The Role of Oxidative Stress in Infertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Sample Collection
2.3. Ovarian Stimulation Protocol
2.4. Measurement of Oxidative Stress Markers
2.5. Statistical Analysis
3. Results
3.1. Outcomes in Both Groups Regarding the Parameters Studied
3.2. Comparative Oxidative Stress in Control and Study Group
3.3. Corelation between Oxidative Stress and IVF Parametres
3.3.1. Control Group
3.3.2. Study Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sies, H. Oxidative Stress: Concept and some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar]
- Pisarska, M.D.; Chan, J.L.; Lawrenson, K.; Gonzalez, T.L.; Wang, E.T. Genetics and Epigenetics of Infertility and Treatments on Outcomes. J. Clin. Endocrinol. Metab. 2019, 104, 1871–1886. [Google Scholar]
- Lv, Y.; Du, S.; Huang, X.; Hao, C. Follicular Fluid Estradiol Is an Improved Predictor of in Vitro Fertilization/Intracytoplasmic Sperm Injection and Embryo Transfer Outcomes. Exp. Ther. Med. 2020, 20, 131. [Google Scholar] [PubMed]
- Lazzarino, G.; Pallisco, R.; Bilotta, G.; Listorti, I.; Mangione, R.; Saab, M.W.; Caruso, G.; Amorini, A.M.; Brundo, M.V.; Lazzarino, G.; et al. Altered Follicular Fluid Metabolic Pattern Correlates with Female Infertility and Outcome Measures of In Vitro Fertilization. Int. J. Mol. Sci. 2021, 22, 8735. [Google Scholar]
- Nuñez-Calonge, R.; Cortés, S.; Gutierrez Gonzalez, L.M.; Kireev, R.; Vara, E.; Ortega, L.; Caballero, P.; Rancan, L.; Tresguerres, J. Oxidative Stress in Follicular Fluid of Young Women with Low Response Compared with Fertile Oocyte Donors. Reprod. Biomed. Online 2016, 32, 446–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, R.J.; Krausz, C. Oxidative Stress, DNA Damage and the Y Chromosome. Reproduction 2001, 122, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28. [Google Scholar]
- Ufer, C.; Wang, C.C.; Borchert, A.; Heydeck, D.; Kuhn, H. Redox control in mammalian embryo development. Antioxid. Redox Signal. 2010, 13, 833–875. [Google Scholar]
- Hansen, J.M.; Jones, D.P.; Harris, C. The Redox Theory of Development. Antioxid. Redox Signal. 2020, 32, 715–740. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. 2007, 39, 44–84. [Google Scholar]
- Carbone, M.; Tatone, C.; Monache, S.D.; Marci, R.; Caserta, D.; Colonna, R.; Amicarelli, F. Antioxidant enzymatic defences in human follicular fluid: Characterization and age-dependent changes. Mol. Hum. Reprod. 2003, 9, 639–643. [Google Scholar]
- Duleba, A.; Foyouzi, N.; Karaca, M.; Pehlivan, T.; Kwintkiewicz, J.; Behrman, H.R. Proliferation of ovarian theca-interstitial cells is modulated by antioxidants and oxidative stress. Hum. Reprod. 2004, 19, 1519–1524. [Google Scholar]
- Muttukrishna, S.; Suharjono, H.; McGarrigle, H.; Sathanandan, M. Inhibin B and anti-Mullerian hormone: Markers of ovarian response in IVF/ICSI patients? BJOG 2004, 111, 1248–1253. [Google Scholar]
- Ebisch, I.M.W.; Peters, W.H.M.; Thomas, C.M.G.; Wetzels, A.M.M.; Peer, P.G.M.; Steegers-Theunissen, R.P.M. Homocysteine, glutathione and related thiols affect fertility parameters in the (sub) fertile couple. Hum. Reprod. 2006, 21, 1725–1733. [Google Scholar] [PubMed] [Green Version]
- Gongadashetti, K.; Gupta, P.; Dada, R.; Malhotra, N. Follicular fluid oxidative stress biomarkers and ART outcomes in PCOS women undergoing in vitro fertilization: A cross-sectional study. Int. J. Reprod. BioMed. 2021, 19, 449–456. [Google Scholar] [PubMed]
- Sarkar, M.; Suzuki, A. Reproductive Health and Nonalcoholic Fatty Liver Disease in Women: Considerations Across the Reproductive Lifespan. Clin. Liver Dis. 2020, 15, 219–222. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [PubMed]
- Efrem, I.C.; Moța, M.; Vladu, I.M.; Mitrea, A.; Clenciu, D.; Timofticiuc, D.C.P.; Diaconu, I.-D.; Turcu, A.; Crișan, A.E.; Geormăneanu, C.; et al. A Study of Biomarkers Associated with Metabolic Dysfunction-Associated Fatty Liver Disease in Patients with Type 2 Diabetes. Diagnostics 2022, 12, 2426. [Google Scholar] [PubMed]
- Liu, X.; Shi, S.; Sun, J.; He, Y.; Zhang, Z.; Xing, J.; Chong, T. The influence of male and female overweight/obesity on IVF outcomes: A cohort study based on registration in Western China. Reprod. Health 2023, 20, 3. [Google Scholar]
- Sundaram, R.; Mumford, S.L.; Buck Louis, G.M. Couples’ body composition and time-to-pregnancy. Hum. Reprod. 2017, 32, 662–668. [Google Scholar]
- Ngô, C.; Chéreau, C.; Nicco, C.; Weill, B.; Chapron, C.; Batteux, F. Reactive oxygen species controls endometriosis progression. Am. J. Pathol. 2009, 175, 225–234. [Google Scholar]
- Cacciottola, L.; Donnez, J.; Dolmans, M.-M. Can Endometriosis-Related Oxidative Stress Pave the Way for New Treatment Targets? Int. J. Mol. Sci. 2021, 22, 7138. [Google Scholar]
- Park, J.K.; Song, M.; Dominguez, C.E.; Walter, M.F.; Santanam, N.; Parthasarathy, S.; Murphy, A.A. Glycodelin mediates the increase in vascular endothelial growth factor in response to oxidative stress in the endometrium. Am. J. Obstet. Gynecol. 2006, 195, 1772–1777. [Google Scholar]
- Adeoye, O.; Olawumi, J.; Opeyemi, A.; Christiania, O. Review on the role of glutathione on oxidative stress and infertility. JBRA Assist. Reprod. 2018, 22, 61–66. [Google Scholar] [PubMed]
- Malhotra, N.; Gongadashetti, K.; Dada, R.; Singh, N. Oxidative stress biomarkers in follicular fluid of women with PCOS and tubal factor infertility-is there a correlation with in-vitro-fertilization outcome? Fertil. Steril. 2014, 102, e86. [Google Scholar] [CrossRef]
- Yalçınkaya, E.; Çakıroğlu, Y.; Doğer, E.; Budak, Ö.; Çekmen, M.; Çalışkan, E. Effect of follicular fluid NO, MDA and GSH levels on in vitro fertilization outcomes. J. Turk. Ger. Gynecol. Assoc. 2013, 14, 136–141. [Google Scholar] [PubMed]
- Francis, O.; Adebayo, N.A.; Adebiyi, G.; Adesiyun, B.A.; Ekele, I.W. Correlation of female age with outcome of IVF in a low-resource setting. Int. J. Gynaecol. Obstet. 2023, 161, 283–288. [Google Scholar]
- Song, H.; Yu, Z.; Li, P.; Wang, Y.; Shi, Y. HOMA-IR for predicting clinical pregnancy rate during IVF. Gynecol. Endocrinol. 2022, 38, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.K.; Srikanta, J.; Chainy, G.B.N. Chapter 2.7—Thyroid Dysfunction and Testicular Redox Status. In Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction; Henkel, R., Samanta, L., Agarwal, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 149–170. [Google Scholar]
- Sun, X.Y.; Lan, Y.Z.; Liu, S.; Long, X.P.; Mao, X.G.; Liu, L. Relationship Between Anti-Müllerian Hormone and In Vitro Fertilization-Embryo Transfer in Clinical Pregnancy. Front. Endocrinol. 2020, 11, 595448. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, E.B.; Agarwal, A.; Sharma, R.K.; Izzo, V.M.; A Pinotti, J.; Joshi, N.J.; Rose, B.I. Effect of oxidative stress in follicular fluid on the outcome assisted reproductive procedures. Fertil. Steril. 2004, 81, 973–976. [Google Scholar]
- Esterbauer, H.; Eckl, P.; Ortner, A. Possible mutagens derived from lipids and lipid precursors. Mutat. Res. Genet. Toxicol. 1990, 238, 223–233. [Google Scholar]
- Collodel, G.; Gambera, L.; Stendardi, A.; Nerucci, F.; Signorini, C.; Pisani, C.; Marcheselli, M.; Vellucci, F.L.; Pizzasegale, S.E.; Micheli, L.; et al. Follicular Fluid Components in Reduced Ovarian Reserve, Endometriosis, and Idiopathic Infertility. Int. J. Mol. Sci. 2023, 24, 2589. [Google Scholar] [PubMed]
- Appasamy, M.; Jauniaux, E.; Serhal, P.; Al-Qahtani, A.; Groome, N.P.; Muttukrishna, A. Evaluation of the relationship between follicular fluid oxidative stress, ovarian hormones, and response to gonado- tropin stimulation. Fertil. Steril. 2008, 89, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Oral, O.; Kutlu, T.; Aksoy, E.; Fıçıcıoğlu, C.; Uslu, H.; Tuğrul, S. The effects of oxidative stress on outcomes of assisted reproductive techniques. J. Assist. Reprod. Genet. 2006, 23, 81–85. [Google Scholar] [PubMed]
- Jozwik, M.; Wolczynski, S.; Jozwik, M.; Szamatowicz, M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol. Hum. Reprod. 1999, 5, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Chattopadhyay, R.; Ghosh, S.; Goswami, S.K.; Chakravarty, B.N.; Chaudhury, K. Reactive oxygen species level in follicular fluid- embryo quality marker in IVF? Hum. Reprod. 2006, 21, 2403–2407. [Google Scholar]
- Yoshida, M.; Ishigaki, K.; Nagai, T.; Chikyu, M.; Pursel, V.G. Glutathione concentration during maturation and after fertilization in pig oocytes: Relevance to the ability ofoocytes to form male pronucleus. Biol. Reprod. 1993, 49, 89–94. [Google Scholar]
- Liu, R.H.; Li, Y.H.; Jiao, L.H.; Wang, X.N.; Wang, H.; Wang, W.H. Extracellular and intracellular factors affecting nuclear and cytoplasmic matura- tion of porcine oocytes collected from different sizes of follicles. Zygote 2002, 10, 253–260. [Google Scholar]
- Ozkaya, M.O.; Nazıroğlu, M. Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. Fertil. Steril. 2010, 94, 2465–2466. [Google Scholar]
- Zal, F.; Ahmadi, P.; Davari, M.; Khademi, F.; Jahromi, M.A.; Anvar, Z.; Jahromi, B.N. Glutathione-dependent enzymes in the follicular fluid of the first-retrieved oocyte and their impact on oocyte and embryos in polycystic ovary syndrome: A cross-sectional study. Int. J. Reprod. Biomed. 2020, 18, 415–424. [Google Scholar]
- Fabjan, T.; Vrtačnik-Bokal, E.; Kumer, K.; Osredkar, J. Determination of oxidative stress balance in follicular fluid. J. Lab. Med. 2017, 42, 51–58. [Google Scholar] [CrossRef]
- Mauchart, P.; Vass, R.A.; Nagy, B.; Sulyok, E.; Bódis, J.; Kovács, K. Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor. Curr. Issues Mol. Biol. 2023, 45, 1272–1286. [Google Scholar] [PubMed]
- Sahoo, D.K.; Chainy, G.B.N. Hormone-linked redox status and its modulation by antioxidants. Vitam. Horm. 2023, 121, 197–246. [Google Scholar] [PubMed]
Variables | Control Group (n = 17) | Study Group (n = 25) | p Value |
---|---|---|---|
Age | 32.82 ± 7.10 | 36.08 ± 5.16 | 0.0927 |
Anti-Mullerian hormone (AMH) ng/mL | 2.94 ± 1.99 | 1.49 ± 1.5 | 0.0103 |
Body mass index (BMI) | 28.62 ± 4.7 | 25.48 ± 4.77 | 0.0412 |
Homeostasis model assesssment (HOMA) | 3.04 ± 1.32 | 3.24 ± 2.12 | 0.7282 |
No. oocytes collected (no.) | 14.41 ± 5.75 | 8.72 ± 6.80 | 0.0073 |
No. fertilized ovules (no.) | 8.82 ± 4.61 | 5.12 ± 4.49 | 0.0132 |
Fertilization rate (%) | 75.49 ± 19.30 | 74.30 ± 23.90 | 0.8648 |
Cumulative pregnancy rate (%) | 69.60 ± 44.18 | 38.00 ± 46.27 | 0.0327 |
Variables | Tubal Factor (n = 13) | Diminished Ovarian Reserve (n = 16) | Endometriosis (n = 3) | PCOS (n = 8) | Unexplained Infertility (n = 5) |
---|---|---|---|---|---|
Age (years) | 31.8 (31.1 ± 3.5) | 30.8 (27.4 ± 4.2) | 35.8 (34.6 ± 1.1) | 34.41 (33.5 ± 1.6) | 32.8(32.1 ± 3.5) |
Anti-Mullerian hormone (AMH) ng/mL | 1.49 ± 1.5 | 1.23 ± 1.2 | 1.19 ± 1.3 | 1.37 ± 1.4 | 1.29 ± 1.1 |
Body mass index (BMI) | 25.6 ±1.3 | 26.1 ±7.1 | 27.4 ±4.1 | 22.2 ±3.1 | 21.6 ±2.2 |
Homeostasis model assesssment (HOMA) | 3.24 ± 2.12 | 3.24 ± 2.12 | 1.24 ± 2.12 | 3.34 ± 2.15 | 3.24 ± 2.12 |
No. oocytes collected (no.) | 5.22 ± 5.80 | 3.32 ± 3.80 | 3.72 ± 2.70 | 8.72 ± 5.80 | 2.72 ± 3.80 |
No. fertilized ovules (no.) | 2.12 ± 3.49 | 4.12 ± 3.49 | 3.12 ± 4.29 | 6.12 ± 3.49 | 3.12 ± 2.27 |
Fertilization rate (%) | 47.9 ± 13.80 | 39.5 ± 23.80 | 38.9 ± 12.70 | 39.4 ± 43.30 | 47.8 ± 11.60 |
Cumulative pregnancy rate (%) | 37.00 ± 36.24 | 35.00 ± 23.21 | 38.00 ± 28.23 | 35.00 ± 12.35 | 34.00 ± 34.25 |
Control Group (n = 17) | Study Group (n = 25) | p Value | |
---|---|---|---|
MDA (nmol/mL) | 147.86 ± 40.69 | 148.72 ± 26.95 | 0.9345 |
(U/mL) total antioxidant capacity (TAC) | 11.83 ± 4.80 | 12.24 ± 3.63 | 0.7549 |
(U/mL) superoxide dismutase (SOD) | 44.47 ±5.08 | 42.61 ± 6.43 | 0.3252 |
(pg/mL) carbonylated proteins (PC) | 169.60 ± 27.35 | 173.26 ± 25.97 | 0.6638 |
(U/mL) plasma glutathione peroxidase (GSH-Px) | 147.49 ± 17.10 | 141.61 ± 28.03 | 0.4454 |
(ug/mL) free glutathione (GSH) | 94.70 ± 20.91 | 141.61 ± 28.03 | 0.0001 |
(ng/mL) gluthation disulfit (GSSG) | 224.67 ± 20.73 | 214.12 ± 23.38 | 0.1411 |
Control Group (n = 17) | Study Group (n = 25) | p Value | |
---|---|---|---|
MDA (nmol/mL) | 136.29 ± 40.15 | 134.56 ± 33.94 | 0.8812 |
TAC (U/mL) | 11.47 ± 2.71 | 11.19 ± 3.28 | 0.7895 |
SOD (U/mL) | 44.42 ± 8.19 | 40.40 ± 7.68 | 0.1129 |
PC (pg/mL) | 168.90 ± 35.18 | 165.95 ± 23.07 | 0.7512 |
GSH-Px (U/mL) | 142.68 ± 22.69 | 132.80 ± 26.18 | 0.2130 |
GSH (ug/mL) | 90.12 ± 10.60 | 84.16 ± 12.59 | 0.1171 |
GSSG (ng/mL) gluthation disulfit | 218.38 ± 33.11 | 204.09 ± 32.65 | 0.1742 |
Oxidative Stress Markers (Follicular Fluid) | Oocytes Collected (no.) | Fertilized Ovules (no.) | Fertilization Rate (%) | Cumulative Pregnancy Rate (%) |
---|---|---|---|---|
MDA (nmol/mL) | ||||
p value | 0.129 | 0.944 | 0.846 | 0.009 |
TAC (U/mL) | ||||
p value | 0.155 | 0.988 | 0.846 | 0.006 |
GSH (ug/mL) | ||||
p value | 0.252 | 0.940 | 0.387 | 0.660 |
Oxidative stress markers (ser) | ||||
MDA (nmol/mL) | ||||
p value | 0.029 | 0.833 | 0.741 | 0.668 |
TAC (U/mL) | ||||
p value | 0.173 | 0.789 | 0.532 | 0.887 |
GSH (ug/mL) | ||||
p value | 0.152 | 0.877 | 0.267 | 0.773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaha, I.; Muresan, M.; Tulcan, C.; Huniadi, A.; Naghi, P.; Sandor, M.; Tripon, R.; Gaspar, C.; Klaudia-Melinda, M.; Sachelarie, L.; et al. The Role of Oxidative Stress in Infertility. J. Pers. Med. 2023, 13, 1264. https://doi.org/10.3390/jpm13081264
Zaha I, Muresan M, Tulcan C, Huniadi A, Naghi P, Sandor M, Tripon R, Gaspar C, Klaudia-Melinda M, Sachelarie L, et al. The Role of Oxidative Stress in Infertility. Journal of Personalized Medicine. 2023; 13(8):1264. https://doi.org/10.3390/jpm13081264
Chicago/Turabian StyleZaha, Ioana, Mariana Muresan, Camelia Tulcan, Anca Huniadi, Petronela Naghi, Mircea Sandor, Roberta Tripon, Cristina Gaspar, Major Klaudia-Melinda, Liliana Sachelarie, and et al. 2023. "The Role of Oxidative Stress in Infertility" Journal of Personalized Medicine 13, no. 8: 1264. https://doi.org/10.3390/jpm13081264
APA StyleZaha, I., Muresan, M., Tulcan, C., Huniadi, A., Naghi, P., Sandor, M., Tripon, R., Gaspar, C., Klaudia-Melinda, M., Sachelarie, L., & Stefan, L. (2023). The Role of Oxidative Stress in Infertility. Journal of Personalized Medicine, 13(8), 1264. https://doi.org/10.3390/jpm13081264