AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests
Abstract
:1. Introduction
2. Wearable Sensors for Personalized Health Monitoring
2.1. Biosensor Technologies for Continuous Physiological Monitoring
2.2. AI for Sensor and Biosensor Data Processing and Health Analysis
2.3. Sensor Fusion and Multivariate Analytics
2.4. Case Examples of AI-Enabled Wearable Health Monitoring
3. Intelligent Point-of-Care Diagnostics
3.1. Point-of-Care Testing Technologies and Concepts
3.2. AI for Automated Sample Analysis and Diagnostics
3.3. Case Examples of AI-Empowered Point-of-Care Diagnostics
4. Opportunities and Challenges for AI in Personalized Medicine
4.1. Benefits of AI-Reinforced Wearable Sensors and Point-of-Care Testing
4.2. Limitations of Artificial Intelligence in Point-of-Care Testing (POCT) Systems
4.2.1. Validation and Regulatory Considerations for AI Diagnostics
4.2.2. Adoption and Implementation Challenges
4.2.3. Ethical Implications of AI in Personalized Medicine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, H.; Graber, M.L.; Hofer, T.P. Measures to Improve Diagnostic Safety in Clinical Practice. J. Patient Saf. 2019, 15, 311. [Google Scholar] [CrossRef] [PubMed]
- Bhaiyya, M.; Panigrahi, D.; Rewatkar, P.; Haick, H. Role of Machine Learning Assisted Biosensors in Point-of-Care-Testing For Clinical Decisions. ACS Sens. 2024, 9, 4495–4519. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, S.; Kanwal, T.; Ahmad, N.; Fatima, B.; Najam-ul-Haq, M.; Hussain, D. Advances and Challenges in Portable Optical Biosensors for Onsite Detection and Point-of-Care Diagnostics. TrAC Trends Anal. Chem. 2024, 173, 117640. [Google Scholar] [CrossRef]
- Greco, F.; Bandodkar, A.J.; Menciassi, A. Emerging Technologies in Wearable Sensors. APL Bioeng. 2023, 7, 020401. [Google Scholar] [CrossRef] [PubMed]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable Sensors for Telehealth Based on Emerging Materials and Nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Chenani, H.; Saeidi, M.; Rastkhiz, M.A.; Bolghanabadi, N.; Aghaii, A.H.; Orouji, M.; Hatamie, A.; Simchi, A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal. Chem. 2024, 96, 8160–8183. [Google Scholar] [CrossRef]
- Wang, C.; He, T.; Zhou, H.; Zhang, Z.; Lee, C. Artificial Intelligence Enhanced Sensors—Enabling Technologies to next-Generation Healthcare and Biomedical Platform. Bioelectron. Med. 2023, 9, 17. [Google Scholar] [CrossRef]
- Haick, H.; Tang, N. Artificial Intelligence in Medical Sensors for Clinical Decisions. ACS Nano 2021, 15, 3557–3567. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial Intelligence Biosensors: Challenges and Prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef]
- Chen, M.; Cui, D.; Haick, H.; Tang, N. Artificial Intelligence-Based Medical Sensors for Healthcare System. Adv. Sens. Res. 2024, 3, 2300009. [Google Scholar] [CrossRef]
- Sinha, K.; Uddin, Z.; Kawsar, H.I.; Islam, S.; Deen, M.J.; Howlader, M.M.R. Analyzing Chronic Disease Biomarkers Using Electrochemical Sensors and Artificial Neural Networks. TrAC Trends Anal. Chem. 2023, 158, 116861. [Google Scholar] [CrossRef]
- Kalasin, S.; Surareungchai, W. Challenges of Emerging Wearable Sensors for Remote Monitoring toward Telemedicine Healthcare. Anal. Chem. 2023, 95, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.I.; Khan, M.; Khan, R. Artificial Intelligence in Point-of-Care Testing. Ann. Lab. Med. 2023, 43, 401–407. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.S.; Woo, H.; Yoo, Y.K.; Lee, D.; Chung, S.; Yoon, D.S.; Lee, K.-B.; Lee, J.H. Rapid Deep Learning-Assisted Predictive Diagnostics for Point-of-Care Testing. Nat. Commun. 2024, 15, 1695. [Google Scholar] [CrossRef]
- World Health Organization. Regulatory Considerations on Artificial Intelligence for Health; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Zheng, Y.; Tang, N.; Omar, R.; Hu, Z.; Duong, T.; Wang, J.; Wu, W.; Haick, H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Adv. Funct. Mater. 2021, 31, 2105482. [Google Scholar] [CrossRef]
- Seng, K.P.; Ang, L.-M.; Peter, E.; Mmonyi, A. Machine Learning and AI Technologies for Smart Wearables. Electronics 2023, 12, 1509. [Google Scholar] [CrossRef]
- Cusack, N.M.; Venkatraman, P.D.; Raza, U.; Faisal, A. Review—Smart Wearable Sensors for Health and Lifestyle Monitoring: Commercial and Emerging Solutions. ECS Sens. Plus 2024, 3, 017001. [Google Scholar] [CrossRef]
- Haghayegh, F.; Norouziazad, A.; Haghani, E.; Feygin, A.A.; Rahimi, R.H.; Ghavamabadi, H.A.; Sadighbayan, D.; Madhoun, F.; Papagelis, M.; Felfeli, T.; et al. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. Adv. Sci. 2024, 11, 2400595. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable Artificial Intelligence Biosensor Networks. Biosens. Bioelectron. 2023, 219, 114825. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Aziz, S.; Abd-alrazaq, A.; Farooq, F.; Househ, M.; Sheikh, J. The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review. J. Med. Internet Res. 2023, 25, e40259. [Google Scholar] [CrossRef] [PubMed]
- Junaid, S.B.; Imam, A.A.; Abdulkarim, M.; Surakat, Y.A.; Balogun, A.O.; Kumar, G.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; Mohammed, A.; et al. Recent Advances in Artificial Intelligence and Wearable Sensors in Healthcare Delivery. Appl. Sci. 2022, 12, 10271. [Google Scholar] [CrossRef]
- Marvasti, T.B.; Gao, Y.; Murray, K.R.; Hershman, S.; McIntosh, C.; Moayedi, Y. Unlocking Tomorrow’s Health Care: Expanding the Clinical Scope of Wearables by Applying Artificial Intelligence. Can. J. Cardiol. 2024, 40, 1934–1945. [Google Scholar] [CrossRef] [PubMed]
- Prakashan, D.; P R, R.; Gandhi, S. A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics 2023, 13, 916. [Google Scholar] [CrossRef]
- Cernat, A.; Groza, A.; Tertis, M.; Feier, B.; Hosu-Stancioiu, O.; Cristea, C. Where Artificial Intelligence Stands in the Development of Electrochemical Sensors for Healthcare Applications-A Review. TrAC Trends Anal. Chem. 2024, 181, 117999. [Google Scholar] [CrossRef]
- Liu, D. Biosensors. In Handbook of Molecular Biotechnology; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Lahcen, A.A.; Amine, A. Chapter 3—Biorecognition Elements. In Wearable Physical, Chemical and Biological Sensors; Morales-Narvaez, E., Dincer, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 41–70. [Google Scholar] [CrossRef]
- Mirlou, F.; Beker, L. Wearable Electrochemical Sensors for Healthcare Monitoring: A Review of Current Developments and Future Prospects. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2023, 9, 364–373. [Google Scholar] [CrossRef]
- Wu, C. Non-Invasive Wearable Sweat and Tear-Based Biosensors for Continuous Health Monitoring. Highlights Sci. Eng. Technol. 2023, 55, 205–210. [Google Scholar] [CrossRef]
- Xue, Z.; Wu, L.; Yuan, J.; Xu, G.; Wu, Y. Self-Powered Biosensors for Monitoring Human Physiological Changes. Biosensors 2023, 13, 236. [Google Scholar] [CrossRef]
- Flynn, C.D.; Chang, D.; Mahmud, A.; Yousefi, H.; Das, J.; Riordan, K.T.; Sargent, E.H.; Kelley, S.O. Biomolecular Sensors for Advanced Physiological Monitoring. Nat. Rev. Bioeng. 2023, 1, 560–575. [Google Scholar] [CrossRef]
- Jessy Mercy, D.; Girigoswami, K.; Girigoswami, A. A Mini Review on Biosensor Advancements-Emphasis on Quantum Dots. Results Chem. 2024, 7, 101271. [Google Scholar] [CrossRef]
- Kumar, J.V.; Shylashree, N.; Srinivas, S.; Khosla, A.; Manjunatha, C. Review on Biosensors: Fundamentals, Classifications, Characteristics, Simulations, and Potential Applications. ECS Trans. 2022, 107, 13005. [Google Scholar] [CrossRef]
- Akki, A.J.; Jain, P.; Kulkarni, R.; Badkillaya, R.R.; Kulkarni, R.V.; Zameer, F.; Anjanapura, V.R.; Aminabhavi, T.M. Microbial Biotechnology Alchemy: Transforming Bacterial Cellulose into Sensing Disease—A Review. Sens. Int. 2024, 5, 100277. [Google Scholar] [CrossRef]
- Kim, E.R.; Joe, C.; Mitchell, R.J.; Gu, M.B. Biosensors for Healthcare: Current and Future Perspectives. Trends Biotechnol. 2023, 41, 374–395. [Google Scholar] [CrossRef] [PubMed]
- Rauf, S.; Lahcen, A.A.; Aljedaibi, A.; Beduk, T.; Ilton de Oliveira Filho, J.; Salama, K.N. Gold Nanostructured Laser-Scribed Graphene: A New Electrochemical Biosensing Platform for Potential Point-of-Care Testing of Disease Biomarkers. Biosens. Bioelectron. 2021, 180, 113116. [Google Scholar] [CrossRef]
- Bhatia, D.; Paul, S.; Acharjee, T.; Ramachairy, S.S. Biosensors and Their Widespread Impact on Human Health. Sens. Int. 2024, 5, 100257. [Google Scholar] [CrossRef]
- Beduk, D.; Beduk, T.; Lahcen, A.A.; Mani, V.; Celik, E.G.; Iskenderoglu, G.; Demirci, F.; Turhan, S.; Ozdogan, O.; Ozgur, S.; et al. Multiplexed Aptasensor for Detection of Acute Myocardial Infraction (AMI) Biomarkers. Sens. Diagn. 2024, 3, 1020–1027. [Google Scholar] [CrossRef]
- Smith, A.A.; Li, R.; Tse, Z.T.H. Reshaping Healthcare with Wearable Biosensors. Sci. Rep. 2023, 13, 4998. [Google Scholar] [CrossRef]
- Sharma, A.; Badea, M.; Tiwari, S.; Marty, J.L. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021, 26, 748. [Google Scholar] [CrossRef]
- Mustafa, S.K.; Khan, M.F.; Sagheer, M.; Kumar, D.; Pandey, S. Advancements in Biosensors for Cancer Detection: Revolutionizing Diagnostics. Med. Oncol. 2024, 41, 73. [Google Scholar] [CrossRef]
- Ghorbanizamani, F.; Moulahoum, H.; Guler Celik, E.; Timur, S. Material Design in Implantable Biosensors toward Future Personalized Diagnostics and Treatments. Appl. Sci. 2023, 13, 4630. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Zhu, M.; Kuang, Z.; Li, X.; Xu, F.; Miao, S.; Zhang, Z.; Lou, X.; Li, H.; et al. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem. Rev. 2023, 123, 7953–8039. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, R.; Irfan, M.; Ali, H.; Khan, A.; Nittala, A.S.; Ali, S.; Shah, A.; Gondal, T.M.; Sadak, F.; Shah, Z.; et al. Artificial Intelligence and Biosensors in Healthcare and Its Clinical Relevance: A Review. IEEE Access 2023, 11, 61600–61620. [Google Scholar] [CrossRef]
- Hayat, Y.; Tariq, M.; Hussain, A.; Tariq, A.; Rasool, S. A Review of Biosensors and Artificial Intelligence in Healthcare and Their Clinical Significance. Int. Res. J. Econ. Manag. Stud. IRJEMS 2024, 3, 230–247. [Google Scholar]
- Haque, B.; Siddiqui, E.A.; Jha, S.K. Considering the Clinical Significance of Artificial Intelligence and Biosensors in the Healthcare Sector: A Review. In Proceedings of the 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 24–25 February 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Mehrish, A.; Majumder, N.; Bharadwaj, R.; Mihalcea, R.; Poria, S. A Review of Deep Learning Techniques for Speech Processing. Inf. Fusion 2023, 99, 101869. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofijur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Ghaffar Nia, N.; Kaplanoglu, E.; Nasab, A. Evaluation of Artificial Intelligence Techniques in Disease Diagnosis and Prediction. Discov. Artif. Intell. 2023, 3, 5. [Google Scholar] [CrossRef]
- Sharma, A.; Arora, S.; Kumar, S.; Bansal, A. Ai ML Enabled Wearable Smart Sensors Detecting Psychological Disorders. In Proceedings of the 2023 13th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 19–20 January 2023; pp. 651–656. [Google Scholar] [CrossRef]
- Jin, X.; Cai, A.; Xu, T.; Zhang, X. Artificial Intelligence Biosensors for Continuous Glucose Monitoring. Interdiscip. Mater. 2023, 2, 290–307. [Google Scholar] [CrossRef]
- Wasilewski, T.; Kamysz, W.; Gębicki, J. AI-Assisted Detection of Biomarkers by Sensors and Biosensors for Early Diagnosis and Monitoring. Biosensors 2024, 14, 356. [Google Scholar] [CrossRef]
- Shaheen, M.Y. Applications of Artificial Intelligence (AI) in Healthcare: A Review. Sci. Prepr. 2021. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.I.; Faleiros, M.C.; Ferreira, D.C.; Mani, V.; Salama, K.N. Empowering Electrochemical Biosensors with AI: Overcoming Interference for Precise Dopamine Detection in Complex Samples. Adv. Intell. Syst. 2023, 5, 2300227. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.; Jeong, I.G.; Song, S.H.; Jeong, Y.; Kim, C.-S.; Lee, K.H. Noninvasive Precision Screening of Prostate Cancer by Urinary Multimarker Sensor and Artificial Intelligence Analysis. ACS Nano 2021, 15, 4054–4065. [Google Scholar] [CrossRef] [PubMed]
- Saberi, Z.; Rezaei, B.; Rezaei, P.; Ensafi, A.A. Design a Fluorometric Aptasensor Based on CoOOH Nanosheets and Carbon Dots for Simultaneous Detection of Lysozyme and Adenosine Triphosphate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 233, 118197. [Google Scholar] [CrossRef]
- Kühner, L.; Semenyshyn, R.; Hentschel, M.; Neubrech, F.; Tarín, C.; Giessen, H. Vibrational Sensing Using Infrared Nanoantennas: Toward the Noninvasive Quantitation of Physiological Levels of Glucose and Fructose. ACS Sens. 2019, 4, 1973–1979. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, Z.; Leng, K.; Han, W.; Niu, H.; Yu, Y.; Ling, Q.; Liu, J.; Wu, Z.; Zang, J. Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms. ACS Sens. 2020, 5, 1305–1313. [Google Scholar] [CrossRef]
- Mody, V.; Mody, V. Mental Health Monitoring System Using Artificial Intelligence: A Review. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.-C.; Jeste, D.V. Artificial Intelligence for Mental Health and Mental Illnesses: An Overview. Curr. Psychiatry Rep. 2019, 21, 116. [Google Scholar] [CrossRef]
- Hickey, B.A.; Chalmers, T.; Newton, P.; Lin, C.-T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Smart Devices and Wearable Technologies to Detect and Monitor Mental Health Conditions and Stress: A Systematic Review. Sensors 2021, 21, 3461. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Hu, Y.; Liu, H.; Chen, J.; Gadekallu, T.R.; Garg, L.; Guizani, M.; Hu, X. Integration of Artificial Intelligence and Wearable Internet of Things for Mental Health Detection. Int. J. Cogn. Comput. Eng. 2024, 5, 307–315. [Google Scholar] [CrossRef]
- Duro, N. Sensor Data Fusion Analysis for Broad Applications. Sensors 2024, 24, 3725. [Google Scholar] [CrossRef]
- Naqvi, R.A.; Arsalan, M.; Qaiser, T.; Khan, T.M.; Razzak, I. Sensor Data Fusion Based on Deep Learning for Computer Vision Applications and Medical Applications. Sensors 2022, 22, 8058. [Google Scholar] [CrossRef] [PubMed]
- Phatak, A.A.; Wieland, F.-G.; Vempala, K.; Volkmar, F.; Memmert, D. Artificial Intelligence Based Body Sensor Network Framework—Narrative Review: Proposing an End-to-End Framework Using Wearable Sensors, Real-Time Location Systems and Artificial Intelligence/Machine Learning Algorithms for Data Collection, Data Mining and Knowledge Discovery in Sports and Healthcare. Sports Med.-Open 2021, 7, 79. [Google Scholar] [CrossRef]
- Li, C.-H.; Jha, N.K. DOCTOR: A Multi-Disease Detection Continual Learning Framework Based on Wearable Medical Sensors. ACM Trans. Embed. Comput. Syst. 2024, 23, 1–33. [Google Scholar] [CrossRef]
- Gedam, S.; Paul, S. Machine-Learning-Enabled Stress Detection in Indian Housewives Using Wearable Physiological Sensors. In AI-Driven IoT Systems for Industry 4.0; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Sharma, D.; Chauhan, U. Human Activity Prediction Studies Using Wearable Sensors and Machine Learning. J. Comput. Sci. 2024, 20, 431–441. [Google Scholar] [CrossRef]
- Wei, S.; Wu, Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors 2023, 23, 7667. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Ji, J.; Zhu, Y.; Dell, T.; Liu, X. Flexible Gel-Free Multi-Modal Wireless Sensors With Edge Deep Learning for Detecting and Alerting Freezing of Gait Symptom. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 1010–1021. [Google Scholar] [CrossRef]
- Babu, A.; Ranpariya, S.; Sinha, D.K.; Mandal, D. Deep Learning Enabled Perceptive Wearable Sensor: An Interactive Gadget for Tracking Movement Disorder. Adv. Mater. Technol. 2023, 8, 2300046. [Google Scholar] [CrossRef]
- Dhiravidachelvi, E.; Kumar, M.S.; Anand, L.D.V.; Pritima, D.; Kadry, S.; Kang, B.-G.; Nam, Y. Intelligent Deep Learning Enabled Human Activity Recognition for Improved Medical Services. Comput. Syst. Sci. Eng. 2022, 44, 961–977. [Google Scholar] [CrossRef]
- Bakri, M.H.; Özarslan, A.C.; Erarslan, A.; Basaran Elalmis, Y.; Ciftci, F. Biomedical Applications of Wearable Biosensors. Next Mater. 2024, 3, 100084. [Google Scholar] [CrossRef]
- Wu, G.; Zeng, D.; Chen, R.; Zhao, D.M.; Ge, D.; Chen, X. Using Deep Learning Technology for Healthcare Applications in Internet of Things Sensor Monitoring System. J. Mech. Med. Biol. 2023, 23, 2340013. [Google Scholar] [CrossRef]
- Subramani, P.; Al-Turjman, F.; Kumar, R.; Kannan, A.; Loganthan, A. Improving Medical Communication Process Using Recurrent Networks and Wearable Antenna S11 Variation with Harmonic Suppressions. Pers. Ubiquitous Comput. 2023, 27, 1271–1283. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Hassan, M.M.; Alsanad, A.; Savaglio, C. A Body Sensor Data Fusion and Deep Recurrent Neural Network-Based Behavior Recognition Approach for Robust Healthcare. Inf. Fusion 2020, 55, 105–115. [Google Scholar] [CrossRef]
- Jain, D.K.; Srinivas, K.; Srinivasu, S.V.N.; Manikandan, R. Machine Learning-Based Monitoring System With IoT Using Wearable Sensors and Pre-Convoluted Fast Recurrent Neural Networks (P-FRNN). IEEE Sens. J. 2021, 21, 25517–25524. [Google Scholar] [CrossRef]
- Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online Fall Detection Using Recurrent Neural Networks on Smart Wearable Devices. IEEE Trans. Emerg. Top. Comput. 2021, 9, 1276–1289. [Google Scholar] [CrossRef]
- Hussain Ali, Y.; Sabu Chooralil, V.; Balasubramanian, K.; Manyam, R.R.; Kidambi Raju, S.; Sadiq, A.T.; Farhan, A.K. Optimization System Based on Convolutional Neural Network and Internet of Medical Things for Early Diagnosis of Lung Cancer. Bioengineering 2023, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Park, S.; Kim, D.; Kim, E.; Kim, J.; Kim, W.; An, Y.; Xiong, S. A Practical Wearable Fall Detection System Based on Tiny Convolutional Neural Networks. Biomed. Signal Process. Control 2023, 86, 105325. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Ji, S.; Gao, C.; Fu, J. Estimation of Muscle Forces of Lower Limbs Based on CNN–LSTM Neural Network and Wearable Sensor System. Sensors 2024, 24, 1032. [Google Scholar] [CrossRef]
- LeBaron, V.; Boukhechba, M.; Edwards, J.; Flickinger, T.; Ling, D.; Barnes, L.E. Exploring the Use of Wearable Sensors and Natural Language Processing Technology to Improve Patient-Clinician Communication: Protocol for a Feasibility Study. JMIR Res. Protoc. 2022, 11, e37975. [Google Scholar] [CrossRef]
- Thwala, L.N.; Ndlovu, S.C.; Mpofu, K.T.; Lugongolo, M.Y.; Mthunzi-Kufa, P. Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. Nanomaterials 2023, 13, 1247. [Google Scholar] [CrossRef]
- Plebani, M.; Nichols, J.H.; Luppa, P.B.; Greene, D.; Sciacovelli, L.; Shaw, J.; Khan, A.I.; Carraro, P.; Freckmann, G.; Dimech, W.; et al. Point-of-Care Testing: State-of-the Art and Perspectives. Clin. Chem. Lab. Med. CCLM 2024. [Google Scholar] [CrossRef]
- Beduk, D.; Beduk, T.; de Oliveira Filho, J.I.; Ait Lahcen, A.; Aldemir, E.; Guler Celik, E.; Salama, K.N.; Timur, S. Smart Multiplex Point-of-Care Platform for Simultaneous Drug Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 37247–37258. [Google Scholar] [CrossRef] [PubMed]
- Burrow, D.T.; Heggestad, J.T.; Kinnamon, D.S.; Chilkoti, A. Engineering Innovative Interfaces for Point-of-Care Diagnostics. Curr. Opin. Colloid Interface Sci. 2023, 66, 101718. [Google Scholar] [CrossRef]
- Hou, Y.; Lv, C.-C.; Guo, Y.-L.; Ma, X.-H.; Liu, W.; Jin, Y.; Li, B.-X.; Yang, M.; Yao, S.-Y. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. J. Anal. Test. 2022, 6, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Quesada-González, D.; Merkoçi, A. Nanomaterial-Based Devices for Point-of-Care Diagnostic Applications. Chem. Soc. Rev. 2018, 47, 4697–4709. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, D.; Zhu, G.; Zhang, R.; Wang, B.; Chang, Z.; Dai, J.; Wu, W.; Rotenberg, M.Y.; Fang, Y. Automated and Ultrasensitive Point-of-Care Glycoprotein Detection Using Boronate-Affinity Enhanced Organic Electrochemical Transistor Patch. Biosens. Bioelectron. 2024, 255, 116229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cui, A.; Xiang, D.; Luan, Y.; Wang, Q.; Huang, J.; Liu, J.; Yang, X.; Wang, K. Point-of-Care Testing of Four Chronic Disease Biomarkers in Blood Based on a Low Cost and Low System Complexity Microfluidic Chip with Integrated Oxygen-Sensitive Membrane. Sens. Actuators B Chem. 2024, 398, 134734. [Google Scholar] [CrossRef]
- Mahshid, S. (Invited) Translational Applications of Nanostructured Biosensors: Diagnostics at the Point of Care. ECS Meet. Abstr. 2023; MA2023-01, 2638. [Google Scholar] [CrossRef]
- Chen, S.; Bashir, R. Advances in Field-Effect Biosensors towards Point-of-Use. Nanotechnology 2023, 34, 492002. [Google Scholar] [CrossRef]
- D’Alton, L.; Souto, D.E.P.; Punyadeera, C.; Abbey, B.; Voelcker, N.H.; Hogan, C.; Silva, S.M. A Holistic Pathway to Biosensor Translation. Sens. Diagn. 2024, 3, 1234–1246. [Google Scholar] [CrossRef]
- Bifarin, O.O.; Fernández, F.M. Automated Machine Learning and Explainable AI (AutoML-XAI) for Metabolomics: Improving Cancer Diagnostics. J. Am. Soc. Mass Spectrom. 2024, 35, 1089–1100. [Google Scholar] [CrossRef]
- Logeshwaran, J.; Thiyagarajan, N.; Mahto, M.K.; Garg, A. Clinical Resource Management with AI/ML-Driven Automated Diagnostics in Smart Healthcare. In Proceedings of the 5th International Conference on Information Management & Machine Intelligence, Jaipur, India, 23–25 November 2023; ICIMMI’23. Association for Computing Machinery: New York, NY, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Bhuiyan, N.H.; Hong, J.H.; Uddin, M.J.; Shim, J.S. Artificial Intelligence-Controlled Microfluidic Device for Fluid Automation and Bubble Removal of Immunoassay Operated by a Smartphone. Anal. Chem. 2022, 94, 3872–3880. [Google Scholar] [CrossRef]
- Hernandez Torres, S.I.; Ruiz, A.; Holland, L.; Ortiz, R.; Snider, E.J. Evaluation of Deep Learning Model Architectures for Point-of-Care Ultrasound Diagnostics. Bioengineering 2024, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.; Antonacci, A.; Giardi, M.T.; Frisulli, V.; Tambaro, F.P.; Scognamiglio, V. Last Trends in Point-of-Care (POC) Diagnostics for the Management of Hematological Indices in Home Care Patients. Biosensors 2023, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Macruz, F.; Wu, D.; Bridge, C.; McKinney, S.; Saud, A.A.A.; Sharaf, E.; Sesic, I.; Pely, A.; Danset, P.; et al. Point-of-Care AI-Assisted Stepwise Ultrasound Pneumothorax Diagnosis. Phys. Med. Biol. 2023, 68, 205013. [Google Scholar] [CrossRef] [PubMed]
- Vallath, A.L.; Sivasubramanian, B.P.; Chatterjee, A.; Erva, S.; Ravikumar, D.B.; Dasgupta, I.; Vallath, A.L.; Sivasubramanian, B.P.; Chatterjee, A.; Erva, S.; et al. Ventricular Septal Rupture and Artificial Intelligence (AI)-Assisted Healthcare. Cureus 2023, 15, e36581. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, J.; Wu, Q.; Fang, B.; Ji, W.; Li, X.; Yu, C.; Wang, X.; Cheng, X.; Yu, H.-D.; et al. Artificial Intelligence-Assisted Point-of-Care Testing System for Ultrafast and Quantitative Detection of Drug-Resistant Bacteria. SmartMat 2024, 5, e1214. [Google Scholar] [CrossRef]
- Bachtiger, P.; Petri, C.F.; Scott, F.E.; Ri Park, S.; Kelshiker, M.A.; Sahemey, H.K.; Dumea, B.; Alquero, R.; Padam, P.S.; Hatrick, I.R.; et al. Point-of-Care Screening for Heart Failure with Reduced Ejection Fraction Using Artificial Intelligence during ECG-Enabled Stethoscope Examination in London, UK: A Prospective, Observational, Multicentre Study. Lancet Digit. Health 2022, 4, e117–e125. [Google Scholar] [CrossRef]
- Nemati, N.; Burton, T.; Fathieh, F.; Gillins, H.R.; Shadforth, I.; Ramchandani, S.; Bridges, C.R. Pulmonary Hypertension Detection Non-Invasively at Point-of-Care Using a Machine-Learned Algorithm. Diagnostics 2024, 14, 897. [Google Scholar] [CrossRef]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, J.; Wang, C.; Feng, L.; Song, Z.; Zhao, W.; Wang, Q.; Liu, C. The Application of Wearable Glucose Sensors in Point-of-Care Testing. Front. Bioeng. Biotechnol. 2021, 9, 774210. [Google Scholar] [CrossRef]
- Arya, S.S.; Dias, S.B.; Jelinek, H.F.; Hadjileontiadis, L.J.; Pappa, A.-M. The Convergence of Traditional and Digital Biomarkers through AI-Assisted Biosensing: A New Era in Translational Diagnostics? Biosens. Bioelectron. 2023, 235, 115387. [Google Scholar] [CrossRef]
- Kline, A.; Wang, H.; Li, Y.; Dennis, S.; Hutch, M.; Xu, Z.; Wang, F.; Cheng, F.; Luo, Y. Multimodal Machine Learning in Precision Health: A Scoping Review. npj Digit. Med. 2022, 5, 171. [Google Scholar] [CrossRef] [PubMed]
- Yakimenko, Y.; Stirenko, S.; Koroliouk, D.; Gordienko, Y.; Zanzotto, F.M. Implementation of Personalized Medicine by Artificial Intelligence Platform. In Soft Computing for Security Applications; Ranganathan, G., Fernando, X., Piramuthu, S., Eds.; Springer Nature: Singapore, 2023; pp. 597–611. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Shen, W.; Huang, X.; Wu, L. Point-of-Care Testing of Methamphetamine and Cocaine Utilizing Wearable Sensors. Anal. Biochem. 2024, 691, 115526. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Joshi, S. Applications of AI in Healthcare Sector for Enhancement of Medical Decision Making and Quality of Service. In Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 37–41. [Google Scholar] [CrossRef]
- Chaudhary, I.; Anwar, H.; Latif, U.; Latif, A. Role of Artificial Intelligence in Different Aspects of Public Health. UMT Artif. Intell. Rev. 2022, 2. [Google Scholar] [CrossRef]
- Khan, A.R.; Hussain, W.L.; Shum, H.C.; Hassan, S.U. Point-of-Care Testing: A Critical Analysis of the Market and Future Trends. Front. Lab Chip Technol. 2024, 3, 1394752. [Google Scholar] [CrossRef]
- Flynn, C.D.; Chang, D. Artificial Intelligence in Point-of-Care Biosensing: Challenges and Opportunities. Diagnostics 2024, 14, 1100. [Google Scholar] [CrossRef]
- Ortiz, D.A.; Loeffelholz, M.J. Practical Challenges of Point-of-Care Testing. Clin. Lab. Med. 2023, 43, 155–165. [Google Scholar] [CrossRef]
- Basil, N.N.; Ambe, S.; Ekhator, C.; Fonkem, E.; Nduma, B.N.; Ambe, S.; Ekhator, C.; Fonkem, E. Health Records Database and Inherent Security Concerns: A Review of the Literature. Cureus 2022, 14, e30168. [Google Scholar] [CrossRef]
- Kazmierczak, S.C. Point-of-Care Testing Quality: Some Positives but Also Some Negatives. Clin. Chem. 2011, 57, 1219–1220. [Google Scholar] [CrossRef]
- López-Cabrera, J.D.; Orozco-Morales, R.; Portal-Diaz, J.A.; Lovelle-Enríquez, O.; Pérez-Díaz, M. Current Limitations to Identify COVID-19 Using Artificial Intelligence with Chest X-Ray Imaging. Health Technol. 2021, 11, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Poon, A.I.F.; Sung, J.J.Y. Opening the Black Box of AI-Medicine. J. Gastroenterol. Hepatol. 2021, 36, 581–584. [Google Scholar] [CrossRef]
- Richardson, J.P.; Smith, C.; Curtis, S.; Watson, S.; Zhu, X.; Barry, B.; Sharp, R.R. Patient Apprehensions about the Use of Artificial Intelligence in Healthcare. npj Digit. Med. 2021, 4, 140. [Google Scholar] [CrossRef] [PubMed]
- Longoni, C.; Bonezzi, A.; Morewedge, C.K. Resistance to Medical Artificial Intelligence. J. Consum. Res. 2019, 46, 629–650. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Amlaev, K.R.; Dahkilgova, K.T.; Mazharov, V.N. The problems related to implementation of AI into health care system: A review. Probl. Sotsialnoi Gig. Zdr. Istor. Meditsiny 2024, 32, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, L.K.; Khan, F.; Shah, M.; Prasad, B.V.V.S.; Iwendi, C.; Biamba, C. Secure Smart Wearable Computing through Artificial Intelligence-Enabled Internet of Things and Cyber-Physical Systems for Health Monitoring. Sensors 2022, 22, 1076. [Google Scholar] [CrossRef]
- Arrotta, L.; Civitarese, G.; Bettini, C. DeXAR: Deep Explainable Sensor-Based Activity Recognition in Smart-Home Environments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–30. [Google Scholar] [CrossRef]
- Hulsen, T. Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare. AI 2023, 4, 652–666. [Google Scholar] [CrossRef]
- Saraswat, D.; Bhattacharya, P.; Verma, A.; Prasad, V.K.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. Explainable AI for Healthcare 5.0: Opportunities and Challenges. IEEE Access 2022, 10, 84486–84517. [Google Scholar] [CrossRef]
- Chaddad, A.; Peng, J.; Xu, J.; Bouridane, A. Survey of Explainable AI Techniques in Healthcare. Sensors 2023, 23, 634. [Google Scholar] [CrossRef]
- Khodabandehloo, E.; Riboni, D.; Alimohammadi, A. HealthXAI: Collaborative and Explainable AI for Supporting Early Diagnosis of Cognitive Decline. Future Gener. Comput. Syst. 2021, 116, 168–189. [Google Scholar] [CrossRef]
- Babič, J.; Laffranchi, M.; Tessari, F.; Verstraten, T.; Novak, D.; Šarabon, N.; Ugurlu, B.; Peternel, L.; Torricelli, D.; Veneman, J.F. Challenges and Solutions for Application and Wider Adoption of Wearable Robots. Wearable Technol. 2021, 2, e14. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, A.; Putri, L. Advancements in Personalized Medicine through Artificial Intelligence: A Detailed Study of Ethical Considerations and Practical Outcomes. Q. J. Comput. Technol. Healthc. 2024, 9, 11–19. [Google Scholar]
- Ahmed, L.; Constantinidou, A.; Chatzittofis, A. Patients’ Perspectives Related to Ethical Issues and Risks in Precision Medicine: A Systematic Review. Front. Med. 2023, 10, 1215663. [Google Scholar] [CrossRef] [PubMed]
Title | Main Points Discussed in the Published Review | Ref. |
---|---|---|
Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies |
| [20] |
AI and the Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare |
| [21] |
Wearable AI biosensor networks |
| [22] |
The Effectiveness of Wearable Devices Using AI for Blood Glucose Level Forecasting or Prediction: Systematic Review |
| [23] |
Recent Advances in AI and Wearable Sensors in Healthcare Delivery |
| [24] |
Unlocking Tomorrow’s Health Care: Expanding the Clinical Scope of Wearables by Applying AI |
| [25] |
A Systematic Review on the Advanced Techniques of wearable Point-of-Care Devices and Their Futuristic Applications |
| [26] |
Where AI stands in the development of electrochemical sensors for healthcare applications: A review |
| [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yammouri, G.; Ait Lahcen, A. AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests. J. Pers. Med. 2024, 14, 1088. https://doi.org/10.3390/jpm14111088
Yammouri G, Ait Lahcen A. AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests. Journal of Personalized Medicine. 2024; 14(11):1088. https://doi.org/10.3390/jpm14111088
Chicago/Turabian StyleYammouri, Ghita, and Abdellatif Ait Lahcen. 2024. "AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests" Journal of Personalized Medicine 14, no. 11: 1088. https://doi.org/10.3390/jpm14111088
APA StyleYammouri, G., & Ait Lahcen, A. (2024). AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests. Journal of Personalized Medicine, 14(11), 1088. https://doi.org/10.3390/jpm14111088