Classical Prognostic Factors Predict Prognosis Better than Inflammatory Indices in Locally Advanced Cervical Cancer: Results of a Comprehensive Observational Study including Tumor-, Patient-, and Treatment-Related Data (ESTHER Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aim and Design of the Study
2.2. Staging, Treatment, and Follow-Up
2.3. Evaluated Parameters
2.3.1. Patients Related Data
2.3.2. Tumor Related Data
2.3.3. Treatment Related Data
2.3.4. Inflammatory Indices
2.4. Statistical Analysis
3. Results
3.1. Patients′ Characteristics
3.2. Treatment Characteristics
3.3. Clinical Outcomes
3.4. Prognostic Impact of the Analyzed Parameters
3.4.1. Patients and Treatment Related Data
3.4.2. Inflammatory Indices
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. EMBRACE Collaborative Group. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): A multicentre prospective cohort study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Eifel, P.J.; Lu, J.; Grigsby, P.W.; Levenback, C.; Stevens, R.E.; Rotman, M.; Gershenson, D.M.; Mutch, D.G. Pelvic Radiation with Concurrent Chemotherapy Compared with Pelvic and Para-Aortic Radiation for High-Risk Cervical Cancer. N. Engl. J. Med. 1999, 340, 1137–1143. [Google Scholar] [CrossRef]
- Vale, C.; Jakobsen, A. Reducing Uncertainties About the Effects of Chemoradiotherapy for Cervical Cancer: A Systematic Review and Meta-Analysis of Individual Patient Data From 18 Randomized Trials. J. Clin. Oncol. 2008, 26, 5802–5812. [Google Scholar]
- Lai, C.H. Management of recurrent cervical cancer. Chang. Gung Med. J. 2004, 27, 711–717. [Google Scholar] [PubMed]
- Atahan, I.L.; Onal, C.; Ozyar, E.; Yiliz, F.; Selek, U.; Kose, F. Long-term outcome and prognostic factors in patients with cervical carcinoma: A retrospective study. Int. J. Gynecol. Cancer 2007, 17, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Winter, W.E., 3rd; Maxwell, G.L.; Tian, C.; Sobel, E.; Rose, G.S.; Thomas, G.; Carlson, J.W. Association of hemoglobin level with survival in cervical carcinoma patients treated with concurrent cisplatin and radiotherapy: A Gynecologic Oncology Group Study. Gynecol. Oncol. 2004, 94, 495–501. [Google Scholar] [CrossRef]
- Grogan, M.; Thomas, G.M.; Melamed, I.; Wong, F.L.; Pearcey, R.G.; Joseph, P.K.; Portelance, L.; Crook, J.; Jones, K.D. The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix. Cancer 1999, 86, 1528–1536. [Google Scholar] [CrossRef]
- Thomas, G. The effect of hemoglobin level on radiotherapy outcomes: The Canadian experience. Semin. Oncol. 2001, 28, 60–65. [Google Scholar] [CrossRef]
- Koulis, T.A.; Kornaga, E.N.; Banerjee, R.; Phan, T.; Ghatage, P.; Magliocco, A.M.; Lees-Miller, S.P.; Doll, C.M. Anemia, leukocytosis and thrombocytosis as prognostic factors in patients with cervical cancer treated with radical chemoradiotherapy: A retrospective cohort study. Clin. Transl. Radiat. Oncol. 2017, 12, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Šeruga, B.; Ocaña, A.; Tannock, I.F.; Amir, E. Prognostic Role of Platelet to Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef]
- Haraga, J.; Nakamura, K.; Omichi, C.; Nishida, T.; Haruma, T.; Kusumoto, T.; Seki, N.; Masuyama, H.; Katayama, N.; Kanazawa, S.; et al. Pretreatment prognostic nutritional index is a significant predictor of prognosis in patients with cervical cancer treated with concurrent chemoradiotherapy. Mol. Clin. Oncol. 2016, 5, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.H.; Kim, H.; Kim, T.H.; Kim, M.H.; Kim, B.J.; Ryu, S.Y. Prognostic significance of pretreatment lymphocyte percentage and age at diagnosis in patients with locally advanced cervical cancer treated with definite radiotherapy. Obstet. Gynecol. Sci. 2019, 62, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Seol, K.H. Pretreatment Neutrophil-to-Lymphocyte Ratio Combined with Platelet-to-Lymphocyte Ratio as a Predictor of Survival Outcomes after Definitive Concurrent Chemoradiotherapy for Cervical Cancer. J. Clin. Med. 2021, 10, 2199. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, J.M.; Chin, Y.J.; Chong, G.O.; Park, S.H.; Lee, Y.H.; Hong, D.G.; Lee, Y.S. Prognostic Value of Hematological Parameters in Locally Advanced Cervical Cancer Patients Treated with Concurrent Chemoradiotherapy. Anticancer Res. 2020, 40, 451–458. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Choi, C.H.; Kim, H.J.; Kim, T.J.; Lee, J.W.; Lee, J.H.; Bae, D.S.; Kim, B.G. Pretreatment neutrophil: Lymphocyte ratio as a prognostic factor in cervical carcinoma. Anticancer Res. 2012, 32, 1555–1561. [Google Scholar]
- Li, Y.X.; Chang, J.Y.; He, M.Y.; Wang, H.R.; Luo, D.Q.; Li, F.H.; Li, J.H.; Ran, L. Neutrophil-to-Lymphocyte Ratio (NLR) and Monocyte-to-Lymphocyte Ratio (MLR) Predict Clinical Outcome in Patients with Stage IIB Cervical Cancer. J. Oncol. 2021, 2021, 2939162. [Google Scholar] [CrossRef]
- Mizunuma, M.; Yokoyama, Y.; Futagami, M.; Aoki, M.; Takai, Y.; Mizunuma, H. The pretreatment neutrophil-to-lymphocyte ratio predicts therapeutic response to radiation therapy and concurrent chemoradiation therapy in uterine cervical cancer. Int. J. Clin. Oncol. 2015, 20, 989–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onal, C.; Guler, O.C.; Yildirim, B.A. Prognostic Use of Pretreatment Hematologic Parameters in Patients Receiving Definitive Chemoradiotherapy for Cervical Cancer. Int. J. Gynecol. Cancer 2016, 26, 1169–1175. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Bai, Z.L.; He, J.L.; Yang, Y.; Zhao, R.; Hai, P.; Zhe, H. Prognostic Value of Neutrophil-Related Factors in Locally Advanced Cervical Squamous Cell Carcinoma Patients Treated with Cisplatin-Based Concurrent Chemoradiotherapy. Dis. Markers 2016, 2016, 3740794. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Feng, M.; He, F.; Han, B.; Ma, K.; Zeng, X.; Liu, Z.; Liu, X.; Li, J.; Cao, H.; et al. Pretreatment neutrophil-lymphocyte and platelet-lymphocyte ratio predict clinical outcome and prognosis for cervical Cancer. Clin. Chim. Acta 2018, 483, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Holub, K.; Biete, A. Impact of systemic inflammation biomarkers on the survival outcomes of cervical cancer patients. Clin. Transl. Oncol. 2019, 21, 836–844. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, Y.S.; Shin, J.W.; Osong, B.; Lee, S.H. Prediction scoring system based on clinicohematologic parameters for cervical cancer patients undergoing chemoradiation. Int. J. Gynecol. Cancer 2020, 30, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Jonska-Gmyrek, J.; Gmyrek, L.; Zolciak-Siwinska, A.; Kowalska, M.; Fuksiewicz, M.; Kotowicz, B. Pretreatment neutrophil to lymphocyte and platelet to lymphocyte ratios as predictive factors for the survival of cervical adenocarcinoma patients. Cancer Manag. Res. 2018, 10, 6029–6038. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, R.; Trivedi, V.; Rani, R.; Singh, U.; Singh, K. Pre-treatment hematological parameters as a cost effective predictive marker for response to concurrent chemo radiation in locally advanced cervical cancer. Cancer Treat. Res. Commun. 2022, 31, 100539. [Google Scholar] [CrossRef]
- Li, S.W.; Yuan, W.; Zhao, B.; He, Z.K.; Guo, X.; Xia, W.X.; Xu, L.H. Positive effect of HPV status on prognostic value of blood lymphocyte-to-monocyte ratio in advanced cervical carcinoma. Cancer Cell Int. 2016, 16, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangopadhyay, A. Prognostic Nutritional Index and Clinical Response in Locally Advanced Cervical Cancer. Nutr. Cancer 2020, 72, 1438–1442. [Google Scholar] [CrossRef]
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019, 145, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Deodato, F.; Cilla, S.; Massaccesi, M.; Macchia, G.; Ippolito, E.; Caravatta, L.; Picardi, V.; Romanella, M.; Di Falco, C.; Bartollino, A.; et al. Daily on-line set-up correction in 3D-conformal radiotherapy: Is it feasible? Tumori J. 2012, 98, 441–444. [Google Scholar] [CrossRef]
- Choi, Y.; Ahn, K.J.; Park, S.K.; Cho, H.; Lee, J.Y. Adverse effect of excess body weight on survival in cervical cancer patients after surgery and radiotherapy. Radiat. Oncol. J. 2017, 35, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Kizer, N.T.; Thaker, P.H.; Gao, F.; Zighelboim, I.; Powell, M.A.; Rader, J.S.; Mutch, D.G.; Grigsby, P.W. The effects of body mass index on complications and survival outcomes in patients with cervical carcinoma undergoing curative chemoradiation therapy. Cancer. 2011, 117, 948–956. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Ji, S.; Jiang, J.; Yan, Y. Body Weight Is a Valid Predictor of the Long-Term Prognosis of Cervical Cancer. Comput. Math. Methods Med. 2022, 2022, 5613350. [Google Scholar] [CrossRef] [PubMed]
- Kise, S.; Arakaki, Y.; Kudaka, W.; Ariga, T.; Kinjo, N.; Kohatu, H.; Aoki, Y. Sarcopenia Is an Independent Prognostic Factor for Squamous Cell Carcinoma of the Cervix Treated with Concurrent Chemoradiotherapy. Anticancer Res. 2022, 42, 4887–4893. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.H.; Plyta, M.; Fragkos, K.; Di Caro, S. Pre-treatment sarcopenic assessments as a prognostic factor for gynaecology cancer outcomes: Systematic review and meta-analysis. Eur. J. Clin. Nutr. 2022, 76, 1513–1527. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, H.; Nakamura, K.; Matsubara, Y.; Ida, N.; Nishida, T.; Ogawa, C.; Katsi, K.; Kanazawa, S.; Masuyama, H. Sarcopenia Is Not a Prognostic Factor of Outcome in Patients with Cervical Cancer Undergoing Concurrent Chemoradiotherapy or Radiotherapy. Anticancer Res. 2019, 39, 933–939. [Google Scholar] [CrossRef]
- Perez, C.A. Dose fractionation and biological optimization in carcinoma of the uterine cervix. Rays 2004, 29, 253–270. [Google Scholar]
- Liang, C.; Xu, Z.; Shen, X.; Wu, K. Correlation between Neutrophil-to-Lymphocyte Ratio and Pretreatment Magnetic Resonance Imaging and Their Predictive Significance in Cervical Carcinoma Patients Referred for Radiotherapy. J. Oncol. 2022, 2022, 3409487. [Google Scholar] [CrossRef]
- Mileshkin, L.R.; Moore, K.N.; Barnes, E.H.; Gebski, V.; Narayan, K.; King, M.T.; Bradshaw, N.; Lee, Y.C.; Diamante, K.; Fyles, A.W.; et al. Adjuvant chemotherapy following chemoradiotherapy as primary treatment for locally advanced cervical cancer versus chemoradiotherapy alone (OUTBACK): An international, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 468–482. [Google Scholar] [CrossRef]
- Ma, X.; Fang, J.; Zhang, L.; Huang, Y.; Shen, H.; Ma, X.; Zhang, S.; Zhang, B. Efficacy and safety of adjuvant chemotherapy for locally advanced cervical cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2023, 184, 103953. [Google Scholar] [CrossRef]
- Forni, F.; Ferrandina, G.; Deodato, F.; Macchia, G.; Morganti, A.G.; Smaniotto, D.; Luzi, S.; D’Agostino, G.; Valentini, V.; Cellini, N.; et al. Squamous cell carcinoma antigen in follow-up of cervical cancer treated with radiotherapy: Evaluation of cost-effectiveness. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 1145–1149. [Google Scholar] [CrossRef]
- Ferrandina, G.; Macchia, G.; Legge, F.; Deodato, F.; Forni, F.; Digesù, C.; Carone, V.; Morganti, A.G.; Scambia, G. Squamous cell carcinoma antigen in patients with locally advanced cervical carcinoma undergoing preoperative radiochemotherapy: Association with pathological response to treatment and clinical outcome. Oncology 2008, 74, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xu, P.; Duan, Z.; Zhang, F.; Fang, Y.; Yan, D.; Zhang, H.; Cai, Q.; Huang, X.; Huang, Z.; et al. Effects of admission systemic inflammatory indicators on clinical outcomes in patients with vertebrobasilar artery occlusion: Insight from the PERSIST registry. J. Neurointerv. Surg. 2022. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, S.; Yang, G.; Hosseinifard, H.; Imani, S.; Yang, L.; Maghsoudloo, M.; Fu, S.; Wen, Q.; Liu, Q. Prognostic value of systemic hemato-immunological indices in uterine cervical cancer: A systemic review, meta-analysis, and meta-regression of observational studies. Gynecol. Oncol. 2021, 160, 351–360. [Google Scholar] [CrossRef] [PubMed]
Patients n° (%) | 173 (100%) |
---|---|
Median age (range), years | 56 (27–85) |
Histological type, number of patients (%) | |
Squamous cell carcinoma | 173 (85.0) |
Adenocarcinoma | 26 (15.0) |
Federation of Gynecology and Obstetrics stage, number of patients (%) | |
IB | 1 (0.6) |
IIA | 3 (1.7) |
IIB | 73 (42.2) |
IIIA | 9 (5.2) |
IIIB | 3 (1.7) |
IIIC1 | 39 (22.5) |
IIIC2 | 22 (12.7) |
IVA | 23 (13.3) |
Radiotherapy technique, number of patients (%) | |
3-D conformal radiotherapy | 87 (50.3) |
Intensity modulated radiotherapy | 66 (38.1) |
Volumetric modulated arc therapy | 20 (11.6) |
Median radiotherapy dose (range), Gy | |
Prophylactic pelvic nodes irradiation | 46.0 (26.0–50.4) |
Metastatic nodes | 57.5 (52.5–61.0) |
Brachytherapy boost | 28.0 (4.0–42.0) |
LC | DMFS | DFS | OS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariate | Multivariable | Univariate | Multivariable | Univariate | Multivariable | Univariate | Multivariable | |||||||||
HR/95%CI | p: | HR/95%CI | p: | HR/95%CI | p: | HR/95%CI | p: | HR/95%CI | p: | HR/95%CI | p: | HR/95%CI | p: | HR/95%CI | p: | |
Age | 0.98/0.95–1.02 | 0.23 | 1.03/1.01–1.09 | 0.03 | 1.03/1.00–1.06 | 0.02 | 1.02/0.98–1.04 | 0.76 | 1.04/1.02–1.08 | 0.02 | 1.04/1.01–1.07 | <0.01 | ||||
BMI | 1.01/0.98–1.11 | 0.22 | 1.04/1.00–1.10 | 0.05 | 1.10/1.02–1.14 | <0.01 | 1.05/1.01–1.10 | 0.03 | 1.10/1.4–1.13 | 0.02 | 1.07/1.01–1.13 | 0.02 | ||||
PNI | 1.00/0.97–1.02 | 0.81 | 0.99/0.97–1.05 | 0.68 | 1.03/0.98–1.06 | 0.98 | 0.99/0.96–1.05 | 0.43 | ||||||||
FIGO (I-II) | Rif. | Rif. | Rif. | Rif. | ||||||||||||
FIGO (III) | 2.55/1.04–6.27 | 0.04 | 2.51/1.25–5.06 | <0.01 | 2.86/1.41–5.82 | <0.01 | 2.14/1.19–3.85 | 0.01 | 1.96/1.07–3.57 | 0.03 | 2.66/1.33–5.34 | <0.01 | 3.27/1.58–6.79 | <0.01 | ||
FIGO (IV) | 4.91/1.77–13.58 | <0.01 | 2.47/0.96–6.31 | 0.06 | 3.24/1.56–6.74 | <0.01 | 2.00/0.75–5.34 | 0.165 | ||||||||
T diameter(maximum) | 1.02/1.01–1.04 | <0.001 | 1.02/1.01–1.03 | <0.01 | 1.02/0.99–1.04 | 0.22 | 1.03/1.01–1.05 | <0.001 | 1.02/1.01–1.03 | <0.01 | ||||||
RBC | 0.46/0.27–0.78 | <0.01 | 1.11/0.64–2.12 | 0.68 | 0.78/0.51–1.27 | 0.28 | 0.63/0.39–1.01 | 0.06 | ||||||||
Hb (<10) | Rif. | Rif. | Rif. | Rif. | ||||||||||||
Hb (10–12) | 0.41/0.17–1.01 | 0.05 | 0.41/0.13–1.25 | 0.11 | 0.44/0.19–1.01 | 0.05 | 0.41/0.17–0.98 | 0.04 | 0.58/0.22–1.52 | 0.27 | ||||||
Hb (>12) | 0.11/0.04–0.28 | <0.001 | 0.14/0.05–0.36 | <0.001 | 0.52/0.21–1.35 | 0.18 | 0.32/0.15–0.67 | <0.01 | 0.37/0.17–0.79 | 0.01 | 0.34/0.14–0.85 | 0.02 | 0.23/0.08–0.61 | <0.01 | ||
NLR | 1.02/0.98–1.12 | 0.26 | 1.01/0.97–1.12 | 0.37 | 1.06/0.99–1.12 | 0.18 | 1.00/0.94–1.10 | 0.89 | ||||||||
PLR | 1.01/0.99–1.03 | 0.28 | 1.03/1.01–1.05 | 0.02 | 1.02/1.01–1.03 | 0.02 | 1.01/0.99–1.04 | 0.46 | ||||||||
MLR | 1.30/0.49–3.51 | 0.60 | 1.42/0.52–3.51 | 0.53 | 1.22/0.53–2.78 | 0.67 | 0.62/0.14–2.74 | 0.52 | ||||||||
SII | 0.99/0.99–1.03 | 0.15 | 1.01/1.01–1.02 | <0.01 | 1.02/1.01–1.03 | <0.01 | 1.03/1.01–1.04 | <0.01 | 1.04/0.98–1.11 | 0.27 | ||||||
LLR | 1.00/0.98–1.10 | 0.19 | 1.00/0.98–1.07 | 0.21 | 1.04/0.99–1.10 | 0.09 | 1.00/0.94–1.08 | 0.82 | ||||||||
COP-NLR (0) | Rif. | Rif. | Rif. | Rif. | ||||||||||||
COP-NLR (1) | 1.11/0.44–2.77 | 0.81 | 0.79/0.40–1.58 | 0.51 | 0.69/0.38–1.23 | 0.21 | 0.57/0.28–1.16 | 0.12 | ||||||||
COP-NLR (2) | 2.72/1.09–6.79 | 0.03 | 0.97/0.43–2.21 | 0.95 | 1.07/0.55–2.07 | 0.83 | 1.11/0.51–2.39 | 0.78 | ||||||||
APRI | 0.23/0.01–7.70 | 0.42 | 0.75/0.19–3.11 | 0.69 | 0.81/0.39–1.71 | 0.59 | 0.85/0.31–2.43 | 0.76 | ||||||||
ALRI | 0.99/0.96–1.01 | 0.77 | 1.01/0.99–1.03 | 0.46 | 1.03/0.98–1.06 | 0.67 | 0.99/0.95–1.04 | 0.50 | ||||||||
SIRI | 0.99/0.96–1.02 | 0.37 | 0.99/0.98–1.02 | 0.52 | 0.99/0.98–1.03 | 0.36 | 0.99/0.96–1.04 | 0.31 | ||||||||
ANRI | 0.79/0.64–0.98 | 0.02 | 1.01/0.92–1.09 | 0.73 | 0.99/0.90–1.11 | 0.81 | 0.97/0.85–1.12 | 0.68 |
Author, Year | Evaluated Indexes | Cut-Off | Outcome Predictions | Confounders Considered |
---|---|---|---|---|
Lee et al., 2012 [16] | NLR | 1.9 | <OS if >NLR (pre-CRT) | age; histological type; FIGO; treatment |
Mizunuma et al., 2015 [18] | NLR | 2.5 | <OS and <PFS if >NLR (pre-CRT) | age; histological type; FIGO; T size; N stage; treatment |
Haraga et al., 2016 [12] | NLR | 2.85 | <OS and <PFS if <PNI; no impact of NLR and PLR (pre-CRT) | histological type; FIGO; T size; N stage; lymphovascular invasion |
PLR | 172.5 | |||
PNI | 48.5 | |||
Li et al., 2016 [26] | LMR | 5.28 | >PFS and >OS if >LMR (pre-CRT) | age; histological type; N stage; HPV status |
Onal et al., 2016 [19] | NLR | 3.03 | <OS, <PFS if >NLR; no impact of PLR (pre-CRT) | age; histological type; FIGO; T size; N stage |
PLR | 133.0 | |||
Wang et al., 2016 [20] | NLR | 2 | <OS if >NLR (pre-CRT) | age; histological type; FIGO; T size; N stage |
Koulis et al., 2017 [10] | NLR | 5 | <PFS and <OS if Hb <11.5; no impact of NLR alone (pre-CRT) | age; anemia; histological type; FIGO; T size; N stage; treatment |
11.5 | ||||
Holub et al., 2018 [22] | NLR | 3.8 | >OS if >ELR; <PFS if >PLR or >SII (pre-CRT) | age; histological type; FIGO; HPV status |
PLR | 210 | |||
SII | 1000 | |||
ELR | 0.07 | |||
Jonska-Gymrec et al., 2018 [24] | NLR | 1.6 | <OS if >NLR; no impact of PLR (pre-CRT) | age; histological type; FIGO; T grade; N stage |
PLR | 158 | |||
MLR | 0.33 | |||
Jeong et al., 2019 [13] | NLR | 2.8 | <PFS if >NLR; no impact on OS | age; histological type; T size; FIGO; treatment |
Gangopadhyay et al., 2020 [27] | PNI | 44.8 | >CR rate if PNI > 44.8 | age; histological type; FIGO |
Kim et al., 2020 [23] | NLR | 2.33 | <PFS and OS if >ΔNLR; no impact of NLR, PLR, LMR (pre-CRT) and of ΔPLR, ΔLMR | age; histological type; FIGO |
PLR | 136.6 | |||
LMR | 4.17 | |||
Lee et al., 2020 [15] | NLR | 3.04 | <DFS if >NLR, >ΔNLR, >ΔPLR (post-CRT); <OS if >NLR (post-CRT); no impact on OS of NLR, MLR, PLR (pre-CRT), ΔNLR, ΔMLR, ΔPLR, and MLR, PLR (post-CRT) | age; histological type; FIGO; T size; N stage |
MLR | 174.3 | |||
PLR | 3.85 | |||
Lee et al., 2021 [14] | NLR | 2.34 | <OS only if both >NLR and >PLR | age; histological type; FIGO; T size; N stage |
PLR | 148.9 | |||
Li et al., 2021 [17] | NLR | 2.49 | <OS and <PFS if >NLR and >MLR (pre-CRT); no impact of PLR, BLR, SIRI (pre-CRT) | age; histological type; T size; N stage; menopausal status |
PLR | 154.2 | |||
MLR | 0.26 | |||
SIRI | 1.02 | |||
BLR | 0.02 | |||
Chauan et al., 2022 [25] | NLR | 3 | >CR rate if <NLR and <PLR | age; histological type; FIGO |
PLR | 70 | |||
Liang et al., 2022 [37] | NLR | 3.87 | <OSand <PFS if >NLR (pre-CRT) | age; BMI; histological type; FIGO; T size; N stage; treatment |
Present series | NLR, PLR, MLR, SII, LLR, APRI, ALRI, SIRI, ANRICOP | c.v. | <distant metastasis-free survival if >SII | age; BMI; anemia; histological type; FIGO; T size; N stage; treatment; PNI |
0: NLR < 3 & PLT < 300; | ||||
1: NLR > 3 or PLT > 300; | ||||
2: NLR > 3 and PLT > 300. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferioli, M.; Benini, A.; Malizia, C.; Forlani, L.; Medici, F.; Laghi, V.; Ma, J.; Galuppi, A.; Cilla, S.; Buwenge, M.; et al. Classical Prognostic Factors Predict Prognosis Better than Inflammatory Indices in Locally Advanced Cervical Cancer: Results of a Comprehensive Observational Study including Tumor-, Patient-, and Treatment-Related Data (ESTHER Study). J. Pers. Med. 2023, 13, 1229. https://doi.org/10.3390/jpm13081229
Ferioli M, Benini A, Malizia C, Forlani L, Medici F, Laghi V, Ma J, Galuppi A, Cilla S, Buwenge M, et al. Classical Prognostic Factors Predict Prognosis Better than Inflammatory Indices in Locally Advanced Cervical Cancer: Results of a Comprehensive Observational Study including Tumor-, Patient-, and Treatment-Related Data (ESTHER Study). Journal of Personalized Medicine. 2023; 13(8):1229. https://doi.org/10.3390/jpm13081229
Chicago/Turabian StyleFerioli, Martina, Anna Benini, Claudio Malizia, Ludovica Forlani, Federica Medici, Viola Laghi, Johnny Ma, Andrea Galuppi, Savino Cilla, Milly Buwenge, and et al. 2023. "Classical Prognostic Factors Predict Prognosis Better than Inflammatory Indices in Locally Advanced Cervical Cancer: Results of a Comprehensive Observational Study including Tumor-, Patient-, and Treatment-Related Data (ESTHER Study)" Journal of Personalized Medicine 13, no. 8: 1229. https://doi.org/10.3390/jpm13081229
APA StyleFerioli, M., Benini, A., Malizia, C., Forlani, L., Medici, F., Laghi, V., Ma, J., Galuppi, A., Cilla, S., Buwenge, M., Macchia, G., Zamagni, C., Tagliaferri, L., Perrone, A. M., De Iaco, P., Strigari, L., Morganti, A. G., & Arcelli, A. (2023). Classical Prognostic Factors Predict Prognosis Better than Inflammatory Indices in Locally Advanced Cervical Cancer: Results of a Comprehensive Observational Study including Tumor-, Patient-, and Treatment-Related Data (ESTHER Study). Journal of Personalized Medicine, 13(8), 1229. https://doi.org/10.3390/jpm13081229