Fight the Fire: Association of Cytokine Genomic Markers and Suicidal Behavior May Pave the Way for Future Therapies
Abstract
:1. The Impact of Suicide
2. Unmet Needs in Our Current Approach to Predict Suicidal Behavior
3. The Complex, Multicausal, and Heterogeneous Nature of the Suicide Phenomenon
4. Conceptualization of Suicide: The Role of Internal and External Contributors
5. A Novel Approach to Understanding Suicidal Behavior: The Role of Neuroinflammation
6. An Evolutionary Perspective on The Role of Neuroinflammation in Psychiatric Disorders and Suicide
7. The Grey Eminences of Neuroinflammation: The Role of Cytokines in Psychiatric Conditions and Suicide
8. From Understanding of Ancestral Mechanisms to Modern Clinical Practice: How Can Neuroinflammation Be Exploited for Better Management of Suicide Risk?
9. Cytokine and Other Immune-Related Markers of Suicidal Behavior
10. The Role of Cytokines and Related Biomarkers in Predicting Suicide Risk following Proximal and Distal Stressors
11. Inflammatory and Cytokine Genetic Markers of Suicidal Behavior
12. Implications of The Role of Cytokines in Suicidal Behavior for Prevention and Treatment
13. Putting Cytokines to Use in Understanding and Managing Suicide Risk: Obstacles and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gonda, X.; Dome, P.; Serafini, G.; Pompili, M. How to save a life: From neurobiological underpinnings to psychopharmacotherapies in the prevention of suicide. Pharmacol. Ther. 2023, 244, 108390. [Google Scholar] [CrossRef]
- Gonda, X.; Gecse, K.; Gal, Z.; Juhasz, G. Precision Medicine in Psychiatric Disorders. In Precision Medicine in Clinical Practice; Springer: Singapore, 2022; pp. 93–112. [Google Scholar]
- Kirtley, O.J.; van Mens, K.; Hoogendoorn, M.; Kapur, N.; de Beurs, D. Translating promise into practice: A review of machine learning in suicide research and prevention. Lancet Psychiatry 2022, 9, 243–252. [Google Scholar] [CrossRef] [PubMed]
- WHO. Preventing Suicide: A Global Imperative; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Barrigon, M.L.; Courtet, P.; Oquendo, M.; Baca-García, E. Precision Medicine and Suicide: An Opportunity for Digital Health. Curr. Psychiatry Rep. 2019, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- WHO. Suicide Worldwide in 2019: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- UN. World Population Prospects: The 2008 Revision; UN: New York, NY, USA, 2009. [Google Scholar]
- World Health Organization. Suicide: One Person Dies Every 40 Seconds. 2019. Available online: https://www.who.int/news/item/09-09-2019-suicide-one-person-dies-every-40-seconds (accessed on 26 June 2023).
- Bertolote, J.M.; Fleischmann, A.; De Leo, D.; Bolhari, J.; Botega, N.; De Silva, D.; Tran Thi Thanh, H.; Phillips, M.; Schlebusch, L.; Värnik, A.; et al. Suicide attempts, plans, and ideation in culturally diverse sites: The WHO SUPRE-MISS community survey. Psychol. Med. 2005, 35, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Health Estimates: Leading Causes of DALYs; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Hawton, K.; Casanas, I.C.C.; Haw, C.; Saunders, K. Risk factors for suicide in individuals with depression: A systematic review. J. Affect. Disord. 2013, 147, 17–28. [Google Scholar] [CrossRef]
- May, A.M.; Klonsky, E.D.; Klein, D.N. Predicting future suicide attempts among depressed suicide ideators: A 10-year longitudinal study. J. Psychiatr. Res. 2012, 46, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.N.; Campbell, D.; Caruncho, H.J.; Henter, I.D.; Ballard, E.D.; Zarate, C.A. Suicide Biomarkers to Predict Risk, Classify Diagnostic Subtypes, and Identify Novel Therapeutic Targets: 5 Years of Promising Research. Int. J. Neuropsychopharmacol. 2022, 25, 197–214. [Google Scholar] [CrossRef]
- Gananca, L.; Oquendo, M.A.; Tyrka, A.R.; Cisneros-Trujillo, S.; Mann, J.J.; Sublette, M.E. The role of cytokines in the pathophysiology of suicidal behavior. Psychoneuroendocrinology 2016, 63, 296–310. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013; Volume 5. [Google Scholar]
- Carballo, J.J.; Akamnonu, C.P.; Oquendo, M.A. Neurobiology of suicidal behavior. An integration of biological and clinical findings. Arch. Suicide Res. 2008, 12, 93–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, G.N. Biological basis of suicide and suicidal behavior. Bipolar Disord. 2013, 15, 524–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, E.P.; Oquendo, M.A. Suicide Risk Assessment and Prevention: Challenges and Opportunities. Focus 2020, 18, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Hawton, K.; van Heeringen, K. Suicide. Lancet 2009, 373, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.C.; Ribeiro, J.D.; Fox, K.R.; Bentley, K.H.; Kleiman, E.M.; Huang, X.; Musacchio, K.M.; Jaroszewski, A.C.; Chang, B.P.; Nock, M.K. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychol. Bull. 2017, 143, 187. [Google Scholar] [CrossRef]
- Sudol, K.; Mann, J.J. Biomarkers of Suicide Attempt Behavior: Towards a Biological Model of Risk. Curr. Psychiatry Rep. 2017, 19, 31. [Google Scholar] [CrossRef]
- Stanley, B.; Itzhaky, L.; Oquendo, M.A. Identifying neurobiological underpinnings of two suicidal subtypes. J. Psychiatry Brain Sci. 2021, 6, e210016. [Google Scholar]
- Brundin, L.; Bryleva, E.Y.; Thirtamara Rajamani, K. Role of Inflammation in Suicide: From Mechanisms to Treatment. Neuropsychopharmacology 2017, 42, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.-J.; Jiang, C.-L.; Su, W.-J. Life in the flame: Inflammation sounds the alarm for suicide risk. Brain Behav. Immun. Health 2021, 14, 100250. [Google Scholar]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Yirmiya, R.; Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011, 25, 181–213. [Google Scholar]
- Haroon, E.; Miller, A.H.; Sanacora, G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017, 42, 193–215. [Google Scholar] [CrossRef]
- Miller, A.H.; Haroon, E.; Felger, J.C. The Immunology of Behavior-Exploring the Role of the Immune System in Brain Health and Illness. Neuropsychopharmacology 2017, 42, 2105–2113. [Google Scholar] [CrossRef]
- Postolache, T.T.; Wadhawan, A.; Rujescu, D.; Hoisington, A.J.; Dagdag, A.; Baca-Garcia, E.; Lowry, C.A.; Okusaga, O.O.; Brenner, L.A. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front. Psychiatry 2021, 12, 665682. [Google Scholar] [CrossRef]
- Turecki, G.; Brent, D.A. Suicide and suicidal behaviour. Lancet 2016, 387, 1227–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, M.; Engelbrechta, M.A.; Gut, O.; Fiebich, B.L.; Bauer, J.; Schmidt, F.; Grunze, H.; Lieb, K. Interferon alpha (IFNα) and psychiatric syndromes: A review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2002, 26, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Janssen, H.L.; Brouwer, J.T.; van der Mast, R.C.; Schalm, S.W. Suicide associated with alfa-interferon therapy for chronic viral hepatitis. J. Hepatol. 1994, 21, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Lana-Peixoto, M.A.; Teixeira, A.L., Jr.; Haase, V.G. Interferon beta-1a-induced depression and suicidal ideation in multiple sclerosis. Arq. Neuro-Psiquiatr. 2002, 60, 721–724. [Google Scholar] [CrossRef] [Green Version]
- Fragoso, Y.D.; Frota, E.R.C.; Lopes, J.S.; Noal, J.S.; Giacomo, M.C.; Gomes, S.; Gonçalves, M.V.M.; da Gama, P.D.; Finkelsztejn, A. Severe depression, suicide attempts, and ideation during the use of interferon beta by patients with multiple sclerosis. Clin. Neuropharmacol. 2010, 33, 312–316. [Google Scholar] [CrossRef]
- Brundin, L.; Erhardt, S.; Bryleva, E.Y.; Achtyes, E.D.; Postolache, T.T. The role of inflammation in suicidal behaviour. Acta Psychiatr. Scand. 2015, 132, 192–203. [Google Scholar] [CrossRef]
- Woo, J.-M.; Okusaga, O.; Postolache, T.T. Seasonality of suicidal behavior. Int. J. Environ. Res. Public Health 2012, 9, 531–547. [Google Scholar] [CrossRef] [Green Version]
- Postolache, T.T.; Stiller, J.W.; Herrell, R.; Goldstein, M.A.; Shreeram, S.S.; Zebrak, R.; Thrower, C.M.; Volkov, J.; No, M.J.; Volkov, I.; et al. Tree pollen peaks are associated with increased nonviolent suicide in women. Mol. Psychiatry 2005, 10, 232–235. [Google Scholar] [CrossRef]
- Qin, P.; Mortensen, P.B.; Waltoft, B.L.; Postolache, T.T. Allergy is associated with suicide completion with a possible mediating role of mood disorder–a population-based study. Allergy 2011, 66, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, R.D.; Eaton, W.W. Asthma, suicidal ideation, and suicide attempts: Findings from the Baltimore epidemiologic catchment area follow-up. Am. J. Public Health 2005, 95, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-F.; Chen, P.-L.; Pan, H.-F.; Tao, J.-H.; Li, X.-P.; Zhang, Y.-J.; Zhai, Y.; Ye, D.-Q. Prevalence and correlates of suicidal ideation in SLE inpatients: Chinese experience. Rheumatol. Int. 2012, 32, 2707–2714. [Google Scholar] [CrossRef] [PubMed]
- Brønnum-Hansen, H.; Stenager, E.; Stenager, E.N.; Koch-Henriksen, N. Suicide among Danes with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1457–1459. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Vasupanrajit, A.; Jirakran, K.; Klomkliew, P.; Chanchaem, P.; Tunvirachaisakul, C.; Plaimas, K.; Suratanee, A.; Payungporn, S. Adverse childhood experiences and reoccurrence of illness impact the gut microbiome, which affects suicidal behaviours and the phenome of major depression: Towards enterotypic phenotypes. Acta Neuropsychiatr. 2023, 1–18. [Google Scholar] [CrossRef]
- Lindqvist, D.; Janelidze, S.; Hagell, P.; Erhardt, S.; Samuelsson, M.; Minthon, L.; Hansson, O.; Bjorkqvist, M.; Traskman-Bendz, L.; Brundin, L. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol. Psychiatry 2009, 66, 287–292. [Google Scholar] [CrossRef]
- Isung, J.; Aeinehband, S.; Mobarrez, F.; Mårtensson, B.; Nordström, P.; Åsberg, M.; Piehl, F.; Jokinen, J. Low vascular endothelial growth factor and interleukin-8 in cerebrospinal fluid of suicide attempters. Transl. Psychiatry 2012, 2, e196. [Google Scholar] [CrossRef] [Green Version]
- Black, C.; Miller, B.J. Meta-Analysis of Cytokines and Chemokines in Suicidality: Distinguishing Suicidal Versus Nonsuicidal Patients. Biol. Psychiatry 2015, 78, 28–37. [Google Scholar] [CrossRef]
- O’Donovan, A.; Rush, G.; Hoatam, G.; Hughes, B.M.; McCrohan, A.; Kelleher, C.; O’Farrelly, C.; Malone, K.M. Suicidal ideation is associated with elevated inflammation in patients with major depressive disorder. Depress. Anxiety 2013, 30, 307–314. [Google Scholar] [CrossRef]
- Tonelli, L.H.; Stiller, J.; Rujescu, D.; Giegling, I.; Schneider, B.; Maurer, K.; Schnabel, A.; Moller, H.J.; Chen, H.H.; Postolache, T.T. Elevated cytokine expression in the orbitofrontal cortex of victims of suicide. Acta Psychiatr. Scand. 2008, 117, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.N.; Rizavi, H.S.; Ren, X.; Fareed, J.; Hoppensteadt, D.A.; Roberts, R.C.; Conley, R.R.; Dwivedi, Y. Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. J. Psychiatr. Res. 2012, 46, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Platas, S.G.; Cruceanu, C.; Chen, G.G.; Turecki, G.; Mechawar, N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun. 2014, 42, 50–59. [Google Scholar] [CrossRef]
- Steiner, J.; Bielau, H.; Brisch, R.; Danos, P.; Ullrich, O.; Mawrin, C.; Bernstein, H.G.; Bogerts, B. Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res. 2008, 42, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Tzeng, N.S.; Kao, Y.C.; Yeh, C.B.; Chang, H.A. The relationships of current suicidal ideation with inflammatory markers and heart rate variability in unmedicated patients with major depressive disorder. Psychiatry Res. 2017, 258, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.M.; Davis, L.; Han, X.; Clothier, J.; Eads, L.A.; Cáceda, R. Association between C-reactive protein and suicidal behavior in an adult inpatient population. J. Psychiatr. Res. 2016, 79, 28–33. [Google Scholar] [CrossRef]
- Köhler-Forsberg, O.; Buttenschøn, H.N.; Tansey, K.E.; Maier, W.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Farmer, A.; Rietschel, M. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav. Immun. 2017, 62, 344–350. [Google Scholar] [CrossRef]
- Chen, X.; Pu, J.; Liu, Y.; Tian, L.; Chen, Y.; Gui, S.; Xu, S.; Song, X.; Xie, P. Increased C-reactive protein concentrations were associated with suicidal behavior in patients with depressive disorders: A meta-analysis. Psychiatry Res. 2020, 292, 113320. [Google Scholar] [CrossRef]
- Keaton, S.A.; Madaj, Z.B.; Heilman, P.; Smart, L.; Grit, J.; Gibbons, R.; Postolache, T.T.; Roaten, K.; Achtyes, E.D.; Brundin, L. An inflammatory profile linked to increased suicide risk. J. Affect. Disord. 2019, 247, 57–65. [Google Scholar] [CrossRef]
- Su, Y.-A.; Lin, J.-Y.; Liu, Q.; Lv, X.-Z.; Wang, G.; Wei, J.; Zhu, G.; Chen, Q.-L.; Tian, H.-J.; Zhang, K.-R. Associations among serum markers of inflammation, life stress and suicide risk in patients with major depressive disorder. J. Psychiatr. Res. 2020, 129, 53–60. [Google Scholar] [CrossRef]
- Batty, G.D.; Bell, S.; Stamatakis, E.; Kivimaki, M. Association of Systemic Inflammation with Risk of Completed Suicide in the General Population. JAMA Psychiatry 2016, 73, 993–995. [Google Scholar] [CrossRef]
- Choi, K.W.; Jang, E.H.; Kim, A.Y.; Kim, H.; Park, M.J.; Byun, S.; Fava, M.; Mischoulon, D.; Papakostas, G.I.; Yu, H.Y. Predictive inflammatory biomarkers for change in suicidal ideation in major depressive disorder and panic disorder: A 12-week follow-up study. J. Psychiatr. Res. 2021, 133, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Miller, A. The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D). Mol. Psychiatry 2013, 18, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Dantzer, R.; Cohen, S.; Russo, S.J.; Dinan, T.G. Resilience and immunity. Brain Behav. Immun. 2018, 74, 28–42. [Google Scholar] [CrossRef]
- Maes, M.; Berk, M.; Goehler, L.; Song, C.; Anderson, G.; Gałecki, P.; Leonard, B. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012, 10, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappelmann, N.; Arloth, J.; Georgakis, M.K.; Czamara, D.; Rost, N.; Ligthart, S.; Khandaker, G.M.; Binder, E.B. Dissecting the Association Between Inflammation, Metabolic Dysregulation, and Specific Depressive Symptoms: A Genetic Correlation and 2-Sample Mendelian Randomization Study. JAMA Psychiatry 2021, 78, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Ligthart, S.; Vaez, A.; Võsa, U.; Stathopoulou, M.G.; De Vries, P.S.; Prins, B.P.; Van der Most, P.J.; Tanaka, T.; Naderi, E.; Rose, L.M. Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am. J. Hum. Genet. 2018, 103, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013, 246, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Konsman, J.P. Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals 2022, 15, 140. [Google Scholar] [CrossRef]
- Courtet, P.; Giner, L.; Seneque, M.; Guillaume, S.; Olie, E.; Ducasse, D. Neuroinflammation in suicide: Toward a comprehensive model. World J. Biol. Psychiatry 2016, 17, 564–586. [Google Scholar] [CrossRef]
- Stuart, M.; Baune, B. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: A systematic review of biomarker studies. Neurosci. Biobehav. Rev. 2014, 42, 93–115. [Google Scholar] [CrossRef]
- Roohi, E.; Jaafari, N.; Hashemian, F. On inflammatory hypothesis of depression: What is the role of IL-6 in the middle of the chaos? J. Neuroinflamm. 2021, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.W.; Kim, Y.K. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness? World J. Psychiatry 2016, 6, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-B.; Lindler, K.M.; Owens, A.W.; Daws, L.C.; Blakely, R.D.; Hewlett, W.A. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 2010, 35, 2510–2520. [Google Scholar] [CrossRef] [Green Version]
- Felger, J.C.; Li, L.; Marvar, P.J.; Woolwine, B.J.; Harrison, D.G.; Raison, C.L.; Miller, A.H. Tyrosine metabolism during interferon-alpha administration: Association with fatigue and CSF dopamine concentrations. Brain Behav. Immun. 2013, 31, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oquendo, M.A.; Sullivan, G.M.; Sudol, K.; Baca-Garcia, E.; Stanley, B.H.; Sublette, M.E.; Mann, J.J. Toward a biosignature for suicide. Am. J. Psychiatry 2014, 171, 1259–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.-B.; Blakely, R.D.; Hewlett, W.A. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006, 31, 2121–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramamoorthy, S.; Ramamoorthy, J.D.; Prasad, P.D.; Bhat, G.K.; Mahesh, V.B.; Leibach, F.H.; Ganapathy, V. Regulation of the human serotonin transporter by interleukin-1β. Biochem. Biophys. Res. Commun. 1995, 216, 560–567. [Google Scholar] [CrossRef]
- Dunn, A.J. Cytokine activation of the HPA axis. Ann. N. Y. Acad. Sci. 2000, 917, 608–617. [Google Scholar] [CrossRef]
- Maes, M.; Leonard, B.; Myint, A.; Kubera, M.; Verkerk, R. The new ‘5-HT’hypothesis of depression: Cell-mediated immune activation induces indoleamine 2, 3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 702–721. [Google Scholar]
- Raison, C.L.; Dantzer, R.; Kelley, K.W.; Lawson, M.A.; Woolwine, B.J.; Vogt, G.; Spivey, J.R.; Saito, K.; Miller, A.H. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: Relationship to CNS immune responses and depression. Mol. Psychiatry 2010, 15, 393–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, J.; Walter, M.; Gos, T.; Guillemin, G.J.; Bernstein, H.G.; Sarnyai, Z.; Mawrin, C.; Brisch, R.; Bielau, H.; Meyer zu Schwabedissen, L.; et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflamm. 2011, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mándi, Y.; Vécsei, L. The kynurenine system and immunoregulation. J. Neural Transm. 2012, 119, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Urata, Y.; Koga, K.; Hirota, Y.; Akiyama, I.; Izumi, G.; Takamura, M.; Nagai, M.; Harada, M.; Hirata, T.; Yoshino, O. IL-1β increases expression of tryptophan 2, 3-dioxygenase and stimulates tryptophan catabolism in endometrioma stromal cells. Am. J. Reprod. Immunol. 2014, 72, 496–503. [Google Scholar] [CrossRef]
- Dantzer, R.; O’connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Perroud, N.; Baud, P.; Ardu, S.; Krejci, I.; Mouthon, D.; Vessaz, M.; Guillaume, S.; Jaussent, I.; Olié, E.; Malafosse, A. Temperament personality profiles in suicidal behaviour: An investigation of associated demographic, clinical and genetic factors. J. Affect. Disord. 2013, 146, 246–253. [Google Scholar] [CrossRef]
- Sutin, A.R.; Terracciano, A.; Deiana, B.; Naitza, S.; Ferrucci, L.; Uda, M.; Schlessinger, D.; Costa, P. High neuroticism and low conscientiousness are associated with interleukin-6. Psychol. Med. 2010, 40, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Turiano, N.A.; Mroczek, D.K.; Moynihan, J.; Chapman, B.P. Big 5 personality traits and interleukin-6: Evidence for “healthy Neuroticism” in a US population sample. Brain Behav. Immun. 2013, 28, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.R.; Schafer, A.; Faller, H.; Csef, H.; Scheurlen, M. Psychiatric symptoms in patients with chronic hepatitis C receiving interferon alfa-2b therapy. J. Clin. Psychiatry 2003, 64, 708–714. [Google Scholar] [CrossRef]
- Perroud, N.; Baud, P.; Mouthon, D.; Courtet, P.; Malafosse, A. Impulsivity, aggression and suicidal behavior in unipolar and bipolar disorders. J. Affect. Disord. 2011, 134, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Coccaro, E.F.; Lee, R.; Coussons-Read, M. Elevated plasma inflammatory markers in individuals with intermittent explosive disorder and correlation with aggression in humans. JAMA Psychiatry 2014, 71, 158–165. [Google Scholar] [CrossRef]
- Oquendo, M.A.; Galfalvy, H.; Russo, S.; Ellis, S.P.; Grunebaum, M.F.; Burke, A.; Mann, J.J. Prospective study of clinical predictors of suicidal acts after a major depressive episode in patients with major depressive disorder or bipolar disorder. Am. J. Psychiatry 2004, 161, 1433–1441. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Pössel, P.; Sjögren, E.; Kristenson, M. Hopelessness the “active ingredient”? Associations of hopelessness and depressive symptoms with interleukin-6. Int. J. Psychiatry Med. 2013, 46, 109–117. [Google Scholar] [CrossRef]
- Henningsson, S.; Baghaei, F.; Rosmond, R.; Holm, G.; Landén, M.; Anckarsäter, H.; Ekman, A. Association between serum levels of C-reactive protein and personality traits in women. Behav. Brain Funct. 2008, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- O’Donovan, A.; Lin, J.; Dhabhar, F.; Wolkowitz, O.; Tillie, J.; Blackburn, E.; Epel, E. Pessimism correlates with leukocyte telomere shortness and elevated interleukin-6 in post-menopausal women. Brain Behav. Immun. 2009, 23, 446–449. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Diez-Roux, A.V.; Seeman, T.; Ranjit, N.; Shea, S.; Cushman, M. The association of optimism and pessimism with inflammation and hemostasis in the Multi-Ethnic Study of Atherosclerosis (MESA). Psychosom. Med. 2010, 72, 134. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.N. Cytokines as suicide risk biomarkers. Biol. Psychiatry 2015, 78, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtet, P.; Jaussent, I.; Genty, C.; Dupuy, A.-M.; Guillaume, S.; Ducasse, D.; Olié, E. Increased CRP levels may be a trait marker of suicidal attempt. Eur. Neuropsychopharmacol. 2015, 25, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Isung, J.; Mobarrez, F.; Nordström, P.; Åsberg, M.; Jokinen, J. Low plasma vascular endothelial growth factor (VEGF) associated with completed suicide. World J. Biol. Psychiatry 2012, 13, 468–473. [Google Scholar] [CrossRef]
- Janelidze, S.; Ventorp, F.; Erhardt, S.; Hansson, O.; Minthon, L.; Flax, J.; Samuelsson, M.; Traskman-Bendz, L.; Brundin, L. Altered chemokine levels in the cerebrospinal fluid and plasma of suicide attempters. Psychoneuroendocrinology 2013, 38, 853–862. [Google Scholar] [CrossRef]
- Berardelli, I.; Serafini, G.; Cortese, N.; Fiaschè, F.; O’Connor, R.C.; Pompili, M. The Involvement of Hypothalamus-Pituitary-Adrenal (HPA) Axis in Suicide Risk. Brain Sci. 2020, 10, 653. [Google Scholar] [CrossRef]
- Bellavance, M.-A.; Rivest, S. The HPA–immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 2014, 5, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isometsä, E.T.; Aro, H.M.; Henriksson, M.M.; Heikkinen, M.E.; Lönnqvist, J. Suicide in major depression in different treatment settings. J. Clin. Psychiatry 1994, 55, 523–527. [Google Scholar] [PubMed]
- Carroll, J.E.; Low, C.A.; Prather, A.A.; Cohen, S.; Fury, J.M.; Ross, D.C.; Marsland, A.L. Negative affective responses to a speech task predict changes in interleukin (IL)-6. Brain Behav. Immun. 2011, 25, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Cacioppo, J.T.; Hawkley, L.C. Social isolation and health, with an emphasis on underlying mechanisms. Perspect. Biol. Med. 2003, 46, S39–S52. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Hawkley, L.C.; Crawford, L.E.; Ernst, J.M.; Burleson, M.H.; Kowalewski, R.B.; Malarkey, W.B.; Van Cauter, E.; Berntson, G.G. Loneliness and health: Potential mechanisms. Psychosom. Med. 2002, 64, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.W.; Hawkley, L.C.; Arevalo, J.M.; Sung, C.Y.; Rose, R.M.; Cacioppo, J.T. Social regulation of gene expression in human leukocytes. Genome Biol. 2007, 8, R189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavich, G.M.; Cole, S.W. The emerging field of human social genomics. Clin. Psychol. Sci. 2013, 1, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Tyrka, A.R.; Burgers, D.E.; Philip, N.S.; Price, L.H.; Carpenter, L.L. The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatr. Scand. 2013, 128, 434–447. [Google Scholar] [CrossRef] [Green Version]
- Tursich, M.; Neufeld, R.; Frewen, P.; Harricharan, S.; Kibler, J.; Rhind, S.; Lanius, R. Association of trauma exposure with proinflammatory activity: A transdiagnostic meta-analysis. Transl. Psychiatry 2014, 4, e413. [Google Scholar] [CrossRef] [Green Version]
- Dich, N.; Hansen, Å.M.; Avlund, K.; Lund, R.; Mortensen, E.L.; Bruunsgaard, H.; Rod, N.H. Early life adversity potentiates the effects of later life stress on cumulative physiological dysregulation. Anxiety Stress Coping 2015, 28, 372–390. [Google Scholar] [CrossRef]
- Donegan, J.J.; Nemeroff, C.B. Suicide and inflammation. In Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders; Springer: Singapore, 2023; pp. 379–404. [Google Scholar]
- Lee, D.; Baek, J.H.; Ha, K.; Cho, E.-Y.; Choi, Y.; Yang, S.-Y.; Kim, J.S.; Cho, Y.; Won, H.-H.; Hong, K.S. Dissecting the genetic architecture of suicide attempt and repeated attempts in Korean patients with bipolar disorder using polygenic risk scores. Int. J. Bipolar Disord. 2022, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Strawbridge, R.J.; Ward, J.; Ferguson, A.; Graham, N.; Shaw, R.J.; Cullen, B.; Pearsall, R.; Lyall, L.M.; Johnston, K.J.A.; Niedzwiedz, C.L.; et al. Identification of novel genome-wide associations for suicidality in UK Biobank, genetic correlation with psychiatric disorders and polygenic association with completed suicide. EBioMedicine 2019, 41, 517–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchankova, P.; Holm, G.; Träskman-Bendz, L.; Brundin, L.; Ekman, A. The +1444C>T polymorphism in the CRP gene: A study on personality traits and suicidal behaviour. Psychiatr. Genet. 2013, 23, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Suchankova, P.; Henningsson, S.; Baghaei, F.; Rosmond, R.; Holm, G.; Ekman, A. Genetic variability within the innate immune system influences personality traits in women. Genes Brain Behav. 2009, 8, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Omrani, M.D.; Bagheri, M.; Bushehri, B.; Azizi, F.; Anoshae, M.R. The association of TGF-β1 codon 10 polymorphism with suicide behavior. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2012, 159, 772–775. [Google Scholar] [CrossRef]
- Saiz, P.A.; García-Portilla, P.; Paredes, B.; Arango, C.; Morales, B.; Alvarez, V.; Coto, E.; Bascarán, M.-T.; Bousono, M.; Bobes, J. Association study of the interleukin-1 gene complex and tumor necrosis factor alpha gene with suicide attempts. Psychiatr. Genet. 2008, 18, 147–150. [Google Scholar] [CrossRef]
- Omrani, M.D.; Bushehri, B.; Bagheri, M.; Salari-Lak, S.; Alipour, A.; Anoshae, M.-R.; Massomi, R. Role of IL-10− 1082, IFN-γ+ 874, and TNF-α− 308 genes polymorphisms in suicidal behavior. Arch. Suicide Res. 2009, 13, 330–339. [Google Scholar] [CrossRef]
- Saiz, P.A.; García-Portilla, P.; Paredes, B.; Corcoran, P.; Arango, C.; Morales, B.; Sotomayor, E.; Alvarez, V.; Coto, E.; Flórez, G. Role of serotonergic-related systems in suicidal behavior: Data from a case–control association study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1518–1524. [Google Scholar] [CrossRef]
- Janelidze, S.; Suchankova, P.; Ekman, A.; Erhardt, S.; Sellgren, C.; Samuelsson, M.; Westrin, A.; Minthon, L.; Hansson, O.; Träskman-Bendz, L. Low IL-8 is associated with anxiety in suicidal patients: Genetic variation and decreased protein levels. Acta Psychiatr. Scand. 2015, 131, 269–278. [Google Scholar] [CrossRef]
- Tamimou, R.; Lumbroso, S.; Mouzat, K.; Lopez-Castroman, J. Genetic variations related to inflammation in suicidal ideation and behavior: A systematic review. Front. Psychiatry 2022, 13, 1003034. [Google Scholar] [CrossRef]
- Border, R.; Johnson, E.C.; Evans, L.M.; Smolen, A.; Berley, N.; Sullivan, P.F.; Keller, M.C. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am. J. Psychiatry 2019, 176, 376–387. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, Y.; Liu, Q.; Gu, T.; Liu, S.; Yin, A.; Zhang, L. Autophagy: A New Mechanism for Esketamine as a Depression Therapeutic. Neuroscience 2022, 498, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Zanardi, R.; Mazza, M.G. Antidepressant psychopharmacology: Is inflammation a future target? Int. Clin. Psychopharmacol. 2022, 37, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Jope, R. Inflammation and lithium: Clues to mechanisms contributing to suicide-linked traits. Transl. Psychiatry 2014, 4, e488. [Google Scholar] [CrossRef] [Green Version]
- Lehrer, S.; Rheinstein, P.H. Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce suicidal ideation and depression. Discov. Med. 2019, 28, 205–212. [Google Scholar]
- Malhi, G.S.; Mann, J.J. Course and prognosis. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Faridhosseini, F.; Sadeghi, R.; Farid, L.; Pourgholami, M. Celecoxib: A new augmentation strategy for depressive mood episodes. A systematic review and meta-analysis of randomized placebo-controlled trials. Hum. Psychopharmacol. Clin. Exp. 2014, 29, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Na, K.-S.; Lee, K.J.; Lee, J.S.; Cho, Y.S.; Jung, H.-Y. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: A meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 48, 79–85. [Google Scholar] [CrossRef]
- Nery, F.G.; Monkul, E.S.; Hatch, J.P.; Fonseca, M.; Zunta-Soares, G.B.; Frey, B.N.; Bowden, C.L.; Soares, J.C. Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: A double-blind, randomized, placebo-controlled study. Hum. Psychopharmacol. Clin. Exp. 2008, 23, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Q.; Wang, Q. Effect of celecoxib on improving depression: A systematic review and meta-analysis. World J. Clin. Cases 2022, 10, 7872–7882. [Google Scholar] [CrossRef] [PubMed]
- Ersözlü-Bozkırlı, E.; Keşkek, S.; Bozkırlı, E.; Yücel, A. The effect of infliximab on depressive symptoms in patients with ankylosing spondylitis. Acta Reum. Port. 2015, 40, 262–267. [Google Scholar]
- Ertenli, I.; Ozer, S.; Kiraz, S.; Apras, S.; Akdogan, A.; Karadag, O.; Calguneri, M.; Kalyoncu, U. Infliximab, a TNF-alpha antagonist treatment in patients with ankylosing spondylitis: The impact on depression, anxiety and quality of life level. Rheumatol. Int. 2012, 32, 323–330. [Google Scholar] [CrossRef]
- Gelfand, J.M.; Kimball, A.B.; Mostow, E.N.; Chiou, C.-F.; Patel, V.; Xia, H.A.; Freundlich, B.; Stevens, S.R. Patient-reported outcomes and health-care resource utilization in patients with psoriasis treated with etanercept: Continuous versus interrupted treatment. Value Health 2008, 11, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Minderhoud, I.M.; Samsom, M.; Oldenburg, B. Crohn’s disease, fatigue, and infliximab: Is there a role for cytokines in the pathogenesis of fatigue? World J. Gastroenterol. 2007, 13, 2089. [Google Scholar] [CrossRef]
- Tookman, A.; Jones, C.; DeWitte, M.; Lodge, P. Fatigue in patients with advanced cancer: A pilot study of an intervention with infliximab. Support. Care Cancer 2008, 16, 1131–1140. [Google Scholar] [CrossRef]
- Uzzan, S.; Azab, A.N. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021, 26, 2368. [Google Scholar] [CrossRef]
- Webers, C.; Stolwijk, C.; Schiepers, O.; Schoonbrood, T.; van Tubergen, A.; Landewé, R.; van der Heijde, D.; Boonen, A. Infliximab treatment reduces depressive symptoms in patients with ankylosing spondylitis: An ancillary study to a randomized controlled trial (ASSERT). Arthritis Res. Ther. 2020, 22, 225. [Google Scholar] [CrossRef]
- Choy, E.; Isenberg, D.; Garrood, T.; Farrow, S.; Ioannou, Y.; Bird, H.; Cheung, N.; Williams, B.; Hazleman, B.; Price, R. Therapeutic benefit of blocking interleukin-6 activity with an anti–interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: A randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum. 2002, 46, 3143–3150. [Google Scholar] [CrossRef]
- Fonseka, T.M.; McIntyre, R.S.; Soczynska, J.K.; Kennedy, S.H. Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin. Investig. Drugs 2015, 24, 459–475. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Takazoe, M.; Fukuda, Y.; Hibi, T.; Kusugami, K.; Andoh, A.; Matsumoto, T.; Yamamura, T.; Azuma, J.; Nishimoto, N. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 2004, 126, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.I.; Chaudhry, I.B.; Husain, N.; Khoso, A.B.; Rahman, R.R.; Hamirani, M.M.; Hodsoll, J.; Qurashi, I.; Deakin, J.F.; Young, A.H. Minocycline as an adjunct for treatment-resistant depressive symptoms: A pilot randomised placebo-controlled trial. J. Psychopharmacol. 2017, 31, 1166–1175. [Google Scholar] [CrossRef]
- Dean, O.M.; Maes, M.; Ashton, M.; Berk, L.; Kanchanatawan, B.; Sughondhabirom, A.; Tangwongchai, S.; Ng, C.; Dowling, N.; Malhi, G.S. Protocol and rationale-the efficacy of minocycline as an adjunctive treatment for major depressive disorder: A double blind, randomised, placebo controlled trial. Clin. Psychopharmacol. Neurosci. 2014, 12, 180. [Google Scholar] [CrossRef] [Green Version]
- Savitz, J.; Preskorn, S.; Teague, T.K.; Drevets, D.; Yates, W.; Drevets, W. Minocycline and aspirin in the treatment of bipolar depression: A protocol for a proof-of-concept, randomised, double-blind, placebo-controlled, 2 × 2 clinical trial. BMJ Open 2012, 2, e000643. [Google Scholar] [CrossRef]
- Miyaoka, T.; Wake, R.; Furuya, M.; Liaury, K.; Ieda, M.; Kawakami, K.; Tsuchie, K.; Taki, M.; Ishihara, K.; Araki, T. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: An open-label study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 37, 222–226. [Google Scholar] [CrossRef]
- Nettis, M.A. Minocycline in Major Depressive Disorder: And overview with considerations on treatment-resistance and comparisons with other psychiatric disorders. Brain Behav. Immun. Health 2021, 17, 100335. [Google Scholar] [CrossRef]
- Zazula, R.; Husain, M.I.; Mohebbi, M.; Walker, A.J.; Chaudhry, I.B.; Khoso, A.B.; Ashton, M.M.; Agustini, B.; Husain, N.; Deakin, J. Minocycline as adjunctive treatment for major depressive disorder: Pooled data from two randomized controlled trials. Aust. New Zealand J. Psychiatry 2021, 55, 784–798. [Google Scholar] [CrossRef]
- Elgarf, A.-S.A.; Aboul-Fotouh, S.; Abd-Alkhalek, H.A.; El Tabbal, M.; Hassan, A.N.; Kassim, S.K.; Hammouda, G.A.; Farrag, K.A.; Abdel-Tawab, A.M. Lipopolysaccharide repeated challenge followed by chronic mild stress protocol introduces a combined model of depression in rats: Reversibility by imipramine and pentoxifylline. Pharmacol. Biochem. Behav. 2014, 126, 152–162. [Google Scholar] [CrossRef]
- Bah, T.M.; Kaloustian, S.; Rousseau, G.; Godbout, R. Pretreatment with pentoxifylline has antidepressant-like effects in a rat model of acute myocardial infarction. Behav. Pharmacol. 2011, 22, 779–784. [Google Scholar] [CrossRef]
- Yasrebi, S.O.; Momtazmanesh, S.; Moghaddam, H.S.; Shahmansouri, N.; Mehrpooya, M.; Arbabi, M.; Ghazizadeh-Hashemi, F.; Akhondzadeh, S. Pentoxifylline for treatment of major depression after percutaneous coronary intervention or coronary artery bypass grafting: A randomized, double-blind, placebo-controlled trial. J. Psychosom. Res. 2021, 150, 110635. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry 2013, 70, 31–41. [Google Scholar] [CrossRef]
- Uher, R.; Tansey, K.E.; Dew, T.; Maier, W.; Mors, O.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Farmer, A. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am. J. Psychiatry 2014, 171, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Shields, G.S.; Spahr, C.M.; Slavich, G.M. Psychosocial Interventions and Immune System Function: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Psychiatry 2020, 77, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonda, X.; Serafini, G.; Dome, P. Fight the Fire: Association of Cytokine Genomic Markers and Suicidal Behavior May Pave the Way for Future Therapies. J. Pers. Med. 2023, 13, 1078. https://doi.org/10.3390/jpm13071078
Gonda X, Serafini G, Dome P. Fight the Fire: Association of Cytokine Genomic Markers and Suicidal Behavior May Pave the Way for Future Therapies. Journal of Personalized Medicine. 2023; 13(7):1078. https://doi.org/10.3390/jpm13071078
Chicago/Turabian StyleGonda, Xenia, Gianluca Serafini, and Peter Dome. 2023. "Fight the Fire: Association of Cytokine Genomic Markers and Suicidal Behavior May Pave the Way for Future Therapies" Journal of Personalized Medicine 13, no. 7: 1078. https://doi.org/10.3390/jpm13071078
APA StyleGonda, X., Serafini, G., & Dome, P. (2023). Fight the Fire: Association of Cytokine Genomic Markers and Suicidal Behavior May Pave the Way for Future Therapies. Journal of Personalized Medicine, 13(7), 1078. https://doi.org/10.3390/jpm13071078