Perspectives on Post-COVID-19 Pulmonary Fibrosis Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Pathophysiology of Post-COVID-19 Pulmonary Fibrosis
- Toll-like receptor (TLR) signaling is integral to the innate immune response, with TLRs on immune cells recognizing viral components during SARS-CoV-2 infection. TLR activation triggers a cascade leading to immune responses, including pro-inflammatory cytokine and interferon production [22].
- Transforming growth factor-beta (TGF-β) plays a pivotal role in post-COVID-19 lung fibrosis by stimulating fibroblast activation, promoting the transition to myofibroblasts, and inducing excessive extracellular matrix production. TGF-β signaling can also trigger the epithelial–mesenchymal transition, causing epithelial cells to acquire mesenchymal characteristics [23].
- The wingless/Int (WNT) signaling pathway, a complex system vital for cellular processes, can be activated during tissue repair after COVID-19-induced lung damage. WNT ligands, released during repair, bind to receptors, initiating signaling events, including the stabilization and nuclear translocation of β-catenin [24].
- Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif, transcriptional coactivators crucial for gene expression regulation, can, when active, prompt fibroblast activation, myofibroblast differentiation, and excessive extracellular matrix production [25].
- The Hedgehog signaling pathway, initiated by Hedgehog ligands, like Sonic Hedgehog, Indian Hedgehog, and Desert Hedgehog, can be triggered during the repair of tissues associated with COVID-19. The binding of these ligands to cell surface receptors triggers intracellular signaling, leading to the translocation of Gli transcription factors into the nucleus for gene expression regulation [26].
- The NOTCH signaling pathway is crucial for cell communication and various developmental processes. Following a COVID-19 infection, there is a potential for the expression of NOTCH receptors and ligands during the process of tissue repair. Activation occurs through receptor–ligand interactions, leading to fibroblast activation and differentiation into myofibroblasts [27,28].
- The PI3K-Akt signaling pathway, activated by cell surface receptors, like receptor tyrosine kinases or G protein-coupled receptors, promotes cell survival by converting phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 acts as a secondary messenger activating Akt, a serine/threonine kinase. The dysregulation of this pathway in post-COVID-19 lung fibrosis can lead to fibroblast activation, excessive extracellular matrix production, and enhanced cell survival [29,30].
- The mitogen-activated protein kinase (MAPK) signaling pathway activates MAPKs, such as ERK, JNK, and p38. MAPK signaling, triggered by oxidative stress, can release pro-fibrotic factors, contributing to fibrogenesis. Notably, MAPK signaling is linked to the epithelial–mesenchymal transition process, further associating it with tissue remodeling in pulmonary fibrosis post-COVID-19 [31,32].
- The nuclear factor-kappa B (NF-κB). Post-COVID-19-activated NF-κB signaling promotes an inflammatory microenvironment in the lungs by inducing pro-inflammatory cytokines, chemokines, and adhesion molecules. Additionally, NF-κB signaling activates fibroblasts and matrix metalloproteinases (MMPs), contributing to extracellular matrix degradation [33,34].
- Platelet-derived growth factor (PDGF), comprising various isoforms and receptors, can be discharged as part of tissue repair processes. PDGF signaling activates fibroblasts, recruits fibroblast progenitor cells, and stimulates the excessive production of extracellular matrix components, including collagen. Additionally, PDGF contributes to angiogenesis and vascular remodeling, processes associated with fibrosis [35].
- Vascular endothelial growth factor (VEGF). In post-COVID-19 lung fibrosis, VEGF plays a dual role. While it supports tissue repair through angiogenesis, excessive VEGF activity can lead to disorganized and leaky blood vessels, contributing to fibrosis. VEGF-A also stimulates fibroblast activation, proliferation, and immune cell recruitment, further contributing to tissue remodeling and the inflammatory response in the lungs [35].
- Endothelin-1, a peptide regulating blood vessel constriction and blood pressure, can contribute to fibrosis. Excessive vasoconstriction in affected areas can increase tissue damage, influence the inflammatory response by recruiting immune cells and releasing pro-inflammatory mediators, and impact tissue remodeling through the effects on fibroblasts and extracellular matrix production [36,37].
- Hypoxia-inducible factor (HIF) is a crucial transcription factor responding to low oxygen levels. Composed of HIF-1α (oxygen-sensitive) and HIF-1β (constitutively expressed) subunits, HIF-1α stabilizes and translocates to the nucleus under hypoxia, activating genes for adapting to low oxygen. In post-COVID-19 lung fibrosis, the HIF pathway contributes to fibroblast activation, angiogenesis, and inflammation, influencing myofibroblast differentiation, extracellular matrix production, blood vessel formation, and inflammatory response modulation [38,39].
- Connective tissue growth factor (CTGF) is a multifunctional protein that regulates cell adhesion, migration, proliferation, and survival; promotes the production of extracellular matrix components, such as collagen, fibronectin, and proteoglycans; mediates interactions between cells and the extracellular matrix; and plays an essential role in tissue repair, fibrosis, and the modulation of growth factor responses [40,41].
4. Post-COVID-19 Pulmonary Fibrotic Process Progression
5. Current Therapeutic Approaches
5.1. Pirfenidone Is Categorized as a Pyridone, with the Following Points Outlined as Its Mechanisms of Action (Figure 2)
5.1.1. Inhibition of TGF-β
5.1.2. Anti-Inflammatory Effects
5.1.3. Fibroblast Modulation
5.1.4. Reduction in Oxidative Stress
5.1.5. Modulation of Matrix Metalloproteinases (MMPs)
5.1.6. Downregulation of Pro-Fibrotic Mediators
Therapeutic Agent | Mechanisms of Action | Specific Actions in Post-COVID-19 Fibrosis | Clinical Findings |
---|---|---|---|
Pirfenidone | 1. Inhibition of TGF-β 2. Anti-inflammatory effects 3. Fibroblast modulation 4. Reduction of oxidative stress 5. Modulation of MMPs 6. Downregulation of pro-fibrotic mediators 7. Immunomodulatory effects | - Reduces TGF-β production - Mitigates fibrotic processes - Directly inhibits fibroblast proliferation - Acts as an antioxidant - Modulates MMPs - Reduces CTGF expression - Potential immunomodu-latory effects | INBUILD study [69] suggests nintedanib inhibits fibrogenesis in lung diseases, including SARS-CoV-2 infection. Inhaled Pirfenidone under assessment |
Nintedanib | 1. Tyrosine kinase inhibition 2. Inhibition of multiple receptors 3. Reduction in fibroblast activity 4. Anti-angiogenic effects 5. Anti-inflammatory effects | - Interferes with tyrosine kinases - Targets PDGF, FGF, and VEGF receptors - Reduces fibroblast activation - Exhibits anti-angiogenic effects - Attenuates IL-1β concentration | Demonstrated inhibition of fibrosis pathways in INBUILD study [69], including those relevant to SARS-CoV-2 infection |
Corticosteroids | Suppression of inflammatory response | - Suppresses fibroblast activation - Reduces collagen synthesis - Helps regulate immune response - Improves lung function in post-COVID-19 ILD | Improvements in lung function and symptoms observed in ILD patients post-COVID-19 with corticosteroid treatment |
Anti-interleukins | - IL-6 inhibition (e.g., tocilizumab) - IL-1 inhibition (e.g., anakinra) | - Potential modulation of inflammatory and fibrotic responses in post-COVID-19 complications | Ongoing research to explore the impacts of IL-6 and IL-1 inhibition on post-COVID-19 fibrosis |
Immunosuppressants | Tacrolimus, cyclosporine, and mycophenolate mofetil inhibit the proliferation of immune cells | - Modulation of immune response - Potential steroid-sparing option for treatment | Mycophenolate mofetil showed improvements in FVC and DLCO in post-COVID-19 ILD, emphasizing the need for further research |
Additional therapies | - Buloxibutide (AT2R agonist) - Saracatinib (Src kinase inhibitor) - Sirolimus (immunosuppressant) - Resveratrol (anti-inflammatory) | - Stabilizing effect on FVC (buloxibutide) - Modulation of fibroblast activity (saracatinib) - Reduction in pulmonary fibrosis (sirolimus, resveratrol) | Ongoing studies indicate potential benefits of these therapies for post-COVID-19 fibrosis |
5.2. The Mechanisms of Action of Nintedanib
5.2.1. Tyrosine Kinase Inhibition
5.2.2. Inhibition of Multiple Receptors
5.2.3. Reduction in Fibroblast Activity
5.2.4. Anti-Angiogenic Effects
5.2.5. Anti-Inflammatory Effects
5.3. Corticosteroids
6. Emerging Therapies and Research
6.1. Anti-Interleukin Therapies
6.2. Immunosuppressants
6.3. Additional Fibrotic Therapy
6.4. Future Opportinities
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/europe/emergencies/situations/covid-19 (accessed on 12 December 2023).
- World Health Organization. Weekly Epidemiological Update on COVID-19. Available online: https://covid19.who.int/ (accessed on 13 December 2023).
- Horberg, M.A.; Watson, E.; Bhatia, M.; Jefferson, C.; Certa, J.M.; Kim, S.; Fathi, L.; Althoff, K.N.; Williams, C.; Moore, R. Post-acute sequelae of SARS-CoV-2 with clinical condition definitions and comparison in a matched cohort. Nat. Commun. 2022, 131, 5822. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus disease (COVID-19): Post-COVID-19 Condition. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition (accessed on 18 November 2023).
- Hama Amin, B.J.; Kakamad, F.H.; Ahmed, G.S.; Ahmed, S.F.; Abdulla, B.A.; Mohammed, S.H.; Mikael, T.M.; Salih, R.Q.; Ali, R.K.; Salh, A.M.; et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann. Med. Surg. 2022, 77, 103590. [Google Scholar] [CrossRef] [PubMed]
- Abate, S.M.; Ali, S.A.; Mantfardo, B.; Basu, B. Rate of Intensive Care Unit admission and outcomes among patients with coronavirus: A systematic review and Meta-analysis. PLoS ONE 2020, 7, e0235653. [Google Scholar] [CrossRef] [PubMed]
- Lechowicz, K.; Drożdżal, S.; Machaj, F.; Rosik, J.; Szostak, B.; Zegan-Barańska, M.; Biernawska, J.; Dabrowski, W.; Rotter, I.; Kotfis, K. COVID-19: The Potential Treatment of Pulmonary Fibrosis Associated with SARS-CoV-2 Infection. J. Clin. Med. 2020, 9, 1917. [Google Scholar] [CrossRef]
- Rockey, D.C.; Bell, P.D.; Hill, J.A. Fibrosis—A Common Pathway to Organ Injury and Failure. N. Engl. J. Med. 2015, 372, 1138–1149. [Google Scholar] [CrossRef]
- Savin, I.A.; Zenkova, M.A.; Sen’kova, A.V. Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 14959. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Sun, Q.; Knopf, J.; Herrmann, M.; Lin, L.; Jiang, J.; Shao, C.; Li, P.; He, X.; et al. Immune response in COVID-19: What is next? Cell Death Differ. 2022, 29, 1107–1122. [Google Scholar] [CrossRef]
- Fukihara, J.; Kondoh, Y. COVID-19 and interstitial lung diseases: A multifaceted look at the relationship between the two diseases. Respir. Investig. 2023, 61, 601–617. [Google Scholar] [CrossRef]
- John, A.E.; Joseph, C.; Jenkins, G.; Tatler, A.L. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol. Rev. 2021, 302, 228–240. [Google Scholar] [CrossRef]
- Maher, T.M.; Strek, M.E. Antifibrotic therapy for idiopathic pulmonary fibrosis: Time to treat. Respir. Res. 2019, 20, 205. [Google Scholar] [CrossRef] [PubMed]
- Hadda, V.; Guleria, R. Antifibrotic drugs for idiopathic pulmonary fibrosis: What we should know? Indian J. Med. Res. 2020, 152, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Posso, M.; Comas, M.; Román, M.; Domingo, L.; Louro, J.; González, C.; Sala, M.; Anglès, A.; Cirera, I.; Cots, F.; et al. Comorbidities and Mortality in Patients With COVID-19 Aged 60 Years and Older in a University Hospital in Spain. Arch. Bronconeumol. 2020, 56, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Uzel, F.I.; İliaz, S.; Karataş, F.; Çağlayan, B. COVID-19 Pneumonia and Idiopathic Pulmonary Fibrosis: A Novel Combination. Turk. Thorac. J. 2020, 21, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Vicore Pharma Announces Presentations at the European Respiratory Society (ERS) International Congress 2023. Available online: https://www.pharmiweb.com/press-release/2023-09-06/vicore-pharma-announces-presentations-at-the-european-respiratory-society-ers-international-congress-2023 (accessed on 23 November 2023).
- Lam, E.; Sayedy, N.; Anjum, F.; Akella, J.; Iqbal, J. Corticosteroid Therapy in Post-COVID-19 Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2021, 203, A2429. [Google Scholar] [CrossRef]
- George, P.M.; Wells, A.U.; Jenkins, R.G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir. Med. 2020, 8, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Pelliccia, C.; Ferrara, F. COVID-19 Patients with Pulmonary Fibrotic Tissue: Clinical Pharmacological Rational of Antifibrotic Therapy. SN Compr. Clin. Med. 2020, 2, 1709–1712. [Google Scholar] [CrossRef]
- Aboudounya, M.M.; Heads, R.J. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediat. Inflamm. 2021, 2021, 8874339. [Google Scholar] [CrossRef]
- Katwa, L.C.; Mendoza, C.; Clements, M. CVD and COVID-19: Emerging Roles of Cardiac Fibroblasts and Myofibroblasts. Cells 2022, 11, 1316. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.N. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front. Immunol. 2021, 12, 666693. [Google Scholar] [CrossRef]
- Piersma, B.R.; Bank, A.; Boersema, M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front. Med. 2015, 2, 59. [Google Scholar] [CrossRef] [PubMed]
- Effendi, W.I.; Nagano, T. The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int. J. Mol. Sci. 2021, 23, 171. [Google Scholar] [CrossRef] [PubMed]
- Breikaa, R.M.; Lilly, B. The Notch Pathway: A Link Between COVID-19 Pathophysiology and Its Cardiovascular Complications. Front. Cardiovasc. Med. 2021, 8, 681948. [Google Scholar] [CrossRef] [PubMed]
- Saifi, M.A.; Bansod, S.; Godugu, C. COVID-19 and fibrosis: Mechanisms, clinical relevance, and future perspectives. Drug Discov. Today 2022, 27, 103345. [Google Scholar] [CrossRef] [PubMed]
- Margaria, J.P.; Moretta, L.; Alves-Filho, J.C.; Hirsch, E. PI3K Signaling in Mechanisms and Treatments of Pulmonary Fibrosis Following Sepsis and Acute Lung Injury. Biomedicines 2022, 10, 756. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, K.; Cai, X.; Yang, B.; He, Q.; Wang, J.; Weng, Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm. Sin. B 2022, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Pi, P.; Zeng, Z.; Zeng, L.; Han, B.; Bai, X.; Xu, S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front. Pharmacol. 2023, 14, 1218059. [Google Scholar] [CrossRef]
- Grimes, J.M.; Grimes, K.V. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J. Mol. Cell. Cardiol. 2020, 144, 63–65. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, L.; Dong, Y.; Wang, Y.; Zhang, B.; Zhou, S.; Huang, Q.; Wu, T.; Chen, G. The role of SARS-CoV-2-mediated NF-κB activation in COVID-19 patients. Hypertens. Res. 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Umezawa, K.; Lin, Y. Inhibition of matrix metalloproteinase expression and cellular invasion by NF-κB inhibitors of microbial origin. Biochim. Biophys. Acta Proteins Proteom. 2022, 1868, 140412. [Google Scholar] [CrossRef]
- Ojo, A.S.; Balogun, S.A.; Williams, O.T.; Ojo, O.S. Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulm. Med. 2020, 2020, 6175964. [Google Scholar] [CrossRef] [PubMed]
- Nabeh, O.A.; Matter, L.M.; Khattab, M.A.; Menshawey, E. The possible implication of endothelin in the pathology of COVID-19-induced pulmonary hypertension. Pulm. Pharmacol. Ther. 2021, 71, 102082. [Google Scholar] [CrossRef] [PubMed]
- Hurjui, R.; Hurjui, I.; Pînzariu, G.; Cojocaru, T.; Neamțu, A. Diet impact on oral health and endothelial function. Rom. J. Oral Rehabil. 2022, 14, 67–77. [Google Scholar]
- Tian, M.; Liu, W.; Li, X.; Zhao, P.; Shereen, M.A.; Zhu, C.; Huang, S.; Liu, S.; Yu, X.; Yue, M.; et al. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct. Target. Ther. 2021, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Serebrovska, Z.O.; Chong, E.Y.; Serebrovska, T.V.; Tumanovska, L.V.; Xi, L. Hypoxia, HIF-1α, and COVID-19: From pathogenic factors to potential therapeutic targets. Acta Pharmacol. Sin. 2020, 41, 1539. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, N.; Chu, H.Y.; Yu, Y.; Zhang, Z.K.; Zhang, G.; Zhang, B.T. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front. Cell Dev. Biol. 2020, 8, 593269. [Google Scholar] [CrossRef] [PubMed]
- Shi-Wen, X.; Leask, A.; Abraham, D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008, 19, 133–144. [Google Scholar] [CrossRef]
- Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they closely related? Clin. Microbiol. Infect. 2020, 26, 729–734. [Google Scholar] [CrossRef]
- Widagdo, W.; Okba, N.M.A.; Li, W.; de Jong, A.; de Swart, R.L.; Begeman, L.; van den Brand, J.M.A.; Bosch, B.J.; Haagmans, B.L. Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attachment and Entry Receptors. J Virol. 2019, 93, e00107-19. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Hu, Y.; Song, Z.-G.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.Y.; et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv 2020. [Google Scholar] [CrossRef]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000, 87, E1–E9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, J.; Liu, H.; Han, N.; Ju, J.; Kou, Y.; Chen, L.; Jiang, M.; Pan, F.; Zheng, Y.; et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: A 15-year follow-up from a prospective cohort study. Bone Res. 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Das, K.M.; Lee, E.Y.; Singh, R.; Enani, M.A.; Al Dossari, K.; Van Gorkom, K.; Larsson, S.G.; Langer, R.D. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J. Radiol. Imaging 2017, 27, 342. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Zhao, Z.; Ting, L. Post-inflammatory pulmonary fibrosis in a discharged COVID-19 patient: Effectively treated with Pirfenidone. Arch. Pulmonol. Respir. Care 2020, 6, 51–53. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Duong-Quy, S.; Vo-Pham-Minh, T.; Tran-Xuan, Q.; Huynh-Anh, T.; Vo-Van, T.; Vu-Tran-Thien, Q.; Nguyen-Nhu, V. Post-COVID-19 Pulmonary Fibrosis: Facts-Challenges and Futures: A Narrative Review. Pulm. Ther. 2023, 9, 295–307. [Google Scholar] [CrossRef]
- Hristov, I.; Mocanu, V.; Zugun-Eloae, F.; Labusca, L.; Cretu-Silivestru, I.; Oboroceanu, T.; Tiron, C.; Tiron, A.; Burlacu, A.; Pinzariu, A.C.; et al. Association of intracellular lipid accumulation in subcutaneous adipocyte precursors and plasma adipokines in bariatric surgery candidates. Lipids Health Dis. 2019, 18, 141. [Google Scholar] [CrossRef]
- Schuliga, M.; Grainge, C.; Westall, G.; Knight, D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int. J. Biochem. Cell Biol. 2018, 97, 108–117. [Google Scholar] [CrossRef]
- Bitto, N.; Liguori, E.; La Mura, V. Coagulation, Microenvironment and Liver Fibrosis. Cells 2018, 7, 85. [Google Scholar] [CrossRef]
- Haliga, R.; Zugun-Eloae, F.; Oboroceanu, T.; Pînzariu, A.; Mocanu, V. Vitamin D and tissular expression of vitamin D receptor in obesity. Med.-Surg. J. 2016, 120, 404–408. [Google Scholar]
- Pînzariu, A.; Sindilar, A.; Haliga, R.; Chelaru, L.; Mocanu, V. Nutritional factors in transdifferentiation of scheletal muscles to adipocytes. Med.-Surg. J. 2014, 118, 699–705. [Google Scholar]
- Thille, A.W.; Esteban, A.; Fernández-Segoviano, P.; Rodriguez, J.M.; Aramburu, J.A.; Vargas-Errázuriz, P.; Martín-Pellicer, A.; Lorente, J.A.; Frutos-Vivar, F. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: A prospective cohort study of clinical autopsies. Lancet Respir. Med. 2013, 1, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Burnham, E.L.; Janssen, W.J.; Riches, D.W.H.; Moss, M.; Downey, G.P. The fibroproliferative response in acute respiratory distress syndrome: Mechanisms and clinical significance. Eur. Respir. J. 2014, 43, 276. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Liu, Y.; Fan, B.; Xiao, Y.; Tian, Q.; Chen, L.; Zhao, H.; Chen, W. Dynamic changes of serum SARS-Coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respir. Res. 2005, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, Y.; Zhu, T.; Xia, L. CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan, China. AJR Am. J. Roentgenol. 2020, 214, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review. Eur. Radiol. 2020, 30, 4381. [Google Scholar] [CrossRef]
- Costabel, U.; Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Cottin, V.; Flaherty, K.R.; Inoue, Y.; Kim, D.S.; et al. Efficacy and safety of nintedanib in patients with idiopathic pulmonary fibrosis: Results of two 52-week, Phase III, randomized, placebo-controlled trials (INPULSISTM). Pneumologie 2015, 69, P235. [Google Scholar] [CrossRef]
- King, T.E.; Bradford, W.Z.; Castro-Bernadini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. The ASCEND Study: A Randomized, Double-Blind, Placebo Controlled Trial Of Pirfenidone In Patients With Idiopathic Pulmonary Fibrosis (IPF). Am. J. Respir. Crit. Care Med. 2014, 189, A6602. Available online: https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2014.189.1_MeetingAbstracts.A6602/ (accessed on 13 December 2023).
- Shah, P.V.; Balani, P.; Lopez, A.R.; Nobleza, C.M.N.; Siddiqui, M.; Khan, S. A Review of Pirfenidone as an Anti-Fibrotic in Idiopathic Pulmonary Fibrosis and Its Probable Role in Other Diseases. Cureus 2021, 13, e12482. [Google Scholar] [CrossRef]
- Wanas, H.; Elbadawy, H.M.; Almikhlafi, M.A.; Hamoud, A.E.; Ali, E.N.; Galal, A.M. Combination of Niclosamide and Pirfenidone Alleviates Pulmonary Fibrosis by Inhibiting Oxidative Stress and MAPK/Nf-κB and STATs Regulated Genes. Pharmaceuticals 2023, 16, 697. [Google Scholar] [CrossRef]
- Jin, J.; Togo, S.; Kadoya, K.; Tulafu, M.; Namba, Y.; Iwai, M.; Watanabe, J.; Nagahama, K.; Okabe, T.; Hidayat, M.; et al. Pirfenidone attenuates lung fibrotic fibroblast responses to transforming growth factor-β1. Respir. Res. 2019, 20, 119. [Google Scholar] [CrossRef] [PubMed]
- Seifirad, S. Pirfenidone: A novel hypothetical treatment for COVID-19. Med. Hypotheses. 2020, 144, 110005. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Chen, Q.; Zhao, C.; Yang, X.; Cun, Q.; Yang, W.; Zhang, Y.; Zhu, Y.; Zhong, H. The in vitro anti-fibrotic effect of Pirfenidone on human pterygium fibroblasts is associated with down-regulation of autocrine TGF-β and MMP-1. Int. J. Med. Sci. 2020, 17, 734. [Google Scholar] [CrossRef] [PubMed]
- Johannson, K.A.; Chaudhuri, N.; Adegunsoye, A.; Wolters, V. Treatment of fibrotic interstitial lung disease: Current approaches and future directions. Lancet 2021, 398, 1450–1460. [Google Scholar] [CrossRef] [PubMed]
- A Study to Evaluate the Efficacy and Safety of Pirfenidone With Novel Coronavirus Infection. Available online: https://clinicaltrials.gov/study/NCT04282902 (accessed on 23 November 2023).
- Gole, S.; Bankole, A. Nintedanib. In StatPearls; StatPearlsPublishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK585049/ (accessed on 19 December 2023).
- Sato, S.; Shinohara, S.; Hayashi, S.; Morizumi, S.; Abe, S.; Okazaki, H.; Chen, Y.; Goto, H.; Aono, Y.; Ogawa, H.; et al. Anti-fibrotic efficacy of nintedanib in pulmonary fibrosis via the inhibition of fibrocyte activity. Respir. Res. 2017, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, P.; Kropski, J.A.; Jones, M.G.; Lee, J.S.; Rossi, G.; Karampitsakos, T.; Maher, T.M.; Tzouvelekis, A.; Ryerson, C.J. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol. Ther. 2021, 222, 107798. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Wollin, L.; Maillet, I.; Quesniaux, V.; Holweg, A.; Ryffel, B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J. Pharmacol. Exp. Ther. 2014, 349, 209–220. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, F.; Kang, L.; Wang, Z.; Wang, Y. Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium. BMC Pulm. Med. 2017, 17, 63. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- An, T.J.; Lee, Y.J.; Park, J.E.; Lee, E.G.; Kim, Y.; Kang, S.Y.; Joo, H.; Choi, J.Y. Benefits of Early Systemic Corticosteroid in Clinical Deterioration of Post–COVID-19 Interstitial Lung Disease. Tuberc. Respir. Dis. 2022, 85, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Myall, K.J.; Mukherjee, B.; Castanheira, A.M.; Lam, J.L.; Benedetti, G.; Mak, S.M.; Preston, R.; Thillai, M.; Dewar, A.; Molyneaux, P.L.; et al. Persistent post–COVID-19 interstitial lung disease: An observational study of corticosteroid treatment. Ann. Am. Thorac. Soc. 2021, 18, 799–806. [Google Scholar] [CrossRef] [PubMed]
- NIH. Interleukin-6 Inhibitors. COVID-19 Treatment Guidelines. 2023. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/interleukin-6-inhibitors/ (accessed on 24 November 2023).
- Moodley, Y.P.; Scaffidi, A.K.; Misso, N.L.; Keerthisingam, C.; McAnulty, R.J.; Laurent, G.J.; Mutsaers, S.E.; Thompson, P.J.; Knight, D.A. Fibroblasts Isolated from Normal Lungs and Those with Idiopathic Pulmonary Fibrosis Differ in Interleukin-6/gp130-Mediated Cell Signaling and Proliferation. Am. J. Pathol. 2003, 163, 345. [Google Scholar] [CrossRef] [PubMed]
- Le, T.-T.T.; Karmouty-Quintana, H.; Melicoff, E.; Le, T.T.; Weng, T.; Chen, N.Y.; Pedroza, M.; Zhou, Y.; Davies, J.; Philip, K.; et al. Blockade of IL-6 Trans Signaling Attenuates Pulmonary Fibrosis. J. Immunol. 2014, 193, 3755–3768. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, R.J.J.; Knight, D.A.; Richards, C.D.; Prêle, C.M.; Lau, H.L.; Jarnicki, A.G.; Jones, J.; Bozinovski, S.; Vlahos, R.; Thiem, S.; et al. Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis. EMBO Mol. Med. 2012, 4, 939. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Tanaka, K.; Fujita, T.; Umezawa, H.; Amano, H.; Yoshioka, K.; Naito, Y.; Hatano, M.; Kimura, S.; Tatsumi, K.; et al. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. Respir. Res. 2015, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475. [Google Scholar] [CrossRef] [PubMed]
- NIH. Interleukin-1 Inhibitors. COVID-19 Treatment Guidelines. 2023. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/interleukin-1-inhibitors/ (accessed on 24 November 2023).
- Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 2020, 39, 2085–2094. [Google Scholar] [CrossRef]
- Ohgushi, M.; Ogo, N.; Yanagihara, T.; Harada, Y.; Sumida, K.; Egashira, A.; Asoh, T.; Maeyama, T.; Yoshizawa, S. Tacrolimus Treatment for Post-COVID-19 Interstitial Lung Disease. Intern. Med. 2022, 61, 585. [Google Scholar] [CrossRef]
- Poulsen, N.N.; von Brunn, A.; Hornum, M.; Blomberg Jensen, M. Cyclosporine and COVID-19: Risk or favorable? Am. J. Transplant. 2020, 20, 2975–2982. [Google Scholar] [CrossRef]
- Tan, H.; Wong, X.C.K.; Yik, W.F.; Lam, Y.F.; Lachmanan, K.R. Post COVID-19 organizing pneumonia treated with mycophenolate mofetil. Respirol. Case Rep. 2022, 10, e01042. [Google Scholar] [CrossRef] [PubMed]
- Hirani, N.; MacKinnon, A.C.; Nicol, L.; Ford, P.; Schambye, H.; Pedersen, A.; Nilsson, U.J.; Leffler, H.; Sethi, T.; Tantawi, S.; et al. Target-inhibition of Galectin-3 by Inhaled TD139 in Patients with Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2020, 57, 2002559. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Liu, N.; Bao, C.L.; Yang, D.Z.; Ma, G.X.; Yi, W.H.; Xiao, G.Z.; Cao, H.L. Mesenchymal stem cells in fibrotic diseases—The two sides of the same coin. Acta Pharmacol. Sin. 2022, 44, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Kang, I.; Yu, K.R. Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. J. Clin. Med. 2021, 10, 711. [Google Scholar] [CrossRef]
- Grumet, M.; Sherman, J.; Dorf, B.S. Efficacy of MSC in Patients with Severe COVID-19: Analysis of the Literature and a Case Study. Stem Cells Transl. Med. 2022, 11, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, E.; Cojocaru, C.; Vlad, C.-E.; Eva, L. Role of the Renin-Angiotensin System in Long COVID’s Cardiovascular Injuries. Biomedicines 2023, 11, 2004. [Google Scholar] [CrossRef] [PubMed]
- Safety, Efficacy and Pharmacokinetics of C21 in Subjects with IPF. 2023. Available online: https://www.clinicaltrials.gov/study/NCT04533022 (accessed on 23 November 2023).
- Tornling, G.; Batta, R.; Porter, J.C.; Williams, B.; Bengtsson, T.; Parmar, K.; Kashiva, R.; Hallberg, A.; Cohrt, A.K.; Westergaard, K.; et al. Seven days treatment with the angiotensin II type 2 receptor agonist C21 in hospitalized COVID-19 patients; a placebo-controlled randomised multi-centre double-blind phase 2 trial. EClinicalMedicine 2021, 41, 101152. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, F.; Becker, C.; Foster, D.G.; Chioccioli, M.; Nelson, M.; Beke, K.; Wang, X.; Justet, A.; Adams, T.; Readhead, B.; et al. Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2022, 206, 1463–1479. [Google Scholar] [CrossRef]
- Assessing the Efficacy of Sirolimus in Patients With COVID-19 Pneumonia for Prevention of Post-COVID Fibrosis. 2022. Available online: https://classic.clinicaltrials.gov/ct2/show/nct04948203 (accessed on 23 November 2023).
- Zhu, J.; Wu, J.; Frizell, E.; Liu, S.L.; Bashey, R.; Rubin, R.; Norton, P.; Zern, M.A. Rapamycin inhibits hepatic stellate cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis. Gastroenterology 1999, 117, 1198–1204. [Google Scholar] [CrossRef]
- Tulek, B.; Kiyan, E.; Toy, H.; Kiyici, A.; Narin, C.; Suerdem, M. View of Anti-inflammatory and anti-fibrotic effects of sirolimus on bleomycin-induced pulmonary fibrosis in rats. Clin Investig. Med. 2011, 34, E341. Available online: https://cimonline.ca/index.php/cim/article/view/15894/12916 (accessed on 19 December 2023). [CrossRef]
- Gomez-Manjarres, D.C.; Axell-House, D.B.; Patel, D.C.; Odackal, J.; Yu, V.; Burdick, M.D.; Mehrad, B. Sirolimus suppresses circulating fibrocytes in idiopathic pulmonary fibrosis in a randomized controlled crossover trial. JCI Insight 2023, 8, e166901. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.; Huang, X.; Yang, Y.; Yang, Y.; Lin, J. Potential of resveratrol in the treatment of interstitial lung disease. Front. Pharmacol. 2023, 14, 1139460. [Google Scholar] [CrossRef] [PubMed]
- The Anti-fibrotic Therapeutic Effects of Resveratrol for Discharged COVID-19 Patients (HKCOVID19Res). 2021. Available online: https://clinicaltrials.gov/study/NCT04799743 (accessed on 21 November 2023).
- Vargas, J.E.; Souto, A.A.; Pitrez, P.M.C.; Stein, R.T.; Porto, B.N. Modulatory potential of resveratrol during lung inflammatory disease. Med. Hypotheses 2016, 96, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Friggeri, A.; Yang, Y.; Milosevic, J.; Ding, Q.; Thannickal, V.J.; Kaminski, N.; Abraham, E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010, 207, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.; Bujnowski, D.; McMullen, P.; Lysandrou, M.; Ananthanarayanan, V.; Husain, A.N.; Freeman, R.; Vigneswaran, W.T.; Ferguson, M.K.; Donington, J.S.; et al. Pulmonary Parenchymal Changes in COVID-19 Survivors. Ann. Thorac. Surg. 2022, 114, 301. [Google Scholar] [CrossRef]
- Giacomelli, C.; Piccarducci, R.; Marchetti, L.; Romei, C.; Martini, C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: Lessons from post-COVID-19 patients. Biochem. Pharmacol. 2021, 193, 114812. [Google Scholar] [CrossRef]
- Neidleman, J.; Luo, X.; George, A.F.; McGregor, M.; Yang, J.; Yun, C.; Murray, V.; Gill, G.; Greene, W.C.; Vasquez, J.; et al. Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19. Cell Rep. 2021, 36, 109414. [Google Scholar] [CrossRef]
- Ramli, I.; Cheriet, T.; Posadino, A.M.; Giordo, R.; Zayed, H.; Eid, A.H.; Pintus, G. Potential Therapeutic Targets of Resveratrol in the Prevention and Treatment of Pulmonary Fibrosis. Front. Biosci. 2023, 28, 198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojocaru, E.; Cojocaru, T.; Pînzariu, G.M.; Vasiliu, I.; Armașu, I.; Cojocaru, C. Perspectives on Post-COVID-19 Pulmonary Fibrosis Treatment. J. Pers. Med. 2024, 14, 51. https://doi.org/10.3390/jpm14010051
Cojocaru E, Cojocaru T, Pînzariu GM, Vasiliu I, Armașu I, Cojocaru C. Perspectives on Post-COVID-19 Pulmonary Fibrosis Treatment. Journal of Personalized Medicine. 2024; 14(1):51. https://doi.org/10.3390/jpm14010051
Chicago/Turabian StyleCojocaru, Elena, Tudor Cojocaru, Giulia Mihaela Pînzariu, Ioana Vasiliu, Ioana Armașu, and Cristian Cojocaru. 2024. "Perspectives on Post-COVID-19 Pulmonary Fibrosis Treatment" Journal of Personalized Medicine 14, no. 1: 51. https://doi.org/10.3390/jpm14010051
APA StyleCojocaru, E., Cojocaru, T., Pînzariu, G. M., Vasiliu, I., Armașu, I., & Cojocaru, C. (2024). Perspectives on Post-COVID-19 Pulmonary Fibrosis Treatment. Journal of Personalized Medicine, 14(1), 51. https://doi.org/10.3390/jpm14010051