Precision in Immune Management: Balancing Steroid Exposure, Rejection Risk, and Infectious Outcomes in Adult Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Data
2.2. Cohort Design
2.3. Propensity Score Matching Variables
2.4. Primary Analysis: Viral Infectious Outcomes and Graft Outcomes
2.5. Descriptive Outcomes Analysis
2.6. Statistical Analysis
3. Results
3.1. Propensity Score Matching Results
3.2. Infectious Outcomes
3.3. Graft and Recipient Outcomes
3.4. Descriptive Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNOS. UNOS Data and Transplant Statistics: Organ Donation Data; UNOS: Richmond, VA, USA, 2024; Available online: https://unos.org/data/ (accessed on 2 June 2024).
- Woodle, E.S.; Gill, J.S.; Clark, S.; Stewart, D.; Alloway, R.; First, R. Early Corticosteroid Cessation vs Long-term Corticosteroid Therapy in Kidney Transplant Recipients: Long-term Outcomes of a Randomized Clinical Trial. JAMA Surg. 2021, 156, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Haller, M.C.; Royuela, A.; Nagler, E.V.; Pascual, J.; Webster, A.C. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst. Rev. 2016, 2016, CD005632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papadakis, J.; Brown, C.B.; Cameron, J.S.; Adu, D.; Bewick, M.; Donaghey, R.; Ogg, C.S.; Rudge, C.; Williams, D.G.; Taube, D. High versus “low” dose corticosteroids in recipients of cadaveric kidneys: Prospective controlled trial. Br. Med. J. 1983, 286, 1097–1100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salaman, J.R.; Gomes Da Costa, C.A.; Griffin, P.J. Renal transplantation without steroids. J. Pediatr. 1987, 111 Pt 2, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kriesche, H.U.; Ojo, A.; Hanson, J.; Cibrik, D.; Lake, K.; Agodoa, L.Y.; Leichtman, A.; Kaplan, B. Increased Immunosuppressive Vulnerability in Elderly Renal Transplant Recipients. Transplantation 2000, 69, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Thomusch, O.; Wiesener, M.; Opgenoorth, M.; Pascher, A.; Woitas, R.P.; Witzke, O.; Jaenigen, B.; Rentsch, M.; Wolters, H.; Rath, T.; et al. Rabbit-ATG or basiliximab induction for rapid steroid withdrawal after renal transplantation (Harmony): An open-label, multicentre, randomised controlled trial. Lancet 2016, 388, 3006–3016. [Google Scholar] [CrossRef]
- Stumpf, J.; Thomusch, O.; Opgenoorth, M.; Wiesener, M.; Pascher, A.; Woitas, R.P.; Suwelack, B.; Rentsch, M.; Witzke, O.; Rath, T.; et al. Excellent efficacy and beneficial safety during observational 5-year follow-up of rapid steroid withdrawal after renal transplantation (Harmony FU study). Nephrol. Dial. Transplant. 2023, 39, 141–150. [Google Scholar] [CrossRef]
- TriNetX 2024. Available online: https://trinetx.com/ (accessed on 13 May 2024).
- Palchuk, M.B.; London, J.W.; Perez-Rey, D.; Drebert, Z.J.; Winer-Jones, J.P.; Thompson, C.N.; Esposito, J.; Claerhout, B. A global federated real-world data and analytics platform for research. JAMIA Open 2023, 6, ooad035. [Google Scholar] [CrossRef]
- TriNetX Admin. TriNetX Real-World Evidence Platform Validates Outcomes of Randomized Clinical Trials. TriNetX. 5 February 2019. Available online: https://trinetx.com/press-releases/real-world-evidence-platform-validates-outcomes-of-randomized-clinical-trials/ (accessed on 9 November 2024).
- Stapff, M.P. Using real world data to assess cardiovascular outcomes of two antidiabetic treatment classes. World J. Diabetes 2018, 9, 252–257. [Google Scholar] [CrossRef]
- Rana, A.; Murthy, B.; Pallister, Z.; Kueht, M.; Cotton, R.; Galvan, N.T.N.; Etheridge, W.; Liu, H.; Goss, J.; O’mahony, C. Profiling risk for acute rejection in kidney transplantation: Recipient age is a robust risk factor. J. Nephrol. 2017, 30, 859–868. [Google Scholar] [CrossRef]
- Cippà, P.E.; Schiesser, M.; Ekberg, H.; van Gelder, T.; Mueller, N.J.; Cao, C.A.; Fehr, T.; Bernasconi, C. Risk stratification for rejection and infection after kidney transplantation. Clin. J. Am. Soc. Nephrol. 2015, 10, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Lebranchu, Y.; Baan, C.; Biancone, L.; Legendre, C.; Morales, J.M.; Naesens, M.; Thomusch, O.; Friend, P. Pretransplant identification of acute rejection risk following kidney transplantation. Transpl. Int. 2014, 27, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Oweira, H.; Ramouz, A.; Ghamarnejad, O.; Khajeh, E.; Ali-Hasan-Al-Saegh, S.; Nikbakhsh, R.; Reißfelder, C.; Rahbari, N.; Mehrabi, A.; Sadeghi, M. Risk factors of rejection in renal transplant recipients: A narrative review. J. Clin. Med. 2022, 11, 1392. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.A.; Bloom, R.D. Medical therapies to reduce delayed graft function and improve long-term graft survival: Are we making progress? Clin. J. Am. Soc. Nephrol. 2020, 15, 13–15. [Google Scholar] [CrossRef]
- Haukoos, J.S.; Lewis, R.J. The propensity score. JAMA 2015, 314, 1637. [Google Scholar] [CrossRef]
- Opelz, G.; Döhler, B. Association Between Steroid Dosage and Death with a Functioning Graft After Kidney Transplantation. Am. J. Transplant. 2013, 13, 2096–2105. [Google Scholar] [CrossRef]
- van Sandwijk, M.S.; de Vries, A.P.J.; Bakker, S.J.L.; Ten Berge, I.J.M.; Berger, S.P.; Bouatou, Y.R.; de Fijter, J.W.; Florquin, S.; Homan van der Heide, J.J.; Idu, M.M.; et al. Early Steroid Withdrawal Compared with Standard Immunosuppression in Kidney Transplantation—Interim Analysis of the Amsterdam-Leiden-Groningen Randomized Controlled Trial. Transplant. Direct 2018, 4, e354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rizzari, M.D.; Suszynski, T.M.; Gillingham, K.J.; Dunn, T.B.; Ibrahim, H.N.; Payne, W.D.; Chinnakotla, S.; Finger, E.B.; Sutherland, D.E.; Kandaswamy, R.; et al. Ten-year outcome after rapid discontinuation of prednisone in adult primary kidney transplantation. Clin. J. Am. Soc. Nephrol. 2012, 7, 494–503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Serrano, O.K.; Kandaswamy, R.; Gillingham, K.; Chinnakotla, S.; Dunn, T.B.; Finger, E.; Payne, W.; Ibrahim, H.; Kukla, A.; Spong, R.; et al. Rapid Discontinuation of Prednisone in Kidney Transplant Recipients: 15-Year Outcomes from the University of Minnesota. Transplantation 2017, 101, 2590–2598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kotton, C.N.; Kumar, D.; Caliendo, A.M.; Huprikar, S.; Chou, S.; Danziger-Isakov, L.; Humar, A.; The Transplantation Society International CMV Consensus Group. The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2018, 102, 900–931. [Google Scholar] [CrossRef]
- Knight, S.R.; Morris, P.J. Steroid avoidance or withdrawal after renal transplantation increases the risk of acute rejection but decreases cardiovascular risk. A meta-analysis. Transplantation 2010, 89, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Zamora, J.; Galeano, C.; Royuela, A.; Quereda, C. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst. Rev. 2009, 2009, CD005632. [Google Scholar] [CrossRef] [PubMed]
- Li, M.T.; Ramakrishnan, A.; Yu, M.M.; Daniel, E.; Sandra, V.; Sanichar, N.; King, K.L.; Stevens, J.S.; Husain, S.A.; Mohan, S. Effects of Delayed Graft Function on Transplant Outcomes: A Meta-analysis. Transplant. Direct 2023, 9, e1433. [Google Scholar] [CrossRef] [PubMed]
- Arias-Cabrales, C.E.; Pérez-Sáez, M.J.; Redondo-Pachón, D.; Buxeda, A.; Burballa, C.; Duran, X.; Mir, M.; Crespo, M.; Pascual, J. Relevance of KDPI value and acute rejection on kidney transplant outcomes in recipients with delayed graft function—A retrospective study. Transpl. Int. 2020, 33, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Garonzik Wang, J.M.; Massie, A.B.; Jackson, K.R.; McAdams-DeMarco, M.A.; Brennan, D.C.; Lentine, K.L.; Coresh, J.; Segev, D.L. Early Steroid Withdrawal in Deceased-Donor Kidney Transplant Recipients with Delayed Graft Function. J. Am. Soc. Nephrol. 2020, 31, 175–185. [Google Scholar] [CrossRef]
- Rong, Y.; Mayo, P.; Ensom, M.H.H.; Kiang, T.K.L. Population Pharmacokinetics of Mycophenolic Acid Co-Administered with Tacrolimus in Corticosteroid-Free Adult Kidney Transplant Patients. Clin. Pharmacokinet. 2019, 58, 1483–1495. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, D.; Perico, N.; Gaspari, F.; Gotti, E.; Remuzzi, G. Glucocorticoids Interfere with Mycophenolate Mofetil Bioavailability in Kidney Transplantation. Kidney Int. 2002, 62, 1060–1067. [Google Scholar] [CrossRef]
- Nourbakhsh, N.; Ekberg, J.; Skov, K.; Peters, C.D.; Øzbay, A.; Lindner, P.; Buus, N.H. Effects of Corticosteroid Treatment on Mycophenolic Acid Exposure in Renal Transplant Patients-Results from the SAILOR Study. Front. Pharmacol. 2021, 12, 742444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, J.C.; Malik, M.; Engebretsen, T.L.; Mujtaba, M.; Lea, A.S.; Stevenson, H.L.; Kueht, M.L. Assessing Long-Term Adverse Outcomes in Older Kidney Transplant Recipients: A Propensity Score-Matched Comparison of Early Steroid Withdrawal Versus Continuous Steroid Immunosuppression Using a Large Real-World Database. Drugs Aging 2024, 41, 915–927. [Google Scholar] [CrossRef]
Before Matching Mean ± SD; n (%) | After Matching Mean ± SD; n (%) | |||||||
---|---|---|---|---|---|---|---|---|
ESW n = 2077 | SCI n = 11,415 | p-Value | Std. Diff. | ESW n = 2056 | SCI n = 2056 | p-Value | Std. Diff. | |
Age at index | 50.7 +/− 13.9 | 51.5 +/− 13.5 | 0.02 | 0.06 | 50.7 +/− 13.9 | 51.0 +/− 13.6 | 0.47 | 0.02 |
Black or African American | 413 (20%) | 3117 (27.3%) | <0.01 | 0.17 | 412 (20.0%) | 367 (17.9%) | 0.07 | 0.06 |
Male | 1240 (60.0%) | 6665 (58.5%) | 0.18 | 0.03 | 1234 (60.0%) | 1246 (60.6%) | 0.70 | 0.01 |
Diagnosis | ||||||||
Unspecified nephritic syndrome with focal and segmental glomerular lesions | 44 (2.1%) | 398 (3.5%) | <0.01 | 0.08 | 44 (2.1%) | 37 (1.8%) | 0.43 | 0.03 |
Chronic nephritic syndrome with diffuse mesangial proliferative glomerulonephritis | 79 (3.8%) | 490 (4.3%) | 0.33 | 0.02 | 78 (3.8%) | 71 (3.5%) | 0.56 | 0.02 |
Systemic lupus erythematosus (SLE) | 61 (3.0%) | 501 (4.4%) | <0.01 | 0.08 | 61 (3.0%) | 46 (2.2%) | 0.14 | 0.05 |
Overweight and obesity | 369 (17.9%) | 2454 (21.5%) | <0.01 | 0.09 | 367 (17.9%) | 357 (17.4%) | 0.68 | 0.01 |
Diabetes mellitus | 633 (30.7%) | 4447 (39.0%) | <0.01 | 0.18 | 630 (30.6%) | 644 (31.3%) | 0.64 | 0.02 |
Procedure | ||||||||
Backbench standard preparation of deceased donor renal allograft prior to transplantation | 454 (22.0%) | 3952 (34.7%) | <0.01 | 0.28 | 454 (22.1%) | 463 (22.5%) | 0.74 | 0.01 |
Backbench standard preparation of living donor renal allograft (open or laparoscopic) prior to transplantation | 493 (23.9%) | 1609 (14.1%) | <0.01 | 0.25 | 485 (23.6%) | 425 (20.7%) | 0.02 | 0.07 |
Backbench reconstruction of deceased or living donor renal allograft prior to transplantation | 208 (10.1%) | 1465 (12.9%) | <0.01 | 0.09 | 205 (10.0%) | 170 (8.3%) | 0.06 | 0.06 |
Labs | ||||||||
Epstein Barr virus capsid IgG Ab [Presence] in Serum by Immunoassay | 209 (10.1%) | 1519 (13.3%) | 0.03 | 0.196 | 206 (10.0%) | 197 (9.6%) | 0.075 | 0.176 |
Cytomegalovirus IgG Ab [Presence] in Serum or Plasma by Immunoassay | 474 (23.0%) | 1733 (15.2%) | <0.01 | 0.367 | 466 (22.7%) | 417 (20.3%) | 0.06 | 0.058 |
Varicella zoster virus IgG Ab [Presence] in Serum by Immunoassay | 363 (17.6%) | 971 (8.5%) | 0.07 | 0.120 | 355 (17.3%) | 307 (14.9%) | 0.96 | 0.004 |
HLA-A+B+C (class I) Ab in Serum | 60 (2.9%) | 158 (1.4%) | 0.003 | 0.379 | 58 (2.8%) | 50 (2.4%) | 0.041 | 0.412 |
Induction Immunosuppression | ||||||||
Anti-thymocyte globulin | 359 (17.4%) | 4045 (35.5%) | <0.01 | 0.419 | 359 (17.5%) | 316 (15.4%) | 0.07 | 0.056 |
Basiliximab | 160 (7.7%) | 1230 (10.8%) | <0.01 | 0.105 | 160 (7.8%) | 145 (7.1%) | 0.372 | 0.028 |
Alemtuzumab | 80 (3.9%) | 206 (1.8%) | <0.01 | 0.125 | 77 (3.7%) | 80 (3.9%) | 0.807 | 0.008 |
Outcome | Cohort | Cumulative Incidence (%) | p | Hazard Ratio (95% Confidence Interval) |
---|---|---|---|---|
CMV | ESW | 14.00% | <0.01 | 0.674 (0.580, 0.784) |
SCI | 20.19% | |||
BK | ESW | 4.22% | <0.01 | 0.508 (0.392, 0.660) |
SCI | 8.14% | |||
EBV | ESW | 0.39% | <0.01 | 0.227 (0.106, 0.490) |
SCI | 1.72% | |||
JC Virus | ESW | 0.00% | 0.32 | N/A |
SCI | 0.05% | |||
VZV | ESW | 0.64% | 0.13 | 0.589 (0.297, 1.169) |
SCI | 1.09% | |||
Composite Viremia (CMV, EBV, BK, JC, VZV) | ESW | 17.97% | <0.01 | 0.607 (0.532, 0.692) |
SCI | 28.09% | |||
Pyelonephritis | ESW | 2.30% | <0.01 | 0.466 (0.330, 0.659) |
SCI | 4.91% | |||
Sepsis | ESW | 2.15% | <0.01 | 0.357 (0.255, 0.498) |
SCI | 5.95% |
Cohort | Cumulative Incidence (%) | p | Hazard Ratio (95% Confidence Interval) | |
---|---|---|---|---|
Rejection | ESW | 28.99% | 0.41 | 0.955 (0.854, 1.068) |
SCI | 30.97% | |||
Death-censored Graft Failure | ESW | 4.92% | <0.01 | 0.487 (0.383, 0.618) |
SCI | 9.90% | |||
Mortality | ESW | 0.83% | <0.01 | 0.394 (0.225, 0.691) |
SCI | 2.11% | |||
Delayed Graft Function | ESW | 3.21% | <0.01 | 0.577 (0.438, 0.76) |
SCI | 5.49% | |||
Diabetes Mellitus | ESW | 19.55% | <0.01 | 0.849 (0.752, 0.959) |
SCI | 22.79% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koi, A.N.; Johnson, J.C.; Engebretsen, T.L.; Mujtaba, M.A.; Lea, A.S.; Stevenson, H.L.; Kueht, M.L. Precision in Immune Management: Balancing Steroid Exposure, Rejection Risk, and Infectious Outcomes in Adult Kidney Transplant Recipients. J. Pers. Med. 2024, 14, 1106. https://doi.org/10.3390/jpm14111106
Koi AN, Johnson JC, Engebretsen TL, Mujtaba MA, Lea AS, Stevenson HL, Kueht ML. Precision in Immune Management: Balancing Steroid Exposure, Rejection Risk, and Infectious Outcomes in Adult Kidney Transplant Recipients. Journal of Personalized Medicine. 2024; 14(11):1106. https://doi.org/10.3390/jpm14111106
Chicago/Turabian StyleKoi, Avery N., John C. Johnson, Trine L. Engebretsen, Muhammad A. Mujtaba, Alfred Scott Lea, Heather L. Stevenson, and Michael L. Kueht. 2024. "Precision in Immune Management: Balancing Steroid Exposure, Rejection Risk, and Infectious Outcomes in Adult Kidney Transplant Recipients" Journal of Personalized Medicine 14, no. 11: 1106. https://doi.org/10.3390/jpm14111106
APA StyleKoi, A. N., Johnson, J. C., Engebretsen, T. L., Mujtaba, M. A., Lea, A. S., Stevenson, H. L., & Kueht, M. L. (2024). Precision in Immune Management: Balancing Steroid Exposure, Rejection Risk, and Infectious Outcomes in Adult Kidney Transplant Recipients. Journal of Personalized Medicine, 14(11), 1106. https://doi.org/10.3390/jpm14111106