The Sperm DNA Fragmentation Assay with SDF Level Less Than 15% Provides a Useful Prediction for Clinical Pregnancy and Live Birth for Women Aged under 40 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions of Clinical and Laboratory Outcomes
2.2.1. Mature Oocyte
2.2.2. Fertilization (Normal)
2.2.3. Intracytoplasmic Sperm Injection (ICSI)
2.2.4. In Vitro Fertilization (IVF)
2.2.5. Blastocyst
2.2.6. Embryo Transfer (ET)
2.2.7. Frozen-Thawed Embryo Transfer (FET)
2.2.8. Clinical Pregnancy
2.2.9. Miscarriage
2.2.10. Live Birth
2.3. Modalities of ART
2.3.1. IVF-ICSI Split Modality (14.3% of Cycles)
2.3.2. ICSI-Only (ICSI) Modality (80.9% of Cycles)
2.3.3. IVF-Only (IVF) Modality (4.8% of Cycles)
2.4. Sperm Preparation Techniques for ART
2.4.1. Direct Swim-Up
2.4.2. Discontinuous Density Gradient—PureSperm® 100
2.4.3. Simple Sperm Washing
2.4.4. Frozen Semen Samples
2.5. Sperm Chromatin Dispersion (SCD) Technique—Halosperm®
2.5.1. Evaluation of DNA Damage
2.5.2. Validation and Quality Control
2.6. Statistical Analysis
3. Results
3.1. Impact of SDF Levels on Laboratory and Clinical Outcomes with Female Age Groups Stratification
3.2. Impact of SDF Levels on Laboratory and Clinical Outcomes among Three ART Modalities
3.3. Impact of SDF Levels on Live Birth Rates Stratified by Women’s Age Group and by Three ART Modalities
3.4. Subgroup Analysis of the Impact of SDF Levels on Laboratory and Clinical Outcomes within IVF-ICSI Split Cycles
3.5. Multivariate Logistic Regression Analysis of Clinical Variables Associated with Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, P.J.; WHO. WHO Manual for the Standardized Investigation, Diagnosis and Management of the Infertile Male; Cambridge University Press for the World Health Organization: Cambridge, UK, 2000; p. 91. [Google Scholar]
- Wiweko, B.; Utami, P. Predictive value of sperm deoxyribonucleic acid (DNA) fragmentation index in male infertility. Basic Clin. Androl. 2017, 27, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Allamaneni, S.S.R. Sperm DNA damage assessment: A test whose time has come. Fertil. Steril. 2005, 84, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.C.; Yovich, S.J.; Hinchliffe, P.M.; Yovich, J.L. How Well Do Semen Analysis Parameters Correlate with Sperm DNA Fragmentation? A Retrospective Study from 2567 Semen Samples Analyzed by the Halosperm Test. J. Pers. Med. 2023, 13, 518. [Google Scholar] [CrossRef]
- McLaren, J.F. Infertility Evaluation. Obstet. Gynecol. Clin. 2012, 39, 453–463. [Google Scholar] [CrossRef]
- Jequier, A.M. Semen analysis: A new manual and its application to the understanding of semen and its pathology. Asian J. Androl. 2010, 12, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Guzick, D.S.; Overstreet, J.W.; Factor-Litvak, P.; Brazil, C.K.; Nakajima, S.T.; Coutifaris, C.; Carson, S.A.; Cisneros, P.; Steinkampf, M.P.; Hill, J.A.; et al. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 2001, 345, 1388–1393. [Google Scholar] [CrossRef]
- Lewis, S.E.M. Is sperm evaluation useful in predicting human fertility? Reproduction 2007, 134, 31–40. [Google Scholar] [CrossRef]
- Hamada, A.; Esteves, S.C.; Nizza, M.; Agarwal, A. Unexplained male infertility: Diagnosis and management. Int. Braz. J. Urol. 2012, 38, 576–594. [Google Scholar] [CrossRef] [Green Version]
- Esteves, S.C.; Zini, A.; Coward, R.M.; Evenson, D.P.; Gosalvez, J.; Lewis, S.E.M.; Sharma, R.; Humaidan, P. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia 2021, 53, e13874. [Google Scholar] [CrossRef] [PubMed]
- Zini, A. Are sperm chromatin and DNA defects relevant in the clinic? Syst. Biol. Reprod. Med. 2011, 57, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, D.; Alvarez, J.G. Sperm DNA fragmentation: Mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 2010, 93, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.; Gallos, I.D.; Conner, S.J.; Rajkhowa, M.; Miller, D.; Lewis, S.; Kirkman-Brown, J.; Coomarasamy, A. The effect of sperm DNA fragmentation on miscarriage rates: A systematic review and meta-analysis. Hum. Reprod. 2012, 27, 2908–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santi, D.; Spaggiari, G.; Simoni, M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management-meta-analyses. Reprod. BioMed. Online 2018, 37, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Larson-Cook, K.L.; Brannian, J.D.; Hansen, K.A.; Kasperson, K.M.; Aamold, E.T.; Evenson, D.P. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil. Steril. 2003, 80, 895–902. [Google Scholar] [CrossRef]
- Barratt, C.L.; Aitken, R.J.; Björndahl, L.; Carrell, D.T.; de Boer, P.; Kvist, U.; Lewis, S.E.; Perreault, S.D.; Perry, M.J.; Ramos, L.; et al. Sperm DNA: Organization, protection and vulnerability: From basic science to clinical applications—A position report. Hum. Reprod. 2010, 25, 824–838. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, P.N.; Sigman, M.; Collura, B.; De Jonge, C.J.; Eisenberg, M.L.; Lamb, D.J.; Mulhall, J.P.; Niederberger, C.; Sandlow, J.I.; Sokol, R.Z.; et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil. Steril. 2021, 115, 54–61. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: A guideline. Fertil. Steril. 2013, 99, 673–677. [Google Scholar] [CrossRef]
- Zini, A.; Boman, J.M.; Belzile, E.; Ciampi, A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: Systematic review and meta-analysis. Hum. Reprod. 2008, 23, 2663–2668. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, Q.; Wang, Y.; Li, Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: A systematic review and meta-analysis. Fertil. Steril. 2014, 102, 998–1005.e8. [Google Scholar] [CrossRef]
- Simon, L.; Zini, A.; Dyachenko, A.; Ciampi, A.; Carrell, D.T. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J. Androl. 2017, 19, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Taskin, O.; Albert, A.; Bedaiwy, M.A. Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: A systematic review and meta-analysis. Reprod. BioMed. Online 2019, 38, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Ribas-Maynou, J.; Yeste, M.; Becerra-Tomás, N.; Aston, K.I.; James, E.R.; Salas-Huetos, A. Clinical implications of sperm DNA damage in IVF and ICSI: Updated systematic review and meta-analysis. Biol. Rev. Camb Philos Soc. 2021, 96, 1284–1300. [Google Scholar] [CrossRef] [PubMed]
- Cissen, M.; Wely, M.V.; Scholten, I.; Mansell, S.; Bruin, J.P.; Mol, B.W.; Braat, D.; Repping, S.; Hamer, G. Measuring Sperm DNA Fragmentation and Clinical Outcomes of Medically Assisted Reproduction: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0165125. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, K.B.; Yovich, J.L.; Marjanovich, N.; Yovich, S.J.; Keane, K.N. IVF-ICSI Split Insemination Reveals those Cases of Unexplained Infertility benefitting from ICSI even when the DNA fragmentation index is reduced to 15% or even 5%. Androl. Gynecol. Curr. Res. 2016, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alvarez Sedo, C.; Bilinski, M.; Lorenzi, D.; Uriondo, H.; Noblia, F.; Longobucco, V.; Lagar, E.V.; Nodar, F. Effect of sperm DNA fragmentation on embryo development: Clinical and biological aspects. JBRA Assist. Reprod. 2017, 21, 343–350. [Google Scholar] [CrossRef] [Green Version]
- ESHRE Special Interest Group of Embryology; Alpha Scientists in Reproductive Medicine. The Vienna consensus: Report of an expert meeting on the development of art laboratory performance indicators. Hum. Reprod. Open 2017, 2017, hox011. [Google Scholar] [CrossRef] [Green Version]
- Newman, J.E.; Paul, R.C.; Chambers, G.M. Assisted Reproductive Technology in Australia and New Zealand 2020; National Perinatal Epidemiology and Statistic Unit: Sydney, Australia; The University of New South Wales: Sydney, Australia, 2020. [Google Scholar]
- Yovich, J.L.; Conceicao, J.L.; Marjanovich, N.; Wicks, R.; Wong, J.; Hinchliffe, P.M. Randomized allocation of oocytes to IVF or ICSI for IVF-naïve cases with unexplained infertility in an IVF-ICSI Split protocol favors ICSI to optimize live birth outcomes. GSC Biol. Pharm. Sci. 2021, 17, 10–37. [Google Scholar] [CrossRef]
- Khamsi, F.; Yavas, Y.; Roberge, S.; Lacanna, I.C.; Wong, J.C.; Endman, M. The status of controlled prospective clinical trials for efficacy of intracytoplasmic sperm injection in in vitro fertilization for non-male factor infertility. J. Assist. Reprod. Genet. 2000, 17, 504–507. [Google Scholar] [CrossRef]
- Matson, P.L.; Junk, S.M.; Spittle, J.W.; Yovich, J.L. Effect of antispermatoeoal antibodies in seminal plasma upon spermatozoal function. Int. J. Androl. 1988, 11, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, K.; Giwercman, A.; Bungum, M. Sperm chromatin structure assay in prediction of in vitro fertilization outcome. Andrology 2016, 4, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yovich, J.L.; Katz, D.; Jequier, A.M. Sperm recovery for men with spinal cord injury: Vasal flush is the preferred method for an-ejaculatory males. J. Fertil. Vitr. IVF Worldw. Reprod. Med. Genet. Stem Cell Biol. 2018, 6, 1000209. [Google Scholar] [CrossRef]
- Liu, D.Y.; Garrett, C.; Baker, H.W. Clinical application of sperm-oocyte interaction tests in in vitro fertilization--embryo transfer and intracytoplasmic sperm injection programs. Fertil. Steril. 2004, 82, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010; 271p. [Google Scholar]
- Anifandis, G.; Bounartzi, T.; Messini, C.I.; Dafopoulos, K.; Markandona, R.; Sotiriou, S.; Tzavella, A.; Messinis, I.E. Sperm DNA fragmentation measured by Halosperm does not impact on embryo quality and ongoing pregnancy rates in IVF/ICSI treatments. Andrologia 2015, 47, 295–302. [Google Scholar] [CrossRef]
- Virro, M.R.; Larson-Cook, K.L.; Evenson, D.P. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil. Steril. 2004, 81, 1289–1295. [Google Scholar] [CrossRef]
- Simon, L.; Murphy, K.; Shamsi, M.B.; Liu, L.; Emery, B.; Aston, K.I.; Hotaling, J.; Carrell, D.T. Paternal influence of sperm DNA integrity on early embryonic development. Hum. Reprod. 2014, 29, 2402–2412. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tan, W.; Huang, Y.; Mao, X.; Li, Z.; Zhang, X.; Wei, P.; Xue, L. Sperm DNA fragmentation measured by sperm chromatin dispersion impacts morphokinetic parameters, fertilization rate and blastocyst quality in ICSI treatments. Zygote 2022, 30, 72–79. [Google Scholar] [CrossRef]
- Borges, E., Jr.; Zanetti, B.F.; Setti, A.S.; Braga, D.P.D.A.F.; Provenza, R.R.; Iaconelli, A., Jr. Sperm DNA fragmentation is correlated with poor embryo development, lower implantation rate, and higher miscarriage rate in reproductive cycles of non-male factor infertility. Fertil. Steril. 2019, 112, 483–490. [Google Scholar] [CrossRef]
- Seli, E.; Gardner, D.K.; Schoolcraft, W.B.; Moffatt, O.; Sakkas, D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil. Steril. 2004, 82, 378–383. [Google Scholar] [CrossRef]
- Wdowiak, A.; Bakalczuk, S.; Bakalczuk, G. The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intracytoplasmatic sperm injection. Reprod. Biol. 2015, 15, 94–100. [Google Scholar] [CrossRef]
- Tesarík, J.; Kopecný, V.; Plachot, M.; Mandelbaum, J. Activation of nucleolar and extranucleolar RNA synthesis and changes in the ribosomal content of human embryos developing in vitro. J. Reprod. Fertil. 1986, 78, 463–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braude, P.; Bolton, V.; Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 1988, 332, 459–461. [Google Scholar] [CrossRef] [PubMed]
- No, C.O. Female age-related fertility decline. Fertil. Steril. 2014, 101, 633–634. [Google Scholar]
- Horta, F.; Catt, S.; Ramachandran, P.; Vollenhoven, B.; Temple-Smith, P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum. Reprod. 2020, 35, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Cozzubbo, T.; Neri, Q.V.; Rosenwaks, Z.; Palermo, G.D. To what extent can oocytes repair sperm DNA fragmentation? Fertil. Steril. 2014, 102, e61. [Google Scholar] [CrossRef]
- Ou, Y.C.; Lan, K.C.; Huang, F.J.; Kung, F.T.; Lan, T.H.; Chang, S.Y. Comparison of in vitro fertilization versus intracytoplasmic sperm injection in extremely low oocyte retrieval cycles. Fertil. Steril. 2010, 93, 96–100. [Google Scholar] [CrossRef]
- van der Westerlaken, L.; Helmerhorst, F.; Dieben, S.; Naaktgeboren, N. Intracytoplasmic sperm injection as a treatment for unexplained total fertilization failure or low fertilization after conventional in vitro fertilization. Fertil. Steril. 2005, 83, 612–617. [Google Scholar] [CrossRef]
- Supramaniam, P.R.; Granne, I.; Ohuma, E.O.; Lim, L.N.; McVeigh, E.; Venkatakrishnan, R.; Becker, C.M.; Mittal, M. ICSI does not improve reproductive outcomes in autologous ovarian response cycles with non-male factor subfertility. Hum. Reprod. 2020, 35, 583–594. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Cai, J.; Huang, H. Correlation of sperm DNA damage with IVF and ICSI outcomes: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2006, 23, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Tannus, S.; Son, W.-Y.; Gilman, A.; Younes, G.; Shavit, T.; Dahan, M.-H. The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum. Reprod. 2016, 32, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liao, T.; Fu, K.; Xu, J. ICSI Does Not Improve Live Birth Rates but Yields Higher Cancellation Rates Than Conventional IVF in Unexplained Infertility. Front. Med. 2021, 7, 614118. [Google Scholar] [CrossRef] [PubMed]
- Eftekhar, M.; Mohammadian, F.; Yousefnejad, F.; Molaei, B.; Aflatoonian, A. Comparison of conventional IVF versus ICSI in non-male factor, normoresponder patients. Iran. J. Reprod. Med. 2012, 10, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Hamilton, M.P.R.; Shaaban, M.; Khalaf, Y.; Seddler, M.; Ghobara, T.; Braude, P.; Kennedy, R.; Rutherford, A.; Hartshorne, G.; et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: A randomised controlled trial. Lancet 2001, 357, 2075–2079. [Google Scholar] [CrossRef]
- Abbas, A.M.; Hussein, R.S.; Elsenity, M.A.; Samaha, I.I.; El Etriby, K.A.; Abd El-Ghany, M.F.; Khalifa, M.A.; Abdelrheem, S.S.; Ahmed, A.A.; Khodry, M.M. Higher clinical pregnancy rate with in-vitro fertilization versus intracytoplasmic sperm injection in treatment of non-male factor infertility: Systematic review and meta-analysis. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101706. [Google Scholar] [CrossRef]
- Li, Z.; Wang, A.Y.; Bowman, M.; Hammarberg, K.; Farquhar, C.; Johnson, L.; Safi, N.; Sullivan, E.A. ICSI does not increase the cumulative live birth rate in non-male factor infertility. Hum. Reprod. 2018, 33, 1322–1330. [Google Scholar] [CrossRef]
- Practice Committees of the American Society for Reproductive Medicine and Society for Assisted Reproductive Technology. Intracytoplasmic sperm injection (ICSI) for non-male factor infertility: A committee opinion. Fertil. Steril. 2012, 98, 1395–1399. [Google Scholar] [CrossRef]
- Bungum, M.; Humaidan, P.; Axmon, A.; Spano, M.; Bungum, L.; Erenpreiss, J.; Giwercman, A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum. Reprod. 2006, 22, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Balasch, J. Ageing and infertility: An overview. Gynecol. Endocrinol. 2010, 26, 855–860. [Google Scholar] [CrossRef]
- Crawford, N.M.; Steiner, A.Z. Age-related Infertility. Obstet. Gynecol. Clin. N. Am. 2015, 42, 15–25. [Google Scholar] [CrossRef]
- Cimadomo, D.; Fabozzi, G.; Vaiarelli, A.; Ubaldi, N.; Ubaldi, F.M.; Rienzi, L. Impact of Maternal Age on Oocyte and Embryo Competence. Front. Endocrinol. 2018, 9, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Majzoub, A.; Baskaran, S.; Panner Selvam, M.K.; Cho, C.L.; Henkel, R.; Finelli, R.; Leisegang, K.; Sengupta, P.; Barbarosie, C.; et al. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J. Men’s Health 2020, 38, 412–471. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Agarwal, A.; Hamoda, T.A.; Kavoussi, P.; Saleh, R.; Zini, A.; Arafa, M.; Harraz, A.M.; Gul, M.; Karthikeyan, V.S.; et al. Controversy and Consensus on the Management of Elevated Sperm DNA Fragmentation in Male Infertility: A Global Survey, Current Guidelines, and Expert Recommendations. World J. Men’s Health 2023, 41, e48. [Google Scholar] [CrossRef] [PubMed]
Variables Initiated Cycle | SDF < 15% n = 1180 | SDF ≥ 15% n = 420 | p Value |
---|---|---|---|
Male age (years) | 36.62 ± 6.72 | 37.64 ± 6.25 | <0.01 a |
Male BMI (kg/m2) | 27.32 ± 4.43 | 26.95 ± 4.42 | 0.20 a |
Female age (years) | 35.94 ± 5.37 | 35.94 ± 4.89 | 0.70 a |
Female BMI (kg/m2) | 24.47 ± 4.67 | 24.88 ± 4.67 | 0.12 a |
AMH (pm/L) | 19.04 ± 19.52 | 17.93 ± 19.04 | 0.35 a |
Infertility duration (years) | 2.65 ± 2.12 | 3.09 ± 2.88 | <0.0001 |
Gonadotrophin total administered (IU) | 3030.51 ± 2038.08 | 3193.73 ± 2308.46 | <0.0001 a |
Estradiol level at trigger (pmol/L) | 7886.54 ± 4833.72 | 7728 ± 4338.73 | 0.56 a |
Day of trigger | 13.04 ± 4.21 | 13.42 ± 4.07 | 0.06 a |
Day of OPU | 15.04 ± 4.21 | 15.42 ± 4.07 | 0.06 a |
Oocytes retrieved per cycle (n) | 9.50 ± 5.93 | 9.40 ± 6.13 | 0.18 a |
Mature oocytes per cycle (n) | 7.22 ± 4.75 | 6.98 ± 4.86 | 0.69 a |
Type of ejaculate | 0.78 b | ||
Fresh ejaculate | 91.3% | 92.8% | |
Frozen sperm | 8.7% | 6.2% | |
Sperm preparation technique | |||
Discontinuous density gradient | 62.6% | 65.4% | <0.0001 b |
Direct swim up | 34.9% | 26.1% | <0.001 b |
Simple Sperm Washing | 2.4% | 8.3% | 0.30 b |
Density gradient + swim up | 0.1% | 0.2% | 0.50 b |
Causes of infertility | – | ||
Endometriosis | 4.3% | 2.9% | |
Tubal factor | 8.5% | 3.9% | |
Diminished ovarian reserve | 7.4% | 3.9% | |
Male factor | 20.9% | 33.8% | |
Unexplained infertility | 38.2% | 20.0% | |
Male and female factors | 10.6% | 29.4% | |
Vasectomy/reversal | 0.4% | – | |
PCOS | 5.0% | 2.6% | |
Cancer/chemotherapy | 0.1% | – | |
POI | 0.3% | – | |
Fibroid/Adenomyosis | 1.6% | – | |
Anovulatory | 0.4% | 0.4% | |
Others | 2.2% | 3.1% | |
Antral Follicle Count | – | ||
A++ (≥40 follicles) | 6.3% | 9.6% | |
A+ (30–39 follicles) | 5.6% | 7.2% | |
A (20–29 follicles) | 13.5% | 6.8% | |
B (13–19 follicles) | 22.2% | 20.0% | |
C (9–12 follicles) | 21.3% | 18.4% | |
D (5–8 follicles) | 17.9% | 21.3% | |
E (≤4 follicles) | 10.7% | 12.1% | |
Not recorded | 2.5% | 4.6% |
Seminal Variables | SDF < 15% | SDF ≥ 15% | p-Value |
---|---|---|---|
SDF (%) | 7.43 ± 3.41 | 25.24 ± 11.11 | <0.0001 |
Volume (mL) | 3.50 ± 1.55 | 3.70 ± 1.58 | 0.02 |
pH | 8.06 ± 0.27 | 8.03 ± 0.26 | 0.16 |
Abstinence (days) | 4.25 ± 5.10 | 4.83 ± 4.52 | 0.04 |
Concentration (106/mL) | 66.42 ± 52.82 | 56.99 ± 53.11 | <0.01 |
Normal morphology (%) | 5.61 ± 3.32 | 4.91 ± 3.49 | <0.001 |
Total motility (%) | 63.80 ± 16.17 | 56.18 ± 19.56 | <0.0001 |
Progressive motility (%) | 58.07 ± 16.00 | 50.31 ± 19.18 | <0.0001 |
SDF < 15% | SDF ≥ 15% | p-Value | |
---|---|---|---|
Age (years) | Laboratory Outcome | ||
Fertilization rate <35 35–39 40–44 ≥45 | 6457/8979 (71.9%) 3165/4349 (72.8%) 2078/2852 (72.9%) 1070/1570 (68.2%) 144/208 (69.2%) | 2202/3077 (71.6%) 1050/1488 (70.6%) 743/1020 (72.8%) 362/500 (72.4%) 47/69 (68.1%) | 0.71 a 0.10 a 0.99 a 0.07 a 0.88 b |
Adjusted Fertilization rate <35 35–39 40–44 ≥45 | 6457/8532 (76.0%) 3165/4072 (78.4%) 2078/2730 (76.1%) 1070/1526 (70.1%) 144/204 (70.6%) | 2202/2996 (73.5%) 1050/1439 (73.0%) 743/995 (74.7%) 362/493 (73.4%) 47/69 (68.1%) | 0.02 a <0.0001 a 0.36 a 0.16 a 0.76 b |
Blastocyst rate <35 35–39 40–44 ≥45 | 2965/6457 (45.9%) 1699/3165 (53.7%) 918/2078 (44.2%) 315/1070 (29.4%) 33/144 (22.9%) | 1053/2202 (47.8%) 562/1050 (53.5%) 370/743 (49.8%) 116/362 (32.0%) 5/47 (10.6%) | 0.12 a 0.93 a <0.01 a 0.35 a 0.09 b |
Good-quality blastocyst rate <35 35–39 40–44 ≥45 | 2476/6457 (38.3%) 1399/3165 (44.2%) 764/2078 (36.8%) 281/1070(26.3%) 32/144 (22.2%) | 853/2202 (38.7%) 455/1050 (43.3%) 299/743(40.2%) 96/362(26.5%) 3/47 (6.4%) | 0.74 a 0.62 a 0.09 a 0.92 a 0.02 b |
Clinical Outcome | |||
Clinical pregnancy rate <35 35–39 40–44 ≥45 | 590/1888 (31.3%) 359/814 (44.1%) 163/610 (26.7%) 60/398 (15.0%) 8/66 (12.1%) | 204/666 (30.4%) 110/294 (37.4%) 75/243 (30.9%) 17/111 (15.3%) 2/18 (11.1%) | 0.77 a 0.04 a 0.22 a 0.95 a 1.0 b |
Miscarriage rate <35 35–39 40–44 ≥45 | 173/590 (29.3%) 82/359 (22.8%) 57/163 (35.0%) 30/60 (50.0%) 4/8 (50.0%) | 64/204 (31.4%) 35/110 (31.8%) 23/75 (30.7%) 5/17 (29.4%) 1/2 (50.0%) | 0.58 a 0.06 a 0.66 b <0.001 b 1.0 b |
Cumulative livebirth rate <35 35–39 40–44 ≥45 | 487/1888 (25.8%) 314/814 (38.6%) 130/610 (21.3%) 39/398 (9.8%) 4/66 (6.1%) | 153/666 (22.5%) 84/294 (28.6%) 55/243 (22.6%) 13/111 (11.7%) 1/18 (5.6%) | 0.15 a <0.01 a 0.67 a 0.56 a 1.0 b |
SDF < 15% | p-Value | SDF ≥ 15% | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
ART Modality Initiated Cycles | Split n = 207 | IVF n = 56 | ICSI n = 917 | Split n = 22 | IVF n = 20 | ICSI n = 378 | |||
Laboratory Outcome | |||||||||
Fertilization rate | 1651/2488 (66.4%) | 379/626 (60.5%) | 4427/5865 (75.5%) | <0.0001 a | 160/267 (59.9%) | 134/235 (57.0%) | 1908/2575 (74.1%) | <0.0001 a | |
Adjusted Fertilization rate | 1651/2187 (75.5%) | 379/480 (79.0%) | 4427/5865 (75.5%) | 0.08 a | 160/237 (67.5%) | 134/184 (72.8%) | 1908/2575 (74.1%) | 0.03 a | |
Blastocyst rate | 926/1651 (56.1%) | 217/379 (57.3%) | 1822/4427 (41.2%) | <0.0001 a | 101/160 (63.1%) | 63/134 (47.0%) | 889/1908 (46.6%) | <0.001 a | |
Good-quality blastocyst rate | 742/1651 (44.9%) | 161/379 (42.5%) | 1573/4427 (35.5%) | <0.0001 a | 80/160 (50.0%) | 36/134 (26.9%) | 737/1908 (38.6%) | <0.001a | |
Clinical Outcome | |||||||||
Clinical pregnancy rate | |||||||||
ET | 70/180 (38.9%) | 10/47 (21.3%) | 187/827 (22.6%) | <0.0001 a | 4/17 (23.5%) | 6/15 (40%) | 70/310 (22.6%) | 0.12 a | |
FET | 106/231 (45.9%) | 17/45 (37.8%) | 200/558 (35.8%) | <0.01 a | 9/17 (52.9%) | 7/16 (43.8%) | 108/291 (37.1%) | 0.46 a | |
Miscarriage rate | |||||||||
ET | 15/70 (21.4%) | 0/10 (0%) | 72/187 (38.5%) | <0.01 b | 3/4 (75%) | 1/6 (16.7%) | 26/70 (37.1%) | 0.18 b | |
FET | 28/106 (26.4%) | 6/17 (35.3%) | 52/200 (26.0%) | 0.40 a | 3/9 (33.3%) | 2/7 (28.6%) | 29/108 (26.9%) | 0.90 b | |
Cumulative livebirth rate | |||||||||
ET | 63/180 (35.0%) | 14/47 (29.8%) | 147/827 (17.8%) | <0.0001 a | 2/17 (11.8%) | 5/15 (33.3%) | 56/310 (18.1%) | 0.10 a | |
FET | 81/231 (35.1%) | 18/45 (40.0%) | 164/558 (29.4%) | 0.04 a | 6/17 (35.3%) | 5/16 (31.3%) | 79/291 (27.1%) | 0.43 a |
SDF < 15% | p-Value | SDF ≥ 15% | p-Value | |||||
---|---|---|---|---|---|---|---|---|
ART Modality | Split | IVF | ICSI | Split | IVF | ICSI | ||
Age (Years) | Clinical Pregnancy Rate | |||||||
<35 | 118/230 (51.3%) | 17/39 (43.6%) | 224/545 (41.1%) | 0.03 a | 7/19 (36.8%) | 9/21 (42.9%) | 94/254 (37.0%) | 0.03 b |
35–39 | 51/139 (36.7%) | 9/33 (27.3%) | 103/438 (23.5%) | <0.01 a | 6/13 (46.1%) | 4/8 (50.0%) | 65/222 (29.3%) | 0.22 b |
40–44 | 5/34 (14.7%) | 1/20 (5%) | 54/344 (15.7%) | 0.43 a | 0/2 (0%) | 0/2 (0%) | 17/107 (15.9%) | 1.0 b |
≥45 | 2/8 (22.0%) | – | 6/58 (10.3%) | 0.25 b | – | – | 2/18 (11.1%) | – |
Miscarriage rate | ||||||||
<35 | 26/118 (22.0%) | 4/17 (23.5%) | 52/224 (23.2%) | 0.97 a | 5/7 (71.4%) | 3/9 (33.3%) | 27/94 (28.7%) | 0.09 b |
35–39 | 15/51 (29.4%) | 2/9 (22.2%) | 40/103 (38.8%) | 0.45 a | 1/6 (16.7%) | 0/4 (0%) | 22/65 (33.8%) | 0.40 b |
40–44 | 1/5 (20.0%) | 0/1 (0%) | 29/54 (53.7%) | 0.19 b | 0/0 (0%) | 0/0 (0%) | 5/17 (29.4%) | 1.0 b |
≥45 | 1/2 (50.0%) | – | 3/6 (50.0%) | 1.0 b | – | – | 1/2 (50.0%) | – |
Live birth rate | ||||||||
<35 | 103/230 (44.8%) | 21/39 (53.8%) | 190/545 (34.9%) | <0.01 a | 3/19 (15.8%) | 6/21 (28.6%) | 75/254 (29.5%) | 0.48 b |
35–39 | 36/139 (25.9%) | 10/33 (30.3%) | 84/438 (19.2%) | 0.03 a | 5/13 (38.5%) | 4/8 (50.0%) | 46/222 (20.7%) | 0.04 b |
40–44 | 4/34 (11.8%) | 1/20 (5%) | 34/344 (9.8%) | 0.41 a | 0/2 (0%) | 0/2 (0%) | 13/107 (12.1%) | 1.0 b |
≥45 | 1/8 (12.5%) | – | 3/58 (5.2%) | 0.41 b | – | – | 1/18 (5.6%) | – |
ART Modality | SDF < 15% | p-Value | SDF ≥ 15% | p-Value | ||
---|---|---|---|---|---|---|
IVF | ICSI | IVF | ICSI | |||
Laboratory Outcome | ||||||
Fertilization rate | 702/1306 (53.8%) | 949/1182 (80.3%) | <0.0001 a | 66/144 (45.8%) | 94/123 (76.4%) | <0.0001 b |
Adjusted Fertilization rate | 702/1005 (69.9%) | 949/1182 (80.3%) | <0.0001 a | 66/114 (57.9%) | 94/123 (76.4%) | <0.01 b |
Blastocyst rate | 416/702 (59.3%) | 510/949 (53.7%) | 0.03 a | 41/66 (62.1%) | 60/94 (63.8%) | 0.87 b |
Good– quality blastocyst rate | 326/702 (46.4%) | 416/949 (43.8%) | 0.29 a | 33/66 (50.0%) | 47/94 (50.0%) | 1.0 b |
Clinical Outcome | ||||||
Clinical pregnancy rate | ||||||
ET | 40/84 (47.6%) | 30/96 (31.3%) | 0.03 b | 3/6 (50.0%) | 1/11 (9.1%) | 0.10 b |
FET | 40/88 (45.5%) | 66/143 (46.2%) | 1.0 b | 3/6 (50.0%) | 6/11 (54.5%) | 0.99 b |
Miscarriage rate | ||||||
ET | 8/40 (20.0%) | 7/30 (23.3%) | 1.0 b | 1/3 (33.3%) | 1/1 (100%) | 1.0 b |
FET | 11/40 (27.5%) | 17/66 (25.8%) | 1.0 b | 2/3 (66.7%) | 1/6 (16.7%) | 0.23 b |
Livebirth rate | ||||||
ET | 34/84 (40.5%) | 29/96 (30.2%) | 0.16 b | 2/6 (33.3%) | 0/11 (0%) | 0.11 b |
FET | 29/89 (32.6%) | 52/145 (35.9%) | 0.67 b | 1/6 (16.7%) | 5/11 (45.5%) | 0.33 b |
Variables | Clinical Pregnancy Rate | Miscarriage Rate | Cumulative Pregnancy Rate | |||
---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | |
Male age | 0.97 (0.92–1.03) | 0.36 | 0.90 (0.82–0.98) | 0.01 | 1.03 (0.98–1.10) | 0.24 |
Female age | 0.90 (0.83–0.98) | 0.01 | 1.08 (0.95–1.22) | 0.24 | 0.86 (0.80–0.94) | <0.0001 |
AMH | 0.99 (0.97–1.01) | 0.40 | 1.01 (0.98–1.05) | 0.37 | 0.99 (0.98–1.01) | 0.34 |
Female BMI | 1.02 (0.97–1.06) | 0.47 | 1.16 (1.06–1.27) | 0.001 | 0.99 (0.96–1.04) | 0.88 |
Male BMI | 0.99 (0.98–1.00) | 0.09 | 1.01 (1.00–1.03) | 0.05 | 0.99 (0.98–1.00) | 0.07 |
Estradiol level at trigger | 1.00 (1.00–1.00) | 0.08 | 1.00 (1.00–1.00) | 0.50 | 1.00 (1.00–1.00) | 0.43 |
Gonadotrophin total dosage administered | 1.00 (1.00–1.00) | 0.37 | 1.00 (1.00–1.00) | 0.31 | 1.00 (1.00–1.00) | 0.12 |
SDF | 1.00 (0.98–1.02) | 0.96 | 0.97 (0.92–1.02) | 0.21 | 1.03 (1.00–1.07) | 0.06 |
Duration of infertility | 0.98 (0.88–1.09) | 0.72 | 0.89 (0.71–1.10) | 0.28 | 0.98 (0.87–1.10) | 0.72 |
Total mature oocytes | 1.09 (1.01–1.17) | 0.02 | 1.03 (0.75–1.41) | 0.88 | 0.89 (0.77–1.02) | 0.09 |
Type of ejaculation | 1.03 (0.68–1.58) | 0.88 | 1.36 (0.64–2.90) | 0.43 | 0.40 (0.11–1.42) | 0.15 |
Sperm preparation method | 0.86 (0.74–0.99) | 0.04 | 0.39 (0.14–1.04) | 0.06 | 1.14 (0.72–1.81) | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, S.C.; Yovich, S.J.; Hinchliffe, P.M.; Yovich, J.L. The Sperm DNA Fragmentation Assay with SDF Level Less Than 15% Provides a Useful Prediction for Clinical Pregnancy and Live Birth for Women Aged under 40 Years. J. Pers. Med. 2023, 13, 1079. https://doi.org/10.3390/jpm13071079
Chua SC, Yovich SJ, Hinchliffe PM, Yovich JL. The Sperm DNA Fragmentation Assay with SDF Level Less Than 15% Provides a Useful Prediction for Clinical Pregnancy and Live Birth for Women Aged under 40 Years. Journal of Personalized Medicine. 2023; 13(7):1079. https://doi.org/10.3390/jpm13071079
Chicago/Turabian StyleChua, Shiao Chuan, Steven John Yovich, Peter Michael Hinchliffe, and John Lui Yovich. 2023. "The Sperm DNA Fragmentation Assay with SDF Level Less Than 15% Provides a Useful Prediction for Clinical Pregnancy and Live Birth for Women Aged under 40 Years" Journal of Personalized Medicine 13, no. 7: 1079. https://doi.org/10.3390/jpm13071079
APA StyleChua, S. C., Yovich, S. J., Hinchliffe, P. M., & Yovich, J. L. (2023). The Sperm DNA Fragmentation Assay with SDF Level Less Than 15% Provides a Useful Prediction for Clinical Pregnancy and Live Birth for Women Aged under 40 Years. Journal of Personalized Medicine, 13(7), 1079. https://doi.org/10.3390/jpm13071079