Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skolnik, A.D.; Loevner, L.A.; Sampathu, D.M.; Newman, J.G.; Lee, J.Y.; Bagley, L.J.; Learned, K.O. Cranial Nerve Schwannomas: Diagnostic Imaging Approach. Radiographics 2016, 36, 1463–1477. [Google Scholar] [CrossRef]
- Bal, J.; Bruneau, M.; Berhouma, M.; Cornelius, J.F.; Cavallo, L.M.; Daniel, R.T.; Froelich, S.; Jouanneau, E.; Meling, T.R.; Messerer, M.; et al. Management of non-vestibular schwannomas in adult patients: A systematic review and consensus statement on behalf of the EANS skull base section. Part I: Oculomotor and other rare non-vestibular schwannomas (I, II, III, IV, VI). Acta Neurochir. 2022, 164, 285–297. [Google Scholar] [CrossRef]
- Reznitsky, M.; Petersen, M.M.B.S.; West, N.; Stangerup, S.E.; Cayé-Thomasen, P. Epidemiology of Vestibular Schwannomas—Prospective 40-Year Data from an Unselected National Cohort. Clin. Epidemiol. 2019, 11, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ahmed, A.K.; Bi, W.L.; Dawood, H.Y.; Iorgulescu, J.B.; Corrales, C.E.; Dunn, I.F.; Smith, T.R. Predicting Readmission and Reoperation for Benign Cranial Nerve Neoplasms: A Nationwide Analysis. World Neurosurg. 2019, 121, e223–e229. [Google Scholar] [CrossRef]
- Schackert, G.; Ralle, S.; Martin, K.D.; Reiss, G.; Kowalski, M.; Sobottka, S.B.; Hennig, S.; Podlesek, D.; Sandi-Gahun, S.; Juratli, T.A. Vestibular Schwannoma Surgery: Outcome and Complications in Lateral Decubitus Position Versus Semi-sitting Position—A Personal Learning Curve in a Series of 544 Cases over 3 Decades. World Neurosurg. 2021, 148, e182–e191. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.J.; Hickman, S.J.; Pepper, I.M.; Tan, J.H.Y.; Yianni, J.; Jefferis, J.M. Neuro-Ophthalmic Complications of Vestibular Schwannoma Resection: Current Perspectives. Eye Brain 2021, 13, 241–253. [Google Scholar] [CrossRef]
- Goshtasbi, K.; Abouzari, M.; Moshtaghi, O.; Maducdoc, M.; Lehrich, B.M.; Lin, H.W.; Djalilian, H.R. Risk Recall of Complications Associated with Vestibular Schwannoma Treatment. Otolaryngol. Head Neck Surg. 2019, 161, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Zanoletti, E.; Mazzoni, A.; Martini, A.; Abbritti, R.V.; Albertini, R.; Alexandre, E.; Baro, V.; Bartolini, S.; Bernardeschi, D.; Bivona, R. Surgery of the lateral skull base: A 50-year endeavour. Acta Otorhinolaryngol. Ital. 2019, 39 (Suppl. S1), S1–S146. [Google Scholar] [CrossRef]
- Goyal, A.; Ngufor, C.; Kerezoudis, P.; McCutcheon, B.; Storlie, C.; Bydon, M. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J. Neurosurg. Spine 2019, 31, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Merath, K.; Hyer, J.M.; Mehta, R.; Farooq, A.; Bagante, F.; Sahara, K.; Tsilimigras, D.I.; Beal, E.; Paredes, A.Z.; Wu, L.; et al. Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery. J. Gastrointest. Surg. 2020, 24, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Tsuzuki, T.; Akatsuka, J.; Ueki, M.; Morikawa, H.; Numata, Y.; Takahara, T.; Tsuyuki, T.; Tsutsumi, K.; Nakazawa, R.; et al. Automated acquisition of explainable knowledge from unannotated histopathology images. Nat. Commun. 2019, 10, 5642. [Google Scholar] [CrossRef]
- Chen, J.H.; Asch, S.M. Machine Learning and Prediction in Medicine—Beyond the Peak of Inflated Expectations. N. Engl. J. Med. 2017, 376, 2507–2509. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Faiz, O.; Davis, R.; Almoudaris, A.; Vincent, C. Surgical complications and their impact on patients’ psychosocial well-being: A systematic review and meta-analysis. BMJ Open 2016, 6, e007224. [Google Scholar] [CrossRef]
- Hamadi, H.Y.; Martinez, D.; Palenzuela, J.; Spaulding, A.C. Magnet Hospitals and 30-Day Readmission and Mortality Rates for Medicare Beneficiaries. Med. Care 2021, 59, 6–12. [Google Scholar] [CrossRef]
- Agency for Healthcare Research and Quality. Preventing Avoidable Readmissions. Available online: https://www.ahrq.gov/patient-safety/resources/improve-discharge/index.html (accessed on 25 September 2020).
- Biron, D.R.; Sinha, I.; Kleiner, J.E.; Aluthge, D.P.; Goodman, A.D.; Sarkar, I.N.; Cohen, E.; Daniels, A.H. A Novel Machine Learning Model Developed to Assist in Patient Selection for Outpatient Total Shoulder Arthroplasty. J. Am. Acad. Orthop. Surg. 2020, 28, e580–e585. [Google Scholar] [CrossRef]
- Karhade, A.V.; Thio, Q.C.; Ogink, P.T.; Shah, A.A.; Bono, C.M.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019, 85, E83–E91. [Google Scholar] [CrossRef]
- Sheth, V.; Tripathi, U.; Sharma, A. A Comparative Analysis of Machine Learning Algorithms for Classification Purpose. Procedia Comput. Sci. 2022, 215, 422–431. [Google Scholar] [CrossRef]
- Hassanipour, S.; Ghaem, H.; Arab-Zozani, M.; Seif, M.; Fararouei, M.; Abdzadeh, E.; Sabetian, G.; Paydar, S. Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: A systematic review and meta-analysis. Injury 2019, 50, 244–250. [Google Scholar] [CrossRef]
- Zhang, Z.; Beck, M.W.; Winkler, D.A.; Huang, B.; Sibanda, W.; Goyal, H. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 2018, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Meza, G.; McKee, S.; Carlton, D.; Yang, A.; Govindaraj, S.; Iloreta, A. Association of Surgical and Hospital Volume and Patient Characteristics with 30-Day Readmission Rates. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 328–337. [Google Scholar] [CrossRef]
- Graboyes, E.M.; Yang, Z.; Kallogjeri, D.; Diaz, J.A.; Nussenbaum, B. Patients undergoing total laryngectomy: An at-risk population for 30-day unplanned readmission. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Ferrandino, R.; Garneau, J.; Roof, S.; Pacheco, C.; Poojary, P.; Saha, A.; Chauhan, K.; Miles, B. The national landscape of unplanned 30-day readmissions after total laryngectomy. Laryngoscope 2018, 128, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Dziegielewski, P.T.; Boyce, B.; Manning, A.; Agrawal, A.; Old, M.; Ozer, E.; Teknos, T.N. Predictors and costs of readmissions at an academic head and neck surgery service. Head Neck 2016, 38 (Suppl. S1), E502–E510. [Google Scholar] [CrossRef]
- Bur, A.M.; Brant, J.A.; Mulvey, C.L.; Nicolli, E.A.; Brody, R.M.; Fischer, J.P.; Cannady, S.B.; Newman, J.G. Association of Clinical Risk Factors and Postoperative Complications With Unplanned Hospital Readmission After Head and Neck Cancer Surgery. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.N.; Raghavan, G.; St John, M.A.; Long, J.L. Risk Factors, Causes, and Costs of Hospital Readmission After Head and Neck Cancer Surgery Reconstruction. JAMA Facial Plast. Surg. 2019, 21, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Rajaguru, V.; Han, W.; Kim, T.H.; Shin, J.; Lee, S.G. LACE Index to Predict the High Risk of 30-Day Readmission: A Systematic Review and Meta-Analysis. J. Pers. Med. 2022, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Cryts, A. How Two Health Systems Use Predictive Analytics to Reduce Readmissions. Managed Healthcare Executive Website. 2018. Available online: https://www.managedhealthcareexecutive.com/view/how-two-health-systems-use-predictive-analytics-reduce-readmissions (accessed on 6 September 2020).
- Rolston, J.D.; Han, S.J.; Chang, E.F. Systemic inaccuracies in the National Surgical Quality Improvement Program database: Implications for accuracy and validity for neurosurgery outcomes research. J. Clin. Neurosci. 2017, 37, 44–47. [Google Scholar] [CrossRef]
- American College of Surgeons. ACS NSQIP Participant Use Data File. American College of Surgeons Website. 2017. Available online: https://www.facs.org/quality-programs/acs-nsqip/participant-use (accessed on 7 September 2020).
- Patel, V.A.; Dunklebarger, M.; Banerjee, K.; Shokri, T.; Zhan, X.; Isildak, H. Surgical Management of Vestibular Schwannoma: Practice Pattern Analysis via NSQIP. Ann. Otol. Rhinol. Laryngol. 2020, 129, 230–237. [Google Scholar] [CrossRef]
- Mahboubi, H.; Maducdoc, M.M.; Yau, A.Y.; Ziai, K.; Ghavami, Y.; Badran, K.W.; Al-Thobaiti, M.; Brandon, B.; Djalilian, H.R. Vestibular Schwannoma Excision in Sporadic versus Neurofibromatosis Type 2 Populations. Otolaryngol. Head Neck Surg. 2015, 153, 822–831. [Google Scholar] [CrossRef] [PubMed]
Procedure | CPT Code |
---|---|
Supratentorial Craniectomy or Craniotomy Exploratory | 61304 |
Craniectomy or Craniotomy, Exploratory, Infratentorial | 61305 |
Suboccipital Craniectomy with Cervical Laminectomy | 61343 |
Posterior Fossa Cranial Decompression | 61345 |
Suboccipital Craniectomy | 61458 |
Suboccipital Craniectomy—Section of Cranial Nerves | 61460 |
Craniectomy with Tumor or Bone Lesion Excision | 61500 |
CTBC for Supratentorial Tumor | 61510 |
CTBC for Supratentorial Meningioma | 61512 |
CTBC for Supratentorial Cyst | 61516 |
Craniectomy for IPF Brain Tumor | 61518 |
Craniectomy for IPF Meningioma Brain Tumor | 61519 |
IPF Brain Tumor Excision or Cerebellopontine Angle Tumor Excision | 61520 |
Excision of Midline Tumor at IPF Skull Base | 61521 |
Brain Abscess Excision via IPF Craniectomy | 61522 |
IPF Cyst Excision | 61524 |
CBTC of Cerebellopontine Angle Tumor | 61526 |
CBTC of Cerebellopontine Angle Tumor with Posterior Fossa Craniotomy | 61530 |
Craniotomy with Partial or Subtotal Hemispherectomy | 61543 |
Craniotomy for Pituitary Tumor Removal with Intracranial Approach | 61546 |
Pituitary Tumor Excision via Transnasal or Transseptal Approach | 61548 |
Craniectomy/Craniotomy with Foreign Body Removal | 61570 |
Craniofacial Approach to Anterior Cranial Fossa | 61581 |
Infratemporal Pre-Auricular Approach to Middle Cranial Fossa | 61590 |
Infratemporal Post-Auricular Approach to Middle Cranial fossa | 61591 |
Orbitocranial Zygomatic Approach to Middle Cranial Fossa | 61592 |
Transtemporal Approach to PJM | 61595 |
Transcochlear Approach to PJM | 61596 |
Transcondylar Approach to PJM | 61597 |
Transpetrosal Approach to PCF | 61598 |
Lesion Reduction in IPP, specifically Extradural Area | 61605 |
Resection of Lesions in IPP | 61606 |
Resection of Lesions in Parasellar Area, Cavernous Sinus, Clivus, or Midline Skull Base | 61608 |
Resection of Lesions at PCF | 61615 and 61616 |
Secondary Repair of Dura Post-Skull Base Surgery | 61618 |
Craniectomy or Craniotomy for Neurostimulator Electrode Implantation on Cerebral Cortex | 61860 |
Dural or CSF Leak Repair | 62100 |
Lumbar Intraspinal Lesion Removal via Laminectomy | 63267 |
Extradural Growth of Spinal Cord via Laminectomy | 63277 |
Laminectomy with Tethered Spinal Cord Release in Lumbar Region | 63200 |
Intradural, Extramedullary Growth of Spinal Cord via Laminectomy | 63281 |
Excision of Intradural, Extramedullary Growth on Lumbar Spinal Cord | 63282 |
Intradural, Intramedullary Growth in Cervical Spine via Laminectomy | 63285 |
Excision of Intradural, Intramedullary Neoplasm via Laminectomy in Thoracolumbar Region | 63287 |
Metric | Reoperation | Medical Complications | Surgical Complications |
---|---|---|---|
Accuracy | 0.8206 | 0.8692 | 0.8729 |
Sensitivity | 0.3111 | 0.5152 | 0.3571 |
Specificity | 0.8673 | 0.8924 | 0.9014 |
Precision | 0.1772 | 0.2394 | 0.1667 |
F1 Score | 0.2258 | 0.3269 | 0.2273 |
ROC-AUC | 0.6315 | 0.7939 | 0.719 |
PR AUC | 0.1968 | 0.2208 | 0.1795 |
NPV | 0.932 | 0.9655 | 0.9621 |
PPV | 0.1772 | 0.2394 | 0.1667 |
Ranking | Reoperation | Medical Complication | Surgical Complication |
---|---|---|---|
1 | Days from Operation to Discharge | Hospital Discharge Destination Other than Home | Length of Stay Post-Operation until Discharge |
2 | Total Hospital Length of Stay | Total Hospital Length of Stay | Triage Operation Time |
3 | Time Duration from ALKPHOS Preoperative Labs to Operation | Days from Operation to Discharge | Days from Hospital Admission to Operation |
4 | Time Duration from WBC Preoperative Labs to Operation | Hypertension Requiring Medication | Total Hospital Length of Stay |
5 | Time Duration from INR Preoperative Labs to Operation | Time Duration from INR Preoperative Labs to Operation | Total Operation Time |
6 | Preoperative SGOT | Preoperative Serum Albumin | Preoperative Total Bilirubin |
7 | Total Operation Time | Total Operation Time | Days from Operation to Discharge |
8 | Time Duration from Bilirubin Preoperative Labs to Operation | Time Duration from Platelet Count Preoperative Labs to Operation | Preoperative SGOT |
9 | Age of Patient | ASA Classification | Time Duration from WBC Preoperative Labs to Operation |
10 | Triage Operation Time | Age of Patient | ASA Classification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dichter, A.; Bhatt, K.; Liu, M.; Park, T.; Djalilian, H.R.; Abouzari, M. Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms. J. Pers. Med. 2024, 14, 1170. https://doi.org/10.3390/jpm14121170
Dichter A, Bhatt K, Liu M, Park T, Djalilian HR, Abouzari M. Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms. Journal of Personalized Medicine. 2024; 14(12):1170. https://doi.org/10.3390/jpm14121170
Chicago/Turabian StyleDichter, Abigail, Khushi Bhatt, Mohan Liu, Timothy Park, Hamid R. Djalilian, and Mehdi Abouzari. 2024. "Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms" Journal of Personalized Medicine 14, no. 12: 1170. https://doi.org/10.3390/jpm14121170
APA StyleDichter, A., Bhatt, K., Liu, M., Park, T., Djalilian, H. R., & Abouzari, M. (2024). Post-Operative Outcome Predictions in Vestibular Schwannoma Using Machine Learning Algorithms. Journal of Personalized Medicine, 14(12), 1170. https://doi.org/10.3390/jpm14121170