Influence of Physical Activity during Pregnancy on Neonatal Complications: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.1.1. Population
2.1.2. Intervention
2.1.3. Comparison
2.1.4. Variable
2.1.5. Study Design
2.2. Data Sources
2.3. Selection and Data Extraction
2.4. Evidence Quality Assessment
2.5. Risk of Bias Assessment
2.6. Publication Bias Assessment
2.7. Statistical Analysis
Ref | Autor | Year | Country | Type | N | IG | CG | Intervention. Exercise Program | Principal Outcomes | Secondary Outcomes | Co-Intervention | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Freq | Int | Tp | Type | Sup. | Dur. | Adh. | |||||||||||
[31] | Atkinson et al. | 2022 | Norway | RCT | 331 | 164 | 117 | 3 | Moderate | 12 wk | Strength Endurance Balance | Supervised | 60 | ND | Child height and weight, BMI, and physical activity, | Maternal outcomes and neonatal outcomes | No |
[32] | Awad et al. | 2020 | Egypt | RCT | 50 | 25 | 25 | 3 + 3 | Moderate | 22 wk | Aerobic and PFMT | Mix | 60 + 35 | ND | Duration of labour | Neonatal outcomes | No |
[33] | Babbar et al. | 2016 | USA | RCT | 46 | 23 | 23 | 3 | Moderate | 8 wk | Yoga | Supervised | 60 | 80% | Birth weight and type of delivery | Maternal outcomes and neonatal outcomes | No |
[34] | Barakat et al. | 2011 | Spain | RCT | 80 | 40 | 40 | 3 | Moderate | 28 wk | Aerobic and strength exercises | Supervised | 35–45 | ND | Maternal health status | Maternal outcomes and neonatal outcomes | No |
[35] | Barakat et al. | 2012a | Spain | RCT | 290 | 138 | 152 | 3 | Moderate | 28 wk | Aerobic exercises | Supervised | 40–45 | ND | Type of delivery | Maternal outcomes and neonatal outcomes | No |
[36] | Barakat et al. | 2012b | Spain | RCT | 83 | 40 | 43 | 3 | Moderate | 28 wk | Land and aquatic exercises | Supervised | 35–45 | 80% | Gestational weight gain and 37 gestational diabetes | Maternal outcomes and neonatal outcomes | No |
[37] | Barakat et al. | 2013 | Spain | RCT | 510 | 255 | 255 | 3 | Moderate | 28 wk | Aerobic, strength and flexibility | Supervised | 50–55 | 95% | Gestational diabetes | Maternal outcomes and neonatal outcomes | No |
[38] | Barakat et al. | 2014a | Spain | RCT | 200 | 107 | 93 | 3 | Moderate | 28 wk | Aerobic exercises and PFMT | Supervised | 55–60 | 80% | Gestational weight gain and type of delivery | Maternal outcomes and neonatal outcomes | No |
[39] | Barakat et al. | 2014b | Spain | RCT | 290 | 138 | 152 | 3 | Moderate | 28–31 wk | Aerobic exercises | Supervised | 55–60 | 80% | Gestational age | Maternal outcomes and neonatal outcomes | No |
[40] | Barakat et al. | 2016 | Spain | RCT | 765 | 382 | 383 | 3 | Moderate | 28 wk | Aerobic, strength, and flexibility | Supervised | 50–55 | 80% | Hypertension | Maternal outcomes and neonatal outcomes | No |
[41] | Barakat et al. | 2018a | Spain | RCT | 429 | 227 | 202 | 3 | Moderate | 28 wk | Aerobic exercises, PFMT, and flexibility | Supervised | 55–60 | 85% | Duration of labour | Maternal outcomes and neonatal outcomes | No |
[42] | Barakat et al. | 2018b | Spain | RCT | 65 | 33 | 33 | 3 | Moderate | 28 wk | Aerobic exercises | Supervised | 55–60 | ND | Placenta weight | Maternal outcomes and neonatal outcomes | No |
[43] | Brik et al. | 2019 | Spain | RCT | 85 | 42 | 43 | 3 | Moderate | 30 wk | Aerobic, strength, coordination, balance, PFMT, and stretching and relaxation. | Supervised | 60 | 70% | Maternal weight during pregnancy | Fetal and neonatal outcomes. | No |
[44] | Bruno et al. | 2016 | Italy | RCT | 131 | 69 | 62 | 3 | Moderate | 30 wk | Physical activity recommendations by the ACOG and the ACSM | Not Supervised | 30 | ND | Gestational Diabetes | Maternal outcomes and neonatal outcomes | Diet |
[45] | Carrascosa et al. | 2021 | Spain | RCT | 286 | 145 | 141 | 3 | Moderate | 20 wk | Aquatic aerobic exercises | Supervised | 45 | ND | Epidural and analgesia during labour | Maternal outcomes and neonatal outcomes | No |
[46] | Chetana et al. | 2018 | India | RCT | 150 | 75 | 75 | 3 | Moderate | 7 wk | Yoga | Supervised | 30 | ND | Labour pain intensity | Fetal and neonatal outcomes | No |
[47] | Cordero et al. | 2015 | Spain | RCT | 257 | 101 | 156 | 1 + 2 | Low | 26 wk | Land aerobics and aquatic activity | Supervised | 50 + 60 | 80% | Gestational diabetes | Maternal outcomes and neonatal outcomes | No |
[48] | Daly et al. | 2017 | Ireland | RCT | 86 | 43 | 43 | 3 | Moderate | 28 wk | Aerobic, strength, and PFMT | Supervised | 50–60 | 78.9% | Fasting plasma glucose | Maternal outcomes and neonatal outcomes | No |
[49] | Dias et al. | 2011 | Norway | RCT | 42 | 21 | 21 | 1 + 6 | Low | 16 wk | PFMT | Mix | 30 | 75% | Type of delivery | Maternal outcomes and neonatal outcomes | No |
[50] | Garnæs et al. | 2016 | Norway | RCT | 91 | 46 | 45 | 3 | Moderate | 20–26 wk | Treadmill walking, strength training, and PFMT | Supervised | 60 | 50% | Gestational Weight Gain | Maternal outcomes and neonatal outcomes | No |
[51] | Ghandali et al. | 2021 | Iran | RCT | 103 | 51 | 52 | 2 | Low–moderate | 8 wk | Pilates | Supervised | 35 | ND | Type of delivery | Maternal outcomes and neonatal outcomes | No |
[52] | Ghodsi et al. | 2014 | Iran | RCT | 80 | 40 | 40 | 3 | Low | 15 wk | Stationary cycling | No supervised | 15 | ND | Gestational weight gain | Maternal outcomes and neonatal outcomes | No |
[53] | Guelfi et al. | 2016 | Australia | RCT | 172 | 85 | 87 | 3 | Moderate | 14 wk | Stationary cycling | Supervised | 20–60 | 79% | Diagnosis of GDM | Maternal outcomes and neonatal outcomes | No |
[54] | Haakstad et al. | 2020 | Norway | RCT | 105 | 52 | 53 | 2 + 1 | Moderate | 12 wk | Aerobic dance and strength | Mix | 60 + 30 | 80% | Birth weight | Maternal outcomes and neonatal outcomes | No |
[55] | Karthiga et al. | 2022 | India | RCT | 234 | 121 | 113 | 2 | low | 20 wk | yoga | Not supervised | 60 | ND | Gestational hypertension | Maternal outcomes and neonatal outcomes | No |
[56] | Leon-Larios et al. | 2017 | Spain | RCT | 466 | 254 | 212 | 5 | Low | 6 wk | PFMT | Not supervised | 18–23 | ND | Perineal tear and episiotomy | Maternal outcomes and neonatal outcomes | Perineal massage |
[57] | Miquelutti et al. | 2013 | Brazil | RCT | 149 | 78 | 71 | 7 | Low | 14 wk | Aerobic and PFMT | Not supervised | 10–30 | ND | Urinary incontinence | Maternal outcomes and neonatal outcomes | No |
[58] | Murtezani et al. | 2014 | Kosovo | RCT | 63 | 30 | 33 | 3 | Moderate | 20 wk | Aerobic and strength exercises | Supervised | 40–45 | 85% | Birth weight | Maternal outcomes and neonatal outcomes | No |
[59] | Navas | 2021 | Spain | RCT | 320 | 148 | 146 | 3 | Moderate | 20 wk | Aquatic, PFMT, and breathing and relaxation exercises | Supervised | 45 min | ND | Postpartum depression, sleep problems, and maternal quality of life | Maternal outcomes and neonatal outcomes | No |
[60] | Pais et al. | 2021 | India | RCT | 124 | 61 | 63 | 7 | Moderate | 1 wk | Yoga | Supervised | 45 | ND | Incidence of preeclampsia and preterm birth | Maternal, fetal and neonatal outcomes | No |
[61] | Perales et al. | 2014 | Spain | RCT | 167 | 90 | 77 | 3 | Moderate | 29 wk | Aerobic exercises | Supervised | 55–60 | ND | Prenatal depression | Maternal outcomes and neonatal outcomes | No |
[62] | Perales et al. | 2015 | Spain | RCT | 63 | 38 | 25 | 3 | Moderate | 28 wk | Aerobic dance and PFMT | Supervised | 55–60 | 80% | Fetal and maternal heart rate | Maternal outcomes and neonatal outcomes | No |
[63] | Perales et al. | 2016a | Spain | RCT | 166 | 83 | 83 | 3 | Low–moderate | 28 wk | Aerobic, strength, and PFMT | Supervised | 55–60 | ND | Duration of labour | Maternal outcomes and neonatal outcomes | No |
[64] | Perales et al. | 2016b | Spain | RCT | 241 | 121 | 120 | 3 | Low–moderate | 28 wk | Aerobic and strength exercises | Supervised | 55–60 | 70% | Maternal cardiovascular health | Maternal outcomes and neonatal outcomes | No |
[65] | Perales et al. | 2020 | Spain | RCT | 1348 | 668 | 660 | 3 | Low-moderate | 30 wk | Aerobic and PFMT | Supervised | 50–55 | ND | Gestational weight gain | Maternal outcomes and neonatal outcomes | No |
[66] | Pinzon et al. | 2012 | Colombia | RCT | 64 | 31 | 33 | 3 | Moderate | 12 wk | Aerobic and flexibility exercises | Supervised | 60 | ND | Gestational weight gain | Maternal outcomes and neonatal outcomes | No |
[67] | Price et al. | 2012 | USA | RCT | 62 | 31 | 31 | 3 + 1 | Moderate | 23 wk | Aerobic and walk | Mix | 30 + 60 | ND | Gestational weight gain | Maternal outcomes and neonatal outcomes | No |
[68] | Ruiz et al. | 2013 | Spain | RCT | 962 | 481 | 481 | 3 | Low–Moderate | 28 wk | Aerobic and strength exercises | Supervised | 50–55 | 97% | Gestational weight gain | Maternal outcomes and neonatal outcomes | No |
[69] | Sagedal et al. | 2017 | Norway | RCT | 591 | 296 | 295 | 2 | Moderate | 24 wk | Strength training and cardiovascular exercise | Supervised | 60 | ND | Gestational weight gain | Maternal outcomes and neonatal outcomes | Diet |
[70] | Sanda et al. | 2018 | Norway | RCT | 589 | 295 | 294 | 2 + 3 | Moderate | 24 wk | Aerobic, strength exercises, and PFMT | Mix | 50 | ND | Duration and mode of delivery | Maternal outcomes and neonatal outcomes | No |
[71] | Seneviratne et al. | 2015 | New Zealand | RCT | 75 | 38 | 37 | 3–5 | Moderate | 16 wk | Aerobic exercises | Supervised | 15–30 | 33% | Birth weight | Maternal outcomes and neonatal outcomes | No |
[5] | Silva-José et al. | 2022 | Spain | RCT | 139 | 69 | 70 | 3 | Moderate | 30 wk | aerobic exercise, strength, balance and coordination, and PFMT and flexibility | Supervised | 55–60 | 80% | Birth weight | Maternal outcomes and neonatal outcomes | No |
[72] | Sobhgol et al. | 2022 | Australia | RCT | 200 | 100 | 100 | 1–2 | Low | 16 wk | PFMT | Not supervised | 10 | 50% | Female sexual function | Maternal outcomes and neonatal outcomes | No |
[73] | Stafne et al. | 2012 | Norway | RCT | 702 | 375 | 327 | 3 | Moderate–High | 14–16 wk | Aerobic activity, strength training, and balance exercises. | Supervised | 60 | 55%. | Gestational diabetes | Maternal outcomes and neonatal outcomes | No |
[74] | Uria-Minguito et al. | 2022 | Spain | RCT | 203 | 102 | 101 | 3 | Moderate | 28 wk | Aerobic, strength, balance, coordination, PFMT, and flexibility | Supervised | 50–60 | ND | Gestational diabetes | Maternal outcomes and neonatal outcomes | No |
[75] | Ussher et al. | 2015 | England | RCT | 774 | 384 | 391 | 2 + 1 | Moderate | 8 wk | Treadmill and walking | Supervised | 30 | 40% | Smoking cessation | Maternal outcomes and neonatal outcomes | No |
[76] | Vesco et al. | 2013 | USA | RCT | 114 | 56 | 58 | 7 | Moderate | ND | Physical activity recommendations | Not supervised | 30 | ND | Gestational weight gain | Maternal outcomes and neonatal outcomes | Diet |
[77] | Vinter et al. | 2012 | Denmark | RCT | 304 | 150 | 154 | 7 | Moderate | 21 wk | Walking exercises | Not supervised | 30–60 | ND | Gestational weight gain | Maternal outcomes and neonatal outcomes | Diet |
[78] | Wang et al. | 2017 | China | RCT | 226 | 112 | 114 | 3 | Moderate | 24 wk | Stationary cycling | Supervised | 45–60 | 75% | Gestational diabetes | Maternal outcomes and neonatal outcomes | No |
[79] | Yekefallah et al. | 2021 | Iran | RCT | 70 | 35 | 35 | 3 | Low–moderate | 11 wk | Yoga | Supervised | 75 | ND | Episiotomy and perineal tear | Maternal outcomes and neonatal outcomes | No |
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Effect of Physical Activity during Pregnancy on NICU Admission
3.4. Effect of Physical Activity during Pregnancy on Apgar 1 > 7
3.5. Effect of Physical Activity during Pregnancy on Apgar 5 > 7
3.6. Effect of Physical Activity during Pregnancy on Apgar 1
3.7. Effect of Physical Activity during Pregnancy on Apgar 5
3.8. Effect of Physical Activity during Pregnancy on other Neonatal Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azher, S.; Pinheiro, J.M.B.; Philbin, B.; Gifford, J.; Khalak, R. The Impact of Maternal Obesity on NICU and Newborn Nursery Costs. Front. Pediatr. 2022, 10, 863165. [Google Scholar] [CrossRef] [PubMed]
- Reichetzeder, C. Overweight and obesity in pregnancy: Their impact on epigenetics. Eur. J. Clin. Nutr. 2021, 75, 1710–1722. [Google Scholar] [CrossRef] [PubMed]
- Bolten, M.; Nast, I.; Skrundz, M.; Stadler, C.; Hellhammer, D.H.; Meinlschmidt, G. Prenatal programming of emotion regulation: Neonatal reactivity as a differential susceptibility factor moderating the outcome of prenatal cortisol levels. J. Psychosom. Res. 2013, 75, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.H.; Meah, V.L.; Ruchat, S.M.; Davies, G.A.; Skow, R.J.; Barrowman, N.; Adamo, K.B.; Poitras, V.J.; Gray, C.E.; Jaramillo Garcia, A.; et al. Impact of prenatal exercise on neonatal and childhood outcomes: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Silva-Jose, C.; Sánchez-Polán, M.; Barakat, R.; Díaz-Blanco, Á.; Mottola, M.F.; Refoyo, I. A Virtual Exercise Program throughout Pregnancy during the COVID-19 Pandemic Modifies Maternal Weight Gain, Smoking Habits and Birth Weight—Randomized Clinical Trial. J. Clin. Med. 2022, 11, 4045. [Google Scholar] [CrossRef] [PubMed]
- Das, U.G.; Sysyn, G.D. Abnormal fetal growth: Intrauterine growth retardation, small for gestational age, large for gestational age. Pediatr. Clin. North Am. 2004, 51, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Harrison, W.; Goodman, D. Epidemiologic Trends in Neonatal Intensive Care, 2007-2012. JAMA Pediatr. 2015, 169, 855–862. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.-B.; Kinney, M.; Lawn, J. The Born Too Soon Preterm Birth Action Group. Born Too Soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10 (Suppl. S1), S2. [Google Scholar] [CrossRef]
- Beta, J.; Khan, N.; Khalil, A.; Fiolna, M.; Ramadan, G.; Akolekar, R. Maternal and neonatal complications of fetal macrosomia: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 308–318. [Google Scholar] [CrossRef]
- Scifres, C.M. Short- and Long-Term Outcomes Associated with Large for Gestational Age Birth Weight. Obstet. Gynecol. Clin. North Am. 2021, 48, 325–337. [Google Scholar] [CrossRef]
- Arcangeli, T.; Thilaganathan, B.; Hooper, R.; Khan, K.S.; Bhide, A. Neurodevelopmental delay in small babies at term: A systematic review. Ultrasound Obstet. Gynecol. 2012, 40, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Swamy, G.K.; Østbye, T.; Skjærven, R. Association of Preterm Birth with Long-term Survival, Reproduction, and Next-Generation Preterm Birth. JAMA 2008, 299, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; Singhal, A.; Lucas, A.; et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 2013, 127, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Correia, L.L.; Linhares, M.B.M. Maternal anxiety in the pre- and postnatal period: A literature review. Rev. Lat. -Am. Enferm. 2007, 15, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Sanabria-Martínez, G.; García-Hermoso, A.; Poyatos-León, R.; González-García, A.; Sánchez-López, M.; Martínez-Vizcaíno, V. Effects of exercise-based interventions on neonatal outcomes: A meta-analysis of randomized controlled trials. Am. J. Health Promot. 2016, 30, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, V.; Derraik, J.G.; Hofman, P.L.; Cutfield, W.S. Born Large for Gestational Age: Bigger Is Not Always Better. J. Pediatr. 2016, 170, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Vasylyeva, T.L.; Barche, A.; Chennasamudram, S.P.; Sheehan, C.; Singh, R.; Okogbo, M.E. Obesity in prematurely born children and adolescents: Follow up in pediatric clinic. Nutr. J. 2013, 12, 150. [Google Scholar] [CrossRef]
- Gaskins, R.; LaGasse, L.; Liu, J.; Shankaran, S.; Lester, B.; Bada, H.; Bauer, C.; Das, A.; Higgins, R.; Roberts, M. Small for Gestational Age and Higher Birth Weight Predict Childhood Obesity in Preterm Infants. Am. J. Perinatol. 2010, 27, 721–730. [Google Scholar] [CrossRef]
- Poyatos-León, R.; García-Hermoso, A.; Sanabria-Martínez, G.; Álvarez-Bueno, C.; Sánchez-López, M.; Martínez-Vizcaíno, V. Effects of exercise during pregnancy on mode of delivery: A meta-analysis. Acta Obstet. Gynecol. Scand. 2015, 94, 1039–1047. [Google Scholar] [CrossRef]
- Sanabria-Martínez, G.; García-Hermoso, A.; Poyatos-León, R.; Álvarez-Bueno, C.; Sánchez-López, M.; Martínez-Vizcaíno, V. Effectiveness of physical activity interventions on preventing gestational diabetes mellitus and excessive maternal weight gain: A meta-analysis. BJOG 2015, 122, 1167–1174. [Google Scholar] [CrossRef]
- Petrovic, D.; Perovic, M.; Lazovic, B.; Pantic, I. Association between walking, dysphoric mood and anxiety in late pregnancy: A cross-sectional study. Psychiatry Res. 2016, 246, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Hesketh, K.R.; Evenson, K.R. Prevalence of U.S. Pregnant Women Meeting 2015 ACOG Physical Activity Guidelines. Am. J. Prev. Med. 2016, 51, e87–e89. [Google Scholar] [CrossRef] [PubMed]
- Silva-Jose, C.; Sánchez-Polán, M.; Barakat, R.; Gil-Ares, J.; Refoyo, I. Level of Physical Activity in Pregnant Populations from Different Geographic Regions: A Systematic Review. J. Clin. Med. 2022, 11, 4638. [Google Scholar] [CrossRef]
- Doustan, M.; Seifourian, M.; Zarghami, M.; Azmsha, T. Relationship between physical activity of mothers before and during pregnancy with the newborn health and pregnancy outcome. J. Phys. Educ. Sport 2012, 12, 222. [Google Scholar]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. the PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. Physical Activity and Exercise During Pregnancy and the Postpartum Period: ACOG Committee Opinion Summary, Number 804. Obstet. Gynecol. 2020, 135, 991–993. [Google Scholar] [CrossRef] [PubMed]
- Granholm, A.; Alhazzani, W.; Møller, M.H. Use of the GRADE approach in systematic reviews and guidelines. Br. J. Anaesth. 2019, 123, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019; pp. 205–228. [Google Scholar]
- Lin, L.; Chu, H. Quantifying publication bias in meta-analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef]
- Higgins, J. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions, version 5.1. 6; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Atkinson, S.A.; Maran, A.; Dempsey, K.; Perreault, M.; Vanniyasingam, T.; Phillips, S.M.; Hutton, E.K.; Mottola, M.F.; Wahoush, O.; Xie, F.; et al. Be Healthy in Pregnancy (BHIP): A Randomized Controlled Trial of Nutrition and Exercise Intervention from Early Pregnancy to Achieve Recommended Gestational Weight Gain. Nutrients 2022, 14, 810. [Google Scholar] [CrossRef]
- Awad, E.; Mobark, A.; Hamada, H.A.; Yousef, A.M.; El Nahas, E.M. Effect of antenatal exercises on bearing down in primiparous under epidural anesthesia during labor: A randomized controlled trial. Eurasian J. Biosci. 2020, 14, 1079–1085. [Google Scholar]
- Babbar, S.; Hill, J.B.; Williams, K.B.; Pinon, M.; Chauhan, S.P.; Maulik, D. Acute feTal behavioral Response to prenatal Yoga: A single, blinded, randomized controlled trial (TRY yoga). Am. J. Obstet. Gynecol. 2015, 214, 399.e1–399.e8. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Pelaez, M.; Montejo, R.; Luaces, M.; Zakynthinaki, M. Exercise during pregnancy improves maternal health perception: A randomized controlled trial. Am. J. Obstet. Gynecol. 2011, 204, 402.e1–402.e7. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Cordero, Y.; Coteron, J.; Luaces, M.; Montejo, R. Exercise during pregnancy improves maternal glucose screen at 24–28 weeks: A randomised controlled trial. Br. J. Sports Med. 2011, 46, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Pelaez, M.; Lopez, C.; Montejo, R.; Coteron, J. Exercise during pregnancy reduces the rate of cesarean and instrumental deliveries: Results of a randomized controlled trial. J. Matern. Neonatal Med. 2012, 25, 2372–2376. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Pelaez, M.; Lopez, C.; Lucia, A.; Ruiz, J.R. Exercise during pregnancy and gestational diabetes-related adverse effects: A randomised controlled trial. Br. J. Sports Med. 2013, 47, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Pelaez, M.; Montejo, R.; Refoyo, I.; Coteron, J. Exercise Throughout Pregnancy Does not Cause Preterm Delivery: A Randomized, Controlled Trial. J. Phys. Act. Health. 2014, 11, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Perales, M.; Bacchi, M.; Coteron, J.; Refoyo, I. A program of exercise throughout pregnancy. Is it safe to mother and newborn? Am. J. Health Promot. 2014, 29, 2–8. [Google Scholar] [CrossRef]
- Barakat, R.; Pelaez, M.; Cordero, Y.; Perales, M.; Lopez, C.; Coteron, J.; Mottola, M.F. Exercise during pregnancy protects against hypertension and macrosomia: Randomized clinical trial. Am. J. Obstet. Gynecol. 2016, 214, 649.e1–649.e8. [Google Scholar] [CrossRef]
- Barakat, R.; Franco, E.; Perales, M.; López, C.; Mottola, M.F. Exercise during pregnancy is associated with a shorter duration of labor. A randomized clinical trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 224, 33–40. [Google Scholar] [CrossRef]
- Barakat, R.; Vargas, M.; Brik, M.; Fernandez, I.; Gil, J.; Coteron, J.; Santacruz, B. Does Exercise During Pregnancy Affect Placental Weight?: A Randomized Clinical Trial. Eval. Health Prof. 2018, 41, 400–414. [Google Scholar] [CrossRef]
- Brik, M.; Fernández-Buhigas, I.; Martin-Arias, A.; Vargas-Terrones, M.; Barakat, R.; Santacruz, B. Does exercise during pregnancy impact on maternal weight gain and fetal cardiac function? A randomized controlled trial. Ultrasound Obstet. Gynecol. 2019, 53, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.; Petrella, E.; Bertarini, V.; Pedrielli, G.; Neri, I.; Facchinetti, F. Adherence to a lifestyle programme in overweight/obese pregnant women and effect on gestational diabetes mellitus: A randomized controlled trial. Matern. Child Nutr. 2017, 13, e12333. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, M.d.C.; Navas, A.; Artigues, C.; Ortas, S.; Portells, E.; Soler, A.; Bennasar-Veny, M.; Leiva, A.; The Aquanatal Trial. Effect of aerobic water exercise during pregnancy on epidural use and pain: A multi-centre, randomised, controlled trial. Midwifery 2021, 103, 103105. [Google Scholar] [CrossRef]
- Bolanthakodi, C.; Raghunandan, C.; Saili, A.; Mondal, S.; Saxena, P. Prenatal Yoga: Effects on Alleviation of Labor Pain and Birth Outcomes. J. Altern. Complement. Med. 2018, 24, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Cordero, Y.; Mottola, M.F.; Vargas, J.; Blanco, M.; Barakat, R. Exercise Is Associated with a Reduction in Gestational Diabetes Mellitus. Med. Sci. Sports Exerc. 2015, 47, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Daly, N.; Farren, M.; McKeating, A.; O’Kelly, R.; Stapleton, M.; Turner, M.J. A medically supervised pregnancy exercise intervention in obese women: A randomized controlled trial. Obstet. Gynecol. 2017, 130, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.A.R.; Driusso, P.; Aita, D.L.C.C.; Quintana, S.M.; Bø, K.; Ferreira, C.H.J. Effect of pelvic floor muscle training on labour and newborn outcomes: A randomized controlled trial. Braz. J. Phys. Ther. 2011, 15, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Garnaes, K.K.; Nyrnes, S.A.; Salvesen, K.Å.; Salvesen, Ø.; Mørkved, S.; Moholdt, T. Effect of supervised exercise training during pregnancy on neonatal and maternal outcomes among overweight and obese women. Secondary analyses of the ETIP trial: A randomised controlled trial. PLoS ONE 2017, 12, e0173937. [Google Scholar] [CrossRef]
- Ghandali, N.Y.; Iravani, M.; Habibi, A.; Cheraghian, B. The effectiveness of a Pilates exercise program during pregnancy on childbirth outcomes: A randomised controlled clinical trial. BMC Pregnancy Childbirth 2021, 21, 480. [Google Scholar] [CrossRef]
- Ghodsi, Z.; Asltoghiri, M. Effects of aerobic exercise training on maternal and neonatal outcome: A randomized controlled trial on pregnant women in Iran. J. Pak. Med. Assoc. 2014, 64, 1053–1056. [Google Scholar]
- Guelfi, K.J.; Ong, M.J.; Crisp, N.A.; Fournier, P.A.; Wallman, K.E.; Grove, J.R.; Doherty, D.A.; Newnham, J.P. Regular Exercise to Prevent the Recurrence of Gestational Diabetes Mellitus. Obstet. Gynecol. 2016, 128, 819–827. [Google Scholar] [CrossRef]
- Haakstad, L.A.; Bø, K. The marathon of labour—Does regular exercise training influence course of labour and mode of delivery?: Secondary analysis from a randomized controlled trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 251, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Karthiga, K.; Pal, G.K.; Dasari, P.; Nanda, N.; Velkumary, S.; Chinnakali, P.; Renugasundari, M.; Harichandrakumar, K.T. Effects of yoga on cardiometabolic risks and fetomaternal outcomes are associated with serum nitric oxide in gestational hypertension: A randomized control trial. Sci. Rep. 2022, 12, 11732. [Google Scholar] [CrossRef]
- Leon-Larios, F.; Corrales-Gutierrez, I.; Casado-Mejía, R.; Suarez-Serrano, C. Influence of a pelvic floor training programme to prevent perineal trauma: A quasi-randomised controlled trial. Midwifery 2017, 50, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Miquelutti, M.A.; Cecatti, J.G.; Makuch, M.Y. Evaluation of a birth preparation program on lumbopelvic pain, urinary incontinence, anxiety and exercise: A randomized controlled trial. BMC Pregnancy Childbirth 2013, 13, 154. [Google Scholar] [CrossRef] [PubMed]
- Murtezani, A.; Paçarada, M.; Ibraimi, Z.; Nevzati, A.; Abazi, N. The impact of exercise during pregnancy on neonatal outcomes: A randomized controlled trial. J. Sports Med. Phys. Fit. 2014, 54, 802–808. [Google Scholar]
- Navas, A.; Carrascosa, M.d.C.; Artigues, C.; Ortas, S.; Portells, E.; Soler, A.; Yañez, A.M.; Bennasar-Veny, M.; Leiva, A. Effectiveness of Moderate-Intensity Aerobic Water Exercise during Pregnancy on Quality of Life and Postpartum Depression: A Multi-Center, Randomized Controlled Trial. J. Clin. Med. 2021, 10, 2432. [Google Scholar] [CrossRef]
- Pais, M.P.; Pai, M.V.; Kamath, A.; Bhat, R.M.; Bhat, P.; Joisa, G.H.P. A Randomized Controlled Trial on the Efficacy of Integrated Yoga on Pregnancy Outcome. Holist. Nurs. Pract. 2021, 35, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Perales, M.; Refoyo, I.; Coteron, J.; Bacchi, M.; Barakat, R. Exercise during pregnancy attenuates prenatal depression: A randomized controlled trial. Eval. Health Prof. 2014, 38, 59–72. [Google Scholar] [CrossRef]
- Perales, M.; Mateos, S.; Vargas, M.; Sanz, I.; Lucía Mulas, A.; Barakat Carballo, R.O. Fetal and maternal heart rate responses to exercise in pregnant women. A randomized Controlled Trial. Arch. Med. Deporte 2015, 170, 361–367. [Google Scholar]
- Perales, M.; Calabria, I.; Lopez, C.; Franco, E.; Coteron, J.; Barakat, R. Regular Exercise Throughout Pregnancy is Associated with a Shorter First Stage of Labor. Am. J. Health Promot. 2016, 30, 149–157. [Google Scholar] [CrossRef]
- Perales, M.; Santos-Lozano, A.; Sanchis-Gomar, F.; Luaces, M.; Pareja-Galeano, H.; Garatachea, N.; Barakat, R.; Lucia, A. Maternal Cardiac Adaptations to a Physical Exercise Program during Pregnancy. Med. Sci. Sports Exerc. 2016, 48, 896–906. [Google Scholar] [CrossRef]
- Perales, M.; Valenzuela, P.L.; Barakat, R.; Cordero, Y.; Peláez, M.; López, C.; Ruilope, L.M.; Santos-Lozano, A.; Lucia, A. Gestational Exercise and Maternal and Child Health: Effects until Delivery and at Post-Natal Follow-up. J. Clin. Med. 2020, 9, 379. [Google Scholar] [CrossRef] [PubMed]
- Pinzón, D.C.; Zamora, K.; Martínez, J.H.; Floréz-López, M.E.; De Plata, A.C.A.; Mosquera, M.; Ramírez-Vélez, R. Type of delivery and gestational age is not affected by pregnant Latin-American women engaging in vigorous exercise: A secondary analysis of data from a controlled randomized trial. Rev. Salud Pública 2012, 14, 731–743. [Google Scholar] [PubMed]
- Price, B.B.; Amini, S.B.; Kappeler, K. Exercise in pregnancy: Effect on fitness and obstetric outcomes—A randomized trial. Med. Sci. Sports Exerc. 2012, 44, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Perales, M.; Pelaez, M.; Lopez, C.; Lucia, A.; Barakat, R. Supervised exercise-based intervention to prevent excessive gestational weight gain: A randomized controlled trial. Mayo Clin. Proc. 2013, 88, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Sagedal, L.R.; Øverby, N.C.; Bere, E.; Torstveit, M.K.; Lohne-Seiler, H.; Småstuen, M.; Hillesund, E.R.; Henriksen, T.; Vistad, I. Lifestyle intervention to limit gestational weight gain: The Norwegian Fit for Delivery randomised controlled trial. BJOG Int. J. Obstet. Gynaecol. 2016, 124, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Sanda, B.; Vistad, I.; Sagedal, L.R.; Haakstad, L.A.; Lohne-Seiler, H.; Torstveit, M.K. What is the effect of physical activity on duration and mode of delivery? Secondary analysis from the Norwegian Fit for Delivery trial. Acta Obstet. Gynecol. Scand. 2018, 97, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.N.; Jiang, Y.; Derraik, J.G.; McCowan, L.M.; Parry, G.K.; Biggs, J.B.; Craigie, S.; Gusso, S.; Peres, G.; Rodrigues, R.O.; et al. Effects of antenatal exercise in overweight and obese pregnant women on maternal and perinatal outcomes: A randomised controlled trial. BJOG Int. J. Obstet. Gynaecol. 2015, 123, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Sobhgol, S.S.; Smith, C.A.; Thomson, R.; Dahlen, H.G. The effect of antenatal pelvic floor muscle exercise on sexual function and labour and birth outcomes: A randomised controlled trial. Women Birth 2022, 35, e607–e614. [Google Scholar] [CrossRef]
- Stafne, S.N.; Salvesen, K.Å.; Romundstad, P.R.; Stuge, B.; Mørkved, S.I. Does regular exercise during pregnancy influence lumbopelvic pain? A randomized controlled trial. Acta Obstet. Gynecol. Scand. 2012, 91, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Uria-Minguito, A.; Silva-José, C.; Sánchez-Polán, M.; Díaz-Blanco, Á.; García-Benasach, F.; Martínez, V.C.; Alzola, I.; Barakat, R. The Effect of Online Supervised Exercise throughout Pregnancy on the Prevention of Gestational Diabetes in Healthy Pregnant Women during COVID-19 Pandemic: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 14104. [Google Scholar] [CrossRef] [PubMed]
- Ussher, M.; Lewis, S.; Aveyard, P.; Manyonda, I.; West, R.; Lewis, B.; Marcus, B.; Riaz, M.; Taylor, A.H.; Barton, P.; et al. The London Exercise and Pregnant smokers (LEAP) trial: A randomised controlled trial of physical activity for smoking cessation in pregnancy with an economic evaluation. Health Technol. Assess. 2015, 19, 1–136. [Google Scholar] [CrossRef] [PubMed]
- Vesco, K.K.; Karanja, N.; King, J.C.; Gillman, M.W.; Leo, M.C.; Perrin, N.; McEvoy, C.T.; Eckhardt, C.L.; Smith, K.S.; Stevens, V.J. Efficacy of a group-based dietary intervention for limiting gestational weight gain among obese women: A randomized trial. Obesity 2014, 22, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Vinter, C.A.; Jensen, D.M.; Ovesen, P.; Beck-Nielsen, H.; Jørgensen, J.S. The LiP (Lifestyle in Pregnancy) study: A randomized controlled trial of lifestyle intervention in 360 obese pregnant women. Diabetes Care 2011, 34, 2502–2507. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wei, Y.; Zhang, X.; Zhang, Y.; Xu, Q.; Sun, Y.; Su, S.; Zhang, L.; Liu, C.; Feng, Y.; et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am. J. Obstet. Gynecol. 2017, 216, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Yekefallah, L.; Namdar, P.; Dehghankar, L.; Golestaneh, F.; Taheri, S.; Mohammadkhaniha, F. The effect of yoga on the delivery and neonatal outcomes in nulliparous pregnant women in Iran: A clinical trial study. BMC Pregnancy Childbirth 2021, 21, 351. [Google Scholar] [CrossRef] [PubMed]
- Mericq, V.; Martinez-Aguayo, A.; Uauy, R.; Iñiguez, G.; Van der Steen, M.; Hokken-Koelega, A. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 2016, 13, 50–62. [Google Scholar] [CrossRef]
- Monasta, L.; Batty, G.D.; Cattaneo, A.; Lutje, V.; Ronfani, L.; Van Lenthe, F.J.; Brug, J. Early-life determinants of overweight and obesity: A review of systematic reviews. Obes. Rev. 2010, 11, 695–708. [Google Scholar] [CrossRef]
- Mottola, M.F.; Davenport, M.H.; Ruchat, S.-M.; Davies, G.A.; Poitras, V.J.; Gray, C.E.; Garcia, A.J.; Barrowman, N.; Adamo, K.B.; Duggan, M.; et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br. J. Sports Med. 2018, 52, 1339–1346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Jose, C.; May, L.; Sánchez-Polán, M.; Zhang, D.; Barrera-Garcimartín, A.; Refoyo, I.; Barakat, R. Influence of Physical Activity during Pregnancy on Neonatal Complications: Systematic Review and Meta-Analysis. J. Pers. Med. 2024, 14, 6. https://doi.org/10.3390/jpm14010006
Silva-Jose C, May L, Sánchez-Polán M, Zhang D, Barrera-Garcimartín A, Refoyo I, Barakat R. Influence of Physical Activity during Pregnancy on Neonatal Complications: Systematic Review and Meta-Analysis. Journal of Personalized Medicine. 2024; 14(1):6. https://doi.org/10.3390/jpm14010006
Chicago/Turabian StyleSilva-Jose, Cristina, Linda May, Miguel Sánchez-Polán, Dingfeng Zhang, Alejandro Barrera-Garcimartín, Ignacio Refoyo, and Rubén Barakat. 2024. "Influence of Physical Activity during Pregnancy on Neonatal Complications: Systematic Review and Meta-Analysis" Journal of Personalized Medicine 14, no. 1: 6. https://doi.org/10.3390/jpm14010006
APA StyleSilva-Jose, C., May, L., Sánchez-Polán, M., Zhang, D., Barrera-Garcimartín, A., Refoyo, I., & Barakat, R. (2024). Influence of Physical Activity during Pregnancy on Neonatal Complications: Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 14(1), 6. https://doi.org/10.3390/jpm14010006