Surgery (CAS). J. Stomatol. Oral Maxillofac. Surg. 2017, 118, 217–223. [Google Scholar] [CrossRef]
- Gellrich, N.-C.; Dittmann, J.; Spalthoff, S.; Jehn, P.; Tavassol, F.; Zimmerer, R. Current Strategies in Post-Traumatic Orbital Reconstruction. J. Maxillofac. Oral Surg. 2019, 18, 483–489. [Google Scholar] [CrossRef]
- Gerbino, G.; Zavattero, E.; Viterbo, S.; Ramieri, G. Treatment of Orbital Medial Wall Fractures with Titanium Mesh Plates Using Retrocaruncular Approach: Outcomes with Different Techniques. Craniomaxillofac Trauma Reconstr. 2015, 8, 326–333. [Google Scholar] [CrossRef]
- Rana, M.; Chui, C.H.K.; Wagner, M.; Zimmerer, R.; Rana, M.; Gellrich, N.-C. Increasing the Accuracy of Orbital Reconstruction With Selective Laser-Melted Patient-Specific Implants Combined With Intraoperative Navigation. J. Oral Maxillofac. Surg. 2015, 73, 1113–1118. [Google Scholar] [CrossRef]
- Appelbaum, P.S.; Grisso, T. Assessing Patients’ Capacities to Consent to Treatment. N. Engl. J. Med. 1988, 319, 1635–1638. [Google Scholar] [CrossRef]
- Bork, F. Interactive Augmented Reality Systems. Unfallchirurg 2018, 121, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Karnatz, N.; Möllmann, H.L.; Wilkat, M.; Parviz, A.; Rana, M. Advances and Innovations in Ablative Head and Neck Oncologic Surgery Using Mixed Reality Technologies in Personalized Medicine. J. Clin. Med. 2022, 11, 4767. [Google Scholar] [CrossRef] [PubMed]
- Schorn, L.; Wilkat, M.; Lommen, J.; Borelli, M.; Muhammad, S.; Rana, M. Plasma Electrolytic Polished Patient-Specific Orbital Implants in Clinical Use—A Technical Note. J. Pers. Med. 2023, 13, 148. [Google Scholar] [CrossRef]
- Wilkat, M.; Hufendiek, K.; Karahisarlioglu, M.; Borrelli, M.; Sproll, C.; Rana, M. Prospective Evaluation of Two Wall Orbital Fractures Involving the Medial Orbital Wall: PSI Reconstruction versus PDS Repair—Worth the Effort? J. Pers. Med. 2022, 12, 1389. [Google Scholar] [CrossRef]
- Eom, T.; Kim, Y. Analysis of Symptoms According to Areas of Orbital Floor in Orbital Inferior Wall Fractures. J. Craniofacial Surg. 2015, 26, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Kunz, C.; Sigron, G.R.; Jaquiéry, C. Functional Outcome after Non-Surgical Management of Orbital Fractures—The Bias of Decision-Making According to Size of Defect: Critical Review of 48 Patients. Br. J. Oral Maxillofac. Surg. 2013, 51, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-R.; Song, X.-F.; Li, Z.-K.; Shen, Q.; Fan, X.-Q. Postoperative Improvement of Diplopia and Extraocular Muscle Movement in Patients with Reconstructive Surgeries for Orbital Floor Fractures. J. Craniofacial Surg. 2016, 27, 2043–2049. [Google Scholar] [CrossRef]
- Saloniemi, M.; Lehtinen, V.; Snäll, J. Computer-Aided Fracture Size Measurement in Orbital Fractures-An Alternative to Manual Evaluation. Craniomaxillofac. Trauma Reconstr. 2021, 14, 209–217. [Google Scholar] [CrossRef]
- Strong, E.B. Orbital Fractures: Pathophysiology and Implant Materials for Orbital Reconstruction. Facial Plast. Surg. 2014, 30, 509–517. [Google Scholar] [CrossRef]
- Bourry, M.; Hardouin, J.-B.; Fauvel, F.; Corre, P.; Lebranchu, P.; Bertin, H. Clinical Evaluation of the Efficacy of Materials Used for Primary Reconstruction of Orbital Floor Defects: Meta-Analysis. Head Neck 2021, 43, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Avashia, Y.J.; Sastry, A.; Fan, K.L.; Mir, H.S.; Thaller, S.R. Materials Used for Reconstruction after Orbital Floor Fracture. J. Craniofac Surg. 2012, 23, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, G.; Zavattero, E.; Zenga, F.; Bianchi, F.A.; Garzino-Demo, P.; Berrone, S. Primary and Secondary Reconstruction of Complex Craniofacial Defects Using Polyetheretherketone Custom-Made Implants. J. Craniomaxillofac. Surg. 2015, 43, 1356–1363. [Google Scholar] [CrossRef]
- Akyüz, E.; Erdem, Y. Patients’ Experiences of Informed Consent and Preoperative Education. Clin. Nurs. Res. 2021, 30, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Glaser, J.; Nouri, S.; Fernandez, A.; Sudore, R.L.; Schillinger, D.; Klein-Fedyshin, M.; Schenker, Y. Interventions to Improve Patient Comprehension in Informed Consent for Medical and Surgical Procedures: An Updated Systematic Review. Med. Decis. Mak. 2020, 40, 119–143. [Google Scholar] [CrossRef]
- Hallock, J.L.; Rios, R.; Handa, V.L. Patient Satisfaction and Informed Consent for Surgery. Am. J. Obstet. Gynecol. 2017, 217, 181.e1–181.e7. [Google Scholar] [CrossRef]
- Leclercq, W.K.G.; Keulers, B.J.; Scheltinga, M.R.M.; Spauwen, P.H.M.; van der Wilt, G.-J. A Review of Surgical Informed Consent: Past, Present, and Future. A Quest to Help Patients Make Better Decisions. World J. Surg. 2010, 34, 1406–1415. [Google Scholar] [CrossRef]
- Pafko, P.; Mach, J. Informed Consent. Rozhl Chir. 2013, 92, 459–463. [Google Scholar]
- Yun, W.-G.; Youn, J.K.; Ko, D.; Yeom, I.; Joo, H.-J.; Kong, H.-J.; Kim, H.-Y. Tele-Consent Using Mixed Reality Glasses (NREAL) in Pediatric Inguinal Herniorrhaphy: A Preliminary Study. Sci. Rep. 2022, 12, 3105. [Google Scholar] [CrossRef]
- Kyaw, B.M.; Saxena, N.; Posadzki, P.; Vseteckova, J.; Nikolaou, C.K.; George, P.P.; Divakar, U.; Masiello, I.; Kononowicz, A.A.; Zary, N.; et al. Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J. Med. Internet Res. 2019, 21, e12959. [Google Scholar] [CrossRef]
- Jayakumar, N.; Brunckhorst, O.; Dasgupta, P.; Khan, M.S.; Ahmed, K. E-Learning in Surgical Education: A Systematic Review. J. Surg. Educ. 2015, 72, 1145–1157. [Google Scholar] [CrossRef] [PubMed]
- Bartella, A.K.; Kamal, M.; Kuhnt, T.; Hering, K.; Halama, D.; Pausch, N.C.; Lethaus, B. Mixed Reality in Oral and Maxillofacial Surgery: A Symbiosis of Virtual and Augmented Reality or a Pointless Technological Gadget? Int. J. Comput. Dent. 2021, 24, 65–76. [Google Scholar] [PubMed]
- Cannizzaro, D.; Zaed, I.; Safa, A.; Jelmoni, A.J.M.; Composto, A.; Bisoglio, A.; Schmeizer, K.; Becker, A.C.; Pizzi, A.; Cardia, A.; et al. Augmented Reality in Neurosurgery, State of Art and Future Projections. A Systematic Review. Front. Surg. 2022, 9, 864792. [Google Scholar] [CrossRef] [PubMed]
- Raab, E.L. The Parameters of Informed Consent. Trans. Am. Ophthalmol. Soc. 2004, 102, 225–230; discussion 230-232. [Google Scholar]
- Surman, O.S. Informed Consent: What the Patient Heard. Transplant. Proc. 2013, 45, 3155–3156. [Google Scholar] [CrossRef]
- Arabul, M.; Kandemır, A.; Çelık, M.; Alper, E.; Akpinar, Z.; Aslan, F.; Vatansever, S.; Ünsal, B. Impact of an Information Video before Colonoscopy on Patient Satisfaction and Anxiety. Turk. J. Gastroenterol. 2012, 23, 523–529. [Google Scholar] [CrossRef]
- Luck, A.; Pearson, S.; Maddem, G.; Hewett, P. Effects of Video Information on Precolonoscopy Anxiety and Knowledge: A Randomised Trial. Lancet 1999, 354, 2032–2035. [Google Scholar] [CrossRef]
- Herron, J. Augmented Reality in Medical Education and Training. J. Electron. Resour. Med. Libr. 2016, 13, 51–55. [Google Scholar] [CrossRef]
- Barcali, E.; Iadanza, E.; Manetti, L.; Francia, P.; Nardi, C.; Bocchi, L. Augmented Reality in Surgery: A Scoping Review. Appl. Sci. 2022, 12, 6890. [Google Scholar] [CrossRef]
- Loukas, C. Surgical Simulation Training Systems: Box Trainers, Virtual Reality and Augmented Reality Simulators. Int. J. Adv. Robot. Autom. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Shafarenko, M.S.; Catapano, J.; Hofer, S.O.P.; Murphy, B.D. The Role of Augmented Reality in the Next Phase of Surgical Education. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4656. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkat, M.; Karnatz, N.; Schrader, F.; Schorn, L.; Lommen, J.; Parviz, A.; Möllmann, H.L.; Rana, M. Usage of Object Matching Algorithms Combined with Mixed Reality for Enhanced Decision Making in Orbital Reconstruction—A Technical Note. J. Pers. Med. 2023, 13, 922. https://doi.org/10.3390/jpm13060922
Wilkat M, Karnatz N, Schrader F, Schorn L, Lommen J, Parviz A, Möllmann HL, Rana M. Usage of Object Matching Algorithms Combined with Mixed Reality for Enhanced Decision Making in Orbital Reconstruction—A Technical Note. Journal of Personalized Medicine. 2023; 13(6):922. https://doi.org/10.3390/jpm13060922
Chicago/Turabian StyleWilkat, Max, Nadia Karnatz, Felix Schrader, Lara Schorn, Julian Lommen, Aida Parviz, Henriette Louise Möllmann, and Majeed Rana. 2023. "Usage of Object Matching Algorithms Combined with Mixed Reality for Enhanced Decision Making in Orbital Reconstruction—A Technical Note" Journal of Personalized Medicine 13, no. 6: 922. https://doi.org/10.3390/jpm13060922
APA StyleWilkat, M., Karnatz, N., Schrader, F., Schorn, L., Lommen, J., Parviz, A., Möllmann, H. L., & Rana, M. (2023). Usage of Object Matching Algorithms Combined with Mixed Reality for Enhanced Decision Making in Orbital Reconstruction—A Technical Note. Journal of Personalized Medicine, 13(6), 922. https://doi.org/10.3390/jpm13060922