Impact of COVID-19 on Pediatric Inflammatory Bowel Diseases—From Expectations to Reality
Abstract
:1. Introduction
2. The Impact of COVID-19 on the Incidence, Outcomes and Management of IBD
3. COVID-19—A Trigger for IBD in Children?
3.1. Insights from Molecular Biology
3.2. COVID-19 and Gut Microbiota Alterations
4. De Novo Pediatric IBD Post COVID-19
5. Current and Future Perspectives on Therapeutic Approach of COVID-19-Related Pediatric IBD
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rathore, S.S.; Atulkar, A.; Remala, K.; Corrales, V.V.; Farrukh, A.M.; Puar, R.K.; Yao, S.J.N.; Ganipineni, V.D.P.; Patel, N.; Thota, N.; et al. A systematic review and meta-analysis of new-onset atrial fibrillation in the context of COVID-19 infection. J. Cardiovasc. Electrophysiol. 2024, 35, 478–487. [Google Scholar] [CrossRef]
- Bagheri, B.B.; Alipour, A.; Yousefi, M.; Jalalian, R.; Moghimi, M.; Mohammadi, M.; Hassanpour, N.; Iranian, M. Prevalence of Thromboembolic Events, Including Venous Thromboembolism and Arterial Thrombosis, in Patients with COVID-19: A Sys tematic Review with Meta-Analysis. J. Tehran Heart Cent. 2023, 18, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.T.H.; Portnoff, J.S.; Al-Kassimi, K.; Singh, G.; Hanafimosalman, M.; Tesla, M.; Gharibi, N.; Ni, T.; Guo, Z.; Sonfack, D.J.N.; et al. Association of SARS-CoV-2 infection with neurological impairments in pediatric population: A systematic review. J. Psychiatr. Res. 2024, 170, 90–110. [Google Scholar] [CrossRef]
- Shabani, M.; Shobeiri, P.; Nouri, S.; Moradi, Z.; Amenu, R.A.; Mehrabi Nejad, M.M.; Rezaei, N. Risk of flare or relapse in patients with immune-mediated diseases following SARS-CoV-2 vaccination: A systematic review and meta-analysis. Eur. J. Med. Res. 2024, 29, 55. [Google Scholar] [CrossRef]
- Morello, W.; Vianello, F.A.; Proverbio, E.; Peruzzi, L.; Pasini, A.; Montini, G. COVID-19 and idiopathic nephrotic syndrome in children: Systematic review of the literature and recommendations from a highly affected area. Pediatr. Nephrol. 2022, 37, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr. Infect. Dis. J. 2020, 39, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S.; El-Sawaf, Y. Paediatric gastrointestinal disorders in SARS-CoV-2 infection: Epidemiological and clinical implications. World J. Gastroenterol. 2021, 27, 1716–1727. [Google Scholar] [CrossRef]
- Lehman, C.; Green, T.; Booth, J. The long-term impact of COVID-19. J. Clin. Nurs. 2024, 33, 3–5. [Google Scholar] [CrossRef]
- Kuenzig, M.E.; Fung, S.G.; Marderfeld, L.; Mak, J.W.Y.; Kaplan, G.G.; Ng, S.C.; Wilson, D.C.; InsightScope Pediatric IBD Epidemiology Group; Benchimol, E.I. Twenty-first Century Trends in the Global Epidemiology of Pediatric-Onset Inflamma tory Bowel Disease: Systematic Review. Gastroenterology 2022, 162, 1147–1159.e4. [Google Scholar] [CrossRef]
- Bouhuys, M.; Lexmond, W.S.; van Rheenen, P.F. Pediatric Inflammatory Bowel Disease. Pediatrics 2023, 151, e2022058037. [Google Scholar] [CrossRef]
- Corrias, A.; Cortes, G.M.; Bardanzellu, F.; Melis, A.; Fanos, V.; Marcialis, M.A. Risk, Course, and Effect of SARS-CoV-2 Infection in Children and Adults with Chronic Inflammatory Bowel Diseases. Children 2021, 8, 753. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Carroll, M.W.; Geist, R.; Griffiths, A.M.; Huang, J.G.; Mack, D.R.; Bernstein, C.N.; Bitton, A.; Jones, J.L.; Kaplan, G.G.; et al. Crohn’s and Colitis Canada’s 2021 Impact of COVID-19 and Inflammatory Bowel Disease in Canada: Children and Expectant Mothers with Inflam matory Bowel Disease. J. Can. Assoc. Gastroenterol. 2021, 4, S27–S33. [Google Scholar] [CrossRef] [PubMed]
- Dailey, J.; Kozhaya, L.; Dogan, M.; Hopkins, D.; Lapin, B.; Herbst, K.; Brimacombe, M.; Grandonico, K.; Karabacak, F.; Schreiber, J.; et al. Antibody Responses to SARS-CoV-2 after Infection or Vaccination in Children and Young Adults with Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2022, 28, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Li, H.J.; Wasuwanich, P.; Kim, S.E.; Kim, J.Y.; Jeong, G.H.; Park, S.; Yang, J.W.; Kim, M.S.; Yon, D.K.; et al. COVID-19 susceptibility and clinical outcomes in inflam matory bowel disease: An updated systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2414. [Google Scholar] [CrossRef] [PubMed]
- van de Pol, N.; Pan, Q.; Derikx, L.A.A.P.; Bakker, L.; van der Woude, C.J.; de Vries, A.C. SARS-CoV-2 breakthrough infections after COVID-19 vaccination in patients with inflammatory bowel disease: A systematic review and meta-analysis. Ther. Adv. Gastroenterol. 2023, 16, 17562848231174295. [Google Scholar] [CrossRef]
- Batsiou, A.; Mantzios, P.; Piovani, D.; Tsantes, A.G.; Kopanou Taliaka, P.; Liakou, P.; Iacovidou, N.; Tsantes, A.E.; Bonovas, S.; Sokou, R. SARS-CoV-2 Infection and Outcomes in Children with Inflammatory Bowel Diseases: A Systematic Review. J. Clin. Med. 2022, 11, 7238. [Google Scholar] [CrossRef] [PubMed]
- Gilissen, L.P.L.; Heinen, S.G.H.; Rijpma-Jacobs, L.; Schoon, E.; Schreuder, R.M.; Wensing, A.M.; van der Ende-van Loon, M.C.M.; Bloemen, J.G.; Stapelbroek, J.M.; Stronkhorst, A. Neither inflammatory bowel disease nor immunosuppressants are associated with an increased risk of severe COVID-19: An observational Dutch cohort study. Clin. Exp. Med. 2022, 22, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Brenner, E.J.; Pigneur, B.; Focht, G.; Zhang, X.; Ungaro, R.C.; Colombel, J.F. Benign evolution of SARS-Cov2 infections in children with inflammatory bowel disease: Results from two international databases. Clin. Gastroenterol. Hepatol. 2021, 19, 394–396.e5. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, S.; Alvisi, P.; Banzato, C.; Bramuzzo, M.; Celano, R.; Civitelli, F.; D’Arcangelo, G.; Dilillo, A.; Dipasquale, V.; Felici, E.; et al. Impact of COVID-19 pandemic on the management of paediatric inflammatory bowel disease: An Italian multicentre study on behalf of the SIGENP IBD Group. Dig. Liver. Dis. 2021, 53, 283–288. [Google Scholar] [CrossRef]
- Rosenbaum, J.E.; Ochoa, K.C.; Hasan, F.; Goldfarb, A.; Tang, V.; Tomer, G.; Wallach, T. Epidemiologic Assessment of Pediatric Inflammatory Bowel Disease Presentation in NYC During COVID-19. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 622–626. [Google Scholar] [CrossRef]
- Dorfman, L.; Nassar, R.; Binjamin Ohana, D.; Oseran, I.; Matar, M.; Shamir, R.; Assa, A. Pediatric inflammatory bowel disease and the effect of COVID-19 pandemic on treatment adherence and patients’ behavior. Pediatr. Res. 2021, 90, 637–641. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, G.; Distante, M.; Raso, T.; Rossetti, D.; Catassi, G.; Aloi, M. Safety of Biological Therapy in Children with Inflam-matory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Bosa, L.; Di Chiara, C.; Gaio, P.; Cosma, C.; Padoan, A.; Cozzani, S.; Perilongo, G.; Plebani, M.; Giaquinto, C.; Donà, D.; et al. Protective SARS-CoV-2 Antibody Response in Children with Inflammatory Bowel Disease. Front. Pediatr. 2022, 10, 815857. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, L.; Klucker, E.; Le Thi, T.G.; Breiteneicher, S.; Rubio-Acero, R.; Neuhaus, L.; Stark, R.G.; Standl, M.; Wieser, A.; Török, H.; et al. Following Pediatric and Adult IBD Patients through the COVID-19 Pandemic: Changes in Psychosocial Burden and Perception of Infection Risk and Harm over Time. J. Clin. Med. 2021, 10, 4124. [Google Scholar] [CrossRef] [PubMed]
- Sansotta, N.; Norsa, L.; Zuin, G.; Panceri, R.; Dilillo, D.; Pozzi, E.; Giacomo, C.; Moretti, C.; Celano, R.; Nuti, F.; et al. Children With Inflammatory Bowel Disease in the COVID-19 Main Endemic Focus: The Lombardy Experience. Front. Pediatr. 2021, 9, 607285. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, T.; Granado, M.C.; Manuel, A.R.; Espinheira, M.D.C.; Trindade, E. Impact of COVID-19 in Pediatric Patients and Young Adults with Inflammatory Bowel Disease. GE Port. J. Gastroenterol. 2023, 30, 121–126. [Google Scholar] [CrossRef]
- Pang, L.; Liu, H.; Liu, Z.; Tan, J.; Zhou, L.Y.; Qiu, Y.; Lin, X.; He, J.; Li, X.; Lin, S.; et al. Role of Telemedicine in Inflammatory Bowel Disease: Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Med. Internet. Res. 2022, 24, e28978. [Google Scholar] [CrossRef]
- Suria, C.; Bosca-Watts, M.M.; Navarro, P.; Tosca, J.; Anton, R.; Sanahuja, A.; Revaliente, M.; Minguez, M. Management of patients with Intestinal Bowel Disease and COVID-19: A review of current evidence and future perspectives. Gastroenterol. Hepatol. 2022, 45, 383–389. [Google Scholar] [CrossRef]
- Sun, Y.; Li, L.; Xie, R.; Wang, B.; Jiang, K.; Cao, H. Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Front. Pediatr. 2019, 7, 432. [Google Scholar] [CrossRef] [PubMed]
- Tursi, A.; Lopetuso, L.R.; Vetrone, L.M.; Gasbarrini, A.; Papa, A. SARS-CoV-2 infection as a potential trigger factor for de novo occurrence of inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2022, 34, 883–884. [Google Scholar] [CrossRef]
- Röckert Tjernberg, A.; Malmborg, P.; Mårild, K. Coronavirus disease 2019 and gastrointestinal disorders in children. Therap. Adv. Gastroenterol. 2023, 16, 17562848231177612. [Google Scholar] [CrossRef] [PubMed]
- Bezzio, C.; Fiorino, G.; Ribaldone, D.G.; Armuzzi, A.; Saibeni, S.; IG-IBD COVID-19 Study Group. IBD Flare in the COVID-19 Pandemic: Therapy Discontinuation Is to Blame. Inflamm. Bowel. Dis. 2023, 29, 834–836. [Google Scholar] [CrossRef] [PubMed]
- Schell, T.L.; Caldera, F. A Practical Update on COVID-19 and Inflammatory Bowel Disease: COVID-19 Disease Risk and Vaccine Safety and Efficacy. Gastroenterol. Hepatol. 2024, 20, 88–97. [Google Scholar]
- Multisystem Inflammatory Syndrome in Children (MIS-C) Interim Guidance. Available online: https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/multisystem-inflammatory-syndrome-in-children-mis-c-interim-guidance/ (accessed on 12 February 2024).
- Hoste, L.; Van Paemel, R.; Haerynck, F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review. Eur. J. Pediatr. 2021, 180, 2019–2034. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, P.; Opoka-Winiarska, V.; Pac-Kożuchowska, E. Is It Inflammatory Bowel Disease Flare or Pediatric Inflammatory Multisystem Syndrome Temporally Associated with COVID-19? J. Clin. Med. 2022, 11, 2765. [Google Scholar] [CrossRef]
- Dolinger, M.T.; Person, H.; Smith, R.; Jarchin, L.; Pittman, N.; Dubinsky, M.C.; Lai, J. Pediatric Crohn Disease and Multisystem Inflammatory Syndrome in Children (MIS-C) and COVID-19 Treated with Infliximab. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Alkan, G.; Emiroglu, M.; Oz, S.K.T.; Ergani, A.C.; Emiroglu, H.H. Infliximab: A treatment option for multisystem inflammatory syndrome in children with ulcerative colitis? Turk. Arch. Pediatr. 2021, 56, 267–269. [Google Scholar] [CrossRef]
- Sweeny, K.F.; Zhang, Y.J.; Crume, B.; Martz, C.A.; Blessing, M.M.; Kahn, S.A. Inflammatory Bowel Disease Presenting with Concurrent COVID-19 Multisystem Inflammatory Syndrome. Pediatrics 2021, 147, e2020027763. [Google Scholar] [CrossRef] [PubMed]
- Meredith, J.; Khedim, C.A.; Henderson, P.; Wilson, D.C.; Russell, R.K. Paediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 [PIMS-TS] in a Patient Receiving Infliximab Therapy for Inflammatory Bowel Disease. J. Crohns Colitis. 2021, 15, 687–691. [Google Scholar] [CrossRef]
- Ellul, P.; Revés, J.; Abreu, B.; Chaparro, M.; Gisbert, J.P.; Allocca, M.; Fiorino, G.; Barberio, B.; Zingone, F.; Pisani, A.; et al. Implementation and Short-term Adverse Events of Anti-SARS-CoV-2 Vaccines in Inflammatory Bowel Disease Patients: An International Web-based Survey. J. Crohn’s Colitis 2022, 16, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Stercel, V.; Lóczi, L.; Kadenczki, O.; Nemes, É.; Nagy, B., Jr.; Hodossy-Takács, R.; Szabó, A.Á.; Fagyas, M.; Kappelmayer, J.; Szabó, T.; et al. Effect of anti-SARS-CoV-2 BNT162b2 mRNA vaccination on thrombin generation in children with inflammatory bowel disease. Front. Immunol. 2023, 14, 1257072. [Google Scholar] [CrossRef]
- Lev-Tzion, R.; Focht, G.; Lujan, R.; Mendelovici, A.; Friss, C.; Greenfeld, S.; Kariv, R.; Ben-Tov, A.; Matz, E.; Nevo, D.; et al. COVID-19 Vaccine Is Effective in Inflammatory Bowel Disease Patients and Is Not Associated with Disease Exacerbation. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenter-Ological Assoc. 2022, 20, e1263–e1282. [Google Scholar] [CrossRef] [PubMed]
- Weaver, K.N.; Zhang, X.; Dai, X.; Watkins, R.; Adler, J.; Dubinsky, M.C.; Kastl, A.; Bousvaros, A.; Strople, J.A.; Cross, R.K.; et al. Impact of SARS-CoV-2 Vaccination on Inflammatory Bowel Disease Activity and Development of Vaccine-Related Adverse Events: Results from PREVENT-COVID. Inflamm. Bowel Dis. 2022, 28, 1497–1505. [Google Scholar] [CrossRef]
- Khan, N.; Mahmud, N. COVID-19 Vaccine Effectiveness against the Omicron Variant in a Veterans Affairs Cohort of Patients with Inflammatory Bowel Disease. Am. J. Gastroenterol. 2023, 118, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Deepak, P.; Cross, R.K.; Murone, J.; Farraye, F.A.; Ungaro, R.C.; Kochhar, G.S. Effect of 2 vs 3 Doses of COVID-19 Vaccine in Patients with Inflammatory Bowel Disease: A Population-based Propensity Matched Analysis. Inflamm. Bowel Dis. 2023, 29, 1563–1571. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Lin, S.; Goodhand, J.R.; Chanchlani, N.; Hamilton, B.; Bewshea, C.; Ahmad, T. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021, 70, 1884–1893. [Google Scholar] [CrossRef]
- Lee, K.J.; Choi, S.Y.; Lee, Y.M.; Kim, H.W. Neutralizing Antibody Response, Safety, and Efficacy of mRNA COVID-19 Vaccines in Pediatric Patients with Inflammatory Bowel Disease: A Prospective Multicenter Case—Control Study. Vaccines 2022, 10, 1265. [Google Scholar] [CrossRef]
- Porter, C.K.; Tribble, D.R.; Aliaga, P.A.; Halvorson, H.A.; Riddle, M.S. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology 2008, 135, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Senthamizhselvan, K.; Ramalingam, R.; Mohan, P.; Kavadichanda, C.; Badhe, B.; Hamide, A. De Novo Crohn’s Disease Trig541 gered After COVID-19: Is COVID-19 More Than an Infectious Disease? ACG Case Rep. J. 2021, 8, e00652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Praissman, J.L.; Grant, O.C.; Cai, Y.; Xiao, T.; Rosenbalm, K.E.; Aoki, K.; Kellman, B.P.; Bridger, R.; Barouch, D.H.; et al. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020, 28, 586–601.e6. [Google Scholar] [CrossRef]
- Jia, H.P.; Look, D.C.; Hickey, M.; Shi, L.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B., Jr. Infection of human airway epithelia by SARS coronavirus is associated with ACE2 expression and localization. Adv. Exp. Med. Biol. 2006, 581, 479–484. [Google Scholar]
- Aimrane, A.; Laaradia, M.A.; Sereno, D.; Perrin, P.; Draoui, A.; Bougadir, B.; Hadach, M.; Zahir, M.; Fdil, N.; El Hiba, O.; et al. Insight into COVID-19’s epidemiology, pathology, and treatment. Heliyon 2022, 8, e08799. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Feng, Z.; Rao, S.; Xiao, C.; Xue, X.; Lin, Z.; Zhang, Q.; Qi, W. Diarrhoea may be underestimated: A missing link in 2019 novel coronavirus. Gut 2020, 69, 1141–1143. [Google Scholar] [CrossRef] [PubMed]
- Zang, R.; Gomez Castro, M.F.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020, 5, eabc3582. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A. COVID-19 and the human gut: A new runner on the tract. Int. J. Celiac. Dis. 2020, 8, 64–67. [Google Scholar] [CrossRef]
- Carvalho, A.; Alqusairi, R.; Adams, A.; Paul, M.; Kothari, N.; Peters, S.; DeBenedet, A.T. SARS-CoV-2 Gastrointestinal Infection Causing Hemorrhagic Colitis: Implications for Detection and Transmission of COVID-19 Disease. Am. J. Gastroenterol. 2020, 115, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, R.S.; Qu, G.Q.; Wang, Y.Y.; Liu, P.; Zhu, Y.Z.; Fei, G.; Ren, L.; Zhou, Y.W.; Liu, L. Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi 2020, 36, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.Y.; Ding, Y.H.; Nie, K.; Dong, Y.M.; Xu, J.H.; Yang, M.L.; Liu, M.Q.; Wei, L.; Nasser, M.I.; Xu, L.Y.; et al. Potential effects of SARS-CoV-2 on the gastrointestinal tract and liver. Biomed. Pharmacother. 2021, 133, 111064. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Patel, P.A.; Vunnam, R.R.; Hewlett, A.T.; Jain, R.; Jing, R.; Vunnam, S.R. Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J. Clin. Virol. 2020, 128, 104386. [Google Scholar] [CrossRef]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARSCoV-2. Gastroenterology 2020, 158, 1831–1833.e3. [Google Scholar] [CrossRef]
- Calitri, C.; Fumi, I.; Ignaccolo, M.G.; Banino, E.; Benetti, S.; Lupica, M.M.; Fantone, F.; Pace, M.; Garofalo, F. Gastrointestinal involvement in paediatric COVID-19—From pathogenesis to clinical management: A comprehensive review. World J. Gastroenterol. 2021, 27, 3303–3316. [Google Scholar] [CrossRef]
- Tsounis, E.P.; Triantos, C.; Konstantakis, C.; Marangos, M.; Assimakopoulos, S.F. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J. Virol. 2023, 12, 68–90. [Google Scholar] [CrossRef]
- Saez, A.; Herrero-Fernandez, B.; Gomez-Bris, R.; Sánchez-Martinez, H.; Gonzalez-Granado, J.M. Pathophysiology of Inflamma tory Bowel Disease: Innate Immune System. Int. J. Mol. Sci. 2023, 24, 1526. [Google Scholar] [CrossRef]
- Yonker, L.M.; Gilboa, T.; Ogata, A.F.; Senussi, Y.; Lazarovits, R.; Boribong, B.P.; Bartsch, Y.C.; Loiselle, M.; Rivas, M.N.; Porritt, R.A.; et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J. Clin. Investig. 2021, 131, e149633. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, A.O.; Akın, F.; Yazar, A.; Metin Akcan, Ö.; Topcu, C.; Aydın, O. Zonulin and claudin-5 levels in multisystem inflammatory syndrome and SARS-CoV-2 infection in children. J. Paediatr. Child Health 2022, 58, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- Okuyucu, M.; Yalcin Kehribar, D.; Çapraz, M.; Çapraz, A.; Arslan, M.; Çelik, Z.B.; Usta, B.; Birinci, A.; Ozgen, M. The Relation ship between COVID-19 Disease Severity and Zonulin Levels. Cureus 2022, 14, e28255. [Google Scholar] [CrossRef]
- McLaren, L.C.; Strickland, R.G. Attempts to Identify a Viral Etiology for Inflammatory Bowel Disease (IBD). In Inflammatory Bowel Diseases; Rachmilewitz, D., Ed.; Developments in Gastroenterology; Springer: Dordrecht, The Netherlands, 1986; Volume 8. [Google Scholar]
- Hansen, R.; Thomson, J.M.; El-Omar, E.M.; Hold, G.L. The role of infection in the aetiology of inflammatory bowel disease. J. Gastroenterol. 2010, 45, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Axelrad, J.E.; Cadwell, K.H.; Colombel, J.F.; Shah, S.C. Systematic review: Gastrointestinal infection and incident inflammatory bowel disease. Aliment. Pharmacol. Ther. 2020, 51, 1222–1232. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef]
- Bacorn, M.; Romero-Soto, H.N.; Levy, S.; Chen, Q.; Hourigan, S.K. The Gut Microbiome of Children during the COVID-19 Pandemic. Microorganisms 2022, 10, 2460. [Google Scholar] [CrossRef]
- Valentino, M.S.; Esposito, C.; Colosimo, S.; Caprio, A.M.; Puzone, S.; Guarino, S.; Marzuillo, P.; Miraglia Del Giudice, E.; Di Sessa, A. Gut microbiota and COVID-19: An intriguing pediatric perspective. World J. Clin. Cases 2022, 10, 8076–8087. [Google Scholar] [CrossRef]
- Matthai, J.; Shanmugam, N.; Sobhan, P. Indian Society of Pediatric Gastroenterology, Hepatology and Nutrition; Pediatric Gas-troenterology Chapter of Indian Academy of Pediatrics. Coronavirus Disease (COVID-19) and the Gastrointestinal System in Children. Indian Pediatr. 2020, 57, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, E.; Licari, A.; Motisi, M.A.; Manti, S.; Marseglia, G.L.; Galli, L.; Lionetti, P. Gastrointestinal involvement in children with SARS-COV-2 infection: An overview for the pediatrician. Pediatr. Allergy Immunol. 2020, 31 (Suppl. 26), 92–95. [Google Scholar] [CrossRef] [PubMed]
- Nashed, L.; Mani, J.; Hazrati, S.; Stern, D.B.; Subramanian, P.; Mattei, L.; Bittinger, K.; Hu, W.; Levy, S.; Maxwell, G.L.; et al. Gut microbiota changes are detected in asymptomatic very young children with SARS-CoV-2 infection. Gut 2022, 71, 2371–2373. [Google Scholar] [CrossRef] [PubMed]
- Al-Sadi, R.; Dharmaprakash, V.; Nighot, P.; Guo, S.; Nighot, M.; Do, T.; Ma, T.Y. Bifidobacterium bifidum Enhances the Intestinal Epithelial Tight Junction Barrier and Protects against Intestinal Inflammation by Targeting the Toll-like Receptor-2 Pathway in an NF-κB-Independent Manner. Int. J. Mol. Sci. 2021, 22, 8070. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Duan, J.; Wang, D.; Liu, J.; Chen, X.; Qin, X.-Y.; Yu, W. Akkermansia muciniphila Alleviates Persistent Inflammation, Immunosuppression, and Catabolism Syndrome in Mice. Metabolites 2023, 13, 194. [Google Scholar] [CrossRef] [PubMed]
- Dovrolis, N.; Moschoviti, A.; Fessatou, S.; Karamanolis, G.; Kolios, G.; Gazouli, M. Identifying Microbiome Dynamics in Pedi atric IBD: More than a Family Matter. Biomedicines 2023, 11, 1979. [Google Scholar] [CrossRef] [PubMed]
- Suskun, C.; Kilic, O.; Yilmaz Ciftdogan, D.; Guven, S.; Karbuz, A.; Ozkaya Parlakay, A.; Kara, Y.; Kacmaz, E.; Sahin, A.; Boga, A.; et al. Intestinal microbiota composition of children with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and multisystem inflammatory syndrome (MIS-C). Eur. J. Pediatr. 2022, 181, 3175–3191. [Google Scholar] [CrossRef] [PubMed]
- Romani, L.; Del Chierico, F.; Macari, G.; Pane, S.; Ristori, M.V.; Guarrasi, V.; Gardini, S.; Pascucci, G.R.; Cotugno, N.; Perno, C.F.; et al. The Relationship between Pediatric Gut Microbiota and SARS-CoV-2 Infection. Front. Cell. Infect. Microbiol. 2022, 12, 908492. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Patton, M.J.; Floyd, J.L.; Fortmann, S.; DuPont, M.; Harbour, A.; Wright, J.; Lamendella, R.; Stevens, B.R.; Oudit, G.Y.; et al. Plasma Microbiome in COVID-19 Subjects: An Indicator of Gut Barrier Defects and Dysbiosis. Int. J. Mol. Sci. 2022, 23, 9141. [Google Scholar] [CrossRef]
- Hashimoto, T.; Perlot, T.; Rehman, A.; Trichereau, J.; Ishiguro, H.; Paolino, M.; Sigl, V.; Hanada, T.; Hanada, R.; Lipinski, S.; et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012, 487, 477–481. [Google Scholar] [CrossRef]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan catabolites from microbiota engage Aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Cai, H.; Shen, Y.; Ni, Q.; Chen, Y.; Hu, S.; Li, J.; Wang, H.; Yu, L.; Huang, H.; et al. Management of corona virus disease-19 (COVID-19): The Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020, 49, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Martín Giménez, V.M.; Modrego, J.; Gómez-Garre, D.; Manucha, W.; de las Heras, N. Gut Microbiota Dysbiosis in COVID-19: Modulation and Approaches for Prevention and Therapy. Int. J. Mol. Sci. 2023, 24, 12249. [Google Scholar] [CrossRef] [PubMed]
- Dvornikova, K.A.; Bystrova, E.Y.; Churilov, L.P.; Lerner, A. Pathogenesis of the inflammatory bowel disease in context of SARS-COV-2 infection. Mol. Biol. Rep. 2021, 48, 5745–5758. [Google Scholar] [CrossRef] [PubMed]
- Cañas, C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med. Hypotheses 2020, 145, 110345. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, S.Y.; Kim, Y.E.; Kwon, K.W.; Han, E.M.; Kim, A. Two Case Reports of Newly Diagnosed Crohn’s Disease after COVID-19 in Pediatric Patients. Korean J. Gastroenterol. 2023, 81, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Swatski, M.D.; Kaur, P.; Borlack, R.E.; McBain, S.; Uffer, J.; Almadhoun, O. A Case Series of New-Onset Ulcerative Colitis Following Recent Diagnosis of COVID-19. JPGN Rep. 2023, 4, e383. [Google Scholar] [CrossRef]
- Morita, A.; Imagawa, K.; Tagawa, M.; Sakamoto, N.; Takada, H. Case report: Immunological characteristics of de novo ulcerative colitis in a child post COVID-19. Front. Immunol. 2023, 14, 1107808. [Google Scholar] [CrossRef] [PubMed]
- Preziosi, N.A.; Rizvi, A.H.; Feerick, J.D.; Mandelia, C. De Novo Pediatric Ulcerative Colitis Triggered by SARS-CoV-2 Infection: A Tale of 2 Sisters. Inflamm. Bowel. Dis. 2022, 28, 1623–1625. [Google Scholar] [CrossRef]
- Imperatore, N.; Bennato, R.; D’Avino, A.; Lombardi, G.; Manguso, F. SARS-CoV-2 as a Trigger for De Novo Ulcerative Colitis. Inflamm. Bowel Dis. 2021, 27, e87–e88. [Google Scholar] [CrossRef]
- Rutigliani, M.; Bozzo, M.; Barberis, A.; Greppi, M.; Anelli, E.; Castellaro, L.; Bonsignore, A.; Azzinnaro, A.; Pesce, S.; Filauro, M.; et al. Case Report: A Peculiar Case of Inflammatory Colitis After SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 849140. [Google Scholar] [CrossRef] [PubMed]
- Elbadry, M.; Medhat, M.A.; Zaky, S.; El Kassas, M. Ulcerative colitis as a possible sequela of COVID-19 Infection: The endless story. Arab J. Gastroenterol. Off. Publ. Pan-Arab Assoc. Gastroenterol. 2022, 23, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.; Zorzi, F.; Monteleone, G.; Del Vecchio Blanco, G. Onset of ulcerative colitis during SARS-CoV-2 infection. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver. 2020, 52, 1228–1229. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Takada, J.; Baba, A.; Iwashita, M.; Hayashi, T.; Maeda, T.; Shimizu, M. An Elderly Patient Developed Ulcerative Colitis after SARS-CoV-2 mRNA Vaccination: A Case Report and Review of the Literature. Intern. Med. 2024, 63, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Taida, T.; Kato, J.; Ishikawa, K.; Akizue, N.; Ohta, Y.; Okimoto, K.; Saito, K.; Matsusaka, K.; Matsumura, T.; Kato, N. Severe ulcerative colitis induced by COVID-19 vaccination. Clin. J. Gastroenterol. 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ak, Ç.; Sayar, S.; Adalı, G.; Özdil, K. Acute Severe Ulcerative Colitis After mRNA Coronavirus Disease 2019 Vaccination: Can mRNA Vaccines Unmask Inflammatory Bowel Diseases? ACG Case Rep. J. 2022, 9, e00806. [Google Scholar] [CrossRef]
- Kuo, H.L.; Lin, T.Y.; Leong, P.Y. Case report of new-onset ulcerative colitis after MVC-COVI1901 vaccine injection for SARS-CoV-2. Int. J. Rheum. Dis. 2023, 26, 1594–1598. [Google Scholar] [CrossRef]
Study, Publication Year, Country | Study Design | Population Size | Population Age (Male:Female) | Type of Inflammatory Disease | COVID-19 Cases | Relevant Findings |
---|---|---|---|---|---|---|
Arrigo et al., 2021, Italy [19] | Multicenter, retrospective, cohort study | 2291 | 14.3 ± 1.6 years old (1296:995) | 984 (42.9%) CD 1177 (51.3%) UC 130 (5.7%) IBD-U | 6 cases (0.2%): -5/6 with mild infection, without requiring hospitalization -1/6 (an 18-year-old girl with UC) requiring 1 week hospitalization due to pneumonia | ↓ Hospital admissions [604/2291 (26.3%) vs. 1281/2291 (55.9%); p < 0.001]. ↓ Hospitalizations for new diagnosis (from n = 44 to n = 27) ↓ Endoscopic re-evaluations (from n = 46 to n = 8). No changes in relapses and surgical procedures. No changes in biologic infusions. |
Rosenbaum et al., 2023, New York [20] | Multicenter, retrospective, cohort study | 587 | 14.0 (2–21) years old (333:253) | 399 (68.0%) CD 159 (27.1%) UC 29 (4.9%) IBD-U | 8 cases with mild course | Statistically significant increases in CD and UC cases in 2020–2022 period compared to 2016–2020. |
Dorfman et al., 2021, Israel [21] | Cross-sectional telephonic survey | 244 | 15.3 (12.6–17.1) years old (117:127) | 170 (69.7%) CD 67 (27.5%) UC 7 (2.8%) IBD-U | Not mentioned | ↑ Concerns regarding the attendance of regular clinics (116, 47.5%) and emergency room in case of IBD exacerbation (178, 73%). 7/244 (2.9%) patients changed or discontinued their IBD treatment due to COVID-19. |
D’Arcangelo et al., 2021, Italy [22] | Retrospective, observational, single-center, cohort study | 185 | 11 ± 3.5 years old (107:78) | 101 (55%) CD 82 (44%) UC 2 (1%) IBD-U | 4 cases with mild/asymptomatic course | No worsening of IBD symptoms during COVID-19 disease. No interruption in biological therapy. |
Bosa et al., 2022, Italy [23] | Prospective, observational, single-center study | 84 | 14 (1–18) years old | Not mentioned. | 12 cases with mild/asymptomatic course (9 with CD, 1 with UC and 2 with IBD-U) | No worsening of IBD symptoms during COVID-19 disease. No interruption in biological therapy. |
Koletzko et al., 2021, Germany [24] | Cohort, questionnaire-based study | 90 | 6–20 years old (51:39) | 44 CD 34 UC 10 IBD-U | Not clearly mentioned | Medication changes in 4.6% cases (dose reduction, change in interval, pausing or omitting ongoing or newly proposed medication). Cancelled or postponed endoscopies or surgery in only 3.8% and 0.4%, respectively. |
Sansotta et al., 2021, Italy [25] | Cohort, questionnaire-based study | 290 | 15.2 (2–18) years old | 117 (40%) CD 155 (54%) UC 18 (6%) IBD-U | 2 cases with mild course | No new IBD cases. Only 1 IBD flare and 1 with infectious colitis, both requiring hospital admission due to fever and gastrointestinal symptoms. No interruption in biological therapy. |
Magalhães et al., 2022, Portugal [26] | Retrospective, single center study | 268 | 15 (7–18) years old (10:5) | 18 (75%) CD 6 (25%) UC | 11 with mild course | No gastrointestinal complaints. No reports of complications or hospitalizations due to COVID-19. No interruption of treatment in 90% cases (3 patients interrupted treatment due to mandatory quarantine). |
Study, Publication Year, Country | IBD Type | Patient Age, Sex | COVID-19 Vaccination Status | Symptoms at Initial Presentation | Initial COVID-19 Treatment | Latency Period | Symptoms after Latency Period | Endoscopic Findings | Histopathological Findings | Treatment and Outcome of IBD |
---|---|---|---|---|---|---|---|---|---|---|
Kim et al., 2023, South Korea [89] | CD | 17 years old, male | Not mentioned | Fever, sore throat, cough | Antipyretics | 2 weeks | Nausea, vomiting, diarrhea, abdominal, pain, fever, weight loss | Small ulcers in the distal esophagus, Edematous mucosa with multiple erosions, prominent lymphoid follicles in the terminal ileum A small ulcer in the ascending colon | Chronic esophagitis with focal detached fibrinosuppurative exudate. Chronic granulomatous inflammation with a few multinucleated giant cells in the terminal ileum | Before confirmation: methylprednisolone, then prednisolone After confirmation: azathioprine + prednisolone in tapering dose No details about outcome |
CD | 11 years old, male | Not mentioned | Fever | No treatment required | A few weeks | Fever, abdominal pain | Ileocecal valve deformity with mucosal edema and ulcerations. A large ulcer with cobblestone appearance in the cecum. | Focal aphthous ulcer formation with acute and chronic inflammation, and inflamed granulation tissue formation in the colon. | Before confirmation: intravenous antibiotics. After confirmation: azathioprine + prednisolone in tapering dose No details about outcome. | |
Morita et al., 2023, Japan [91] | UC (severe) | 13 years old, female | 2 Pfizer-BioNTech COVID-19 vaccines | Fever, cough, dysgeusia | No treatment required | 4 weeks | Abdominal pain Diarrhea Hematochezia | Complete obliteration of the vascular pattern of the colon with erosions and some luminal bleeding | A crypt abscess and crypt distortion. | 5-aminosalicylate without response, then salazosulfapyridine which was also ineffective. Prednisone with good response. |
Preziosi et al., 2022, United States of America [92] | UC | 10 years old, female | Unvaccinated | Diarrhea, hematochezia, fever, cough | Not mentioned | No latency period | Not applicable (no latency period) | Not mentioned | Not mentioned | Iron supplements Resolution of hematochezia and diarrhea within 2 weeks. |
UC | 9 years old, female | Unvaccinated | Diarrhea, hematochezia, fever, cough | Not mentioned | No latency period | Not applicable (no latency period) | Pancolitis extending from rectum to ascending colon with normal cecum, terminal ileum. | Moderately active pancolitis with features of chronicity. | Oral prednisone, mesalamine, then Infliximab due to repeated relapses as the prednisone dose was decreased. | |
Swatski et al., 2023, United States of America [90] | UC (severe) | 16 years old, female | 2 Pfizer-BioNTech COVID-19 vaccines | Not mentioned, but no hospitalization required | No treatment required | 3 weeks | Abdominal pain Hematochezia | Diffuse severe inflammation (adherent blood, altered vascularity, edema, erosions, erythema, confluent ulcerations) in the colon | Diffuse chronic active colitis with normal terminal ileum. | Oral prednisone, mesalamine, and infliximab with good response. |
UC (severe) | 16 years old, female | 2 Pfizer-BioNTech COVID-19 vaccines | Not mentioned, but no hospitalization required | No treatment required | 8 weeks | Abdominal pain Hematochezia Headache Nausea Fatigue | Inflammation in a continuous and circumferential pattern from the anus to the cecum | Chronic active pancolitis with cryptitis from the rectum through the cecum with normal terminal ileum. | Oral prednisone, mesalamine, then escalated to infliximab due to poor response. Vancomycin for Clostridium difficile infection in day 40 after diagnosis. | |
UC (severe) | 12 years old, female | Unvaccinated | Not mentioned, but no hospitalization required | No treatment required | 3 weeks | Abdominal pain Hematochezia | Diffuse moderate colitis with loss of vascularity and mild shallow ulcers throughout the entire colon. | Chronic active pancolitis throughout the colon with normal terminal ileum. | Oral prednisone, then infliximab due to worsening hematochezia. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trandafir, L.M.; Spoiala, E.L.; Ghiga, G.; Gimiga, N.; Budescu, P.-D.; Lupu, V.V.; Butnariu, L.; Cojocaru, E.; Paduraru, G. Impact of COVID-19 on Pediatric Inflammatory Bowel Diseases—From Expectations to Reality. J. Pers. Med. 2024, 14, 399. https://doi.org/10.3390/jpm14040399
Trandafir LM, Spoiala EL, Ghiga G, Gimiga N, Budescu P-D, Lupu VV, Butnariu L, Cojocaru E, Paduraru G. Impact of COVID-19 on Pediatric Inflammatory Bowel Diseases—From Expectations to Reality. Journal of Personalized Medicine. 2024; 14(4):399. https://doi.org/10.3390/jpm14040399
Chicago/Turabian StyleTrandafir, Laura Mihaela, Elena Lia Spoiala, Gabriela Ghiga, Nicoleta Gimiga, Paula-Diana Budescu, Vasile Valeriu Lupu, Lacramioara Butnariu, Elena Cojocaru, and Gabriela Paduraru. 2024. "Impact of COVID-19 on Pediatric Inflammatory Bowel Diseases—From Expectations to Reality" Journal of Personalized Medicine 14, no. 4: 399. https://doi.org/10.3390/jpm14040399
APA StyleTrandafir, L. M., Spoiala, E. L., Ghiga, G., Gimiga, N., Budescu, P. -D., Lupu, V. V., Butnariu, L., Cojocaru, E., & Paduraru, G. (2024). Impact of COVID-19 on Pediatric Inflammatory Bowel Diseases—From Expectations to Reality. Journal of Personalized Medicine, 14(4), 399. https://doi.org/10.3390/jpm14040399