Towards Personalized Treatment in Haemophilia: The Role of Genetic Factors in Iron and Heme Control to Identify Patients at Risk for Haemophilic Arthropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Data Collection
2.2. Pettersson Score
2.3. DNA Analysis
2.4. Iron Status
2.5. Statistical Analysis
- “Wild type”(WT), including patients without a Cys282Tyr or His63Asp mutation;
- “Mutated”, including patients heterozygous for Cys282Tyr and/or His63Asp, or homozygous for His63Asp or Cys282Tyr.
- For the HMOX1 polymorphism, patients were allocated into three groups:
- Patients homozygous for a (GT)n-repeat < 25, referred to as SS (S for short);
- Patients homozygous for a (GT)n-repeat ≥ 25, referred to as LL (L for long);
- Patients heterozygous for a (GT)n-repeat ≥ 25, referred to as SL.
3. Results
3.1. Patient Characteristics
3.2. HFE Mutation
3.3. HMOX1 Polymorphism
3.4. Association of HFE Mutation or HMOX1 Polymorphism with Haemophilic Arthropathy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arruda, V.R.; Doshi, B.S.; Samelson-Jones, B.J. Novel approaches to hemophilia therapy: Successes and challenges. Blood 2017, 130, 2251–2256. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M. Hemophilia treatment innovation: 50 years of progress and more to come. J. Thromb. Haemost. 2023, 21, 403–412. [Google Scholar] [CrossRef]
- Jayandharan, G.R.; Srivastava, A. The phenotypic heterogeneity of severe hemophilia. Semin. Thromb. Hemost. 2008, 34, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Chantrain, V.A.; Foubert, A.; Meeus, M.; Lambert, C.; Lobet, S.; Maes, P.; Fransen, E.; Durnez, L.; Hermans, C.; Roussel, N.A. Joint status, pain and quality of life in elderly people with haemophilia: A case-control study. Haemophilia 2023, 29, 1621–1632. [Google Scholar] [CrossRef]
- Manco-Johnson, M.J.; Abshire, T.C.; Shapiro, A.D.; Riske, B.; Hacker, M.R.; Kilcoyne, R.; Ingram, J.D.; Manco-Johnson, M.L.; Funk, S.; Jacobson, L.; et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N. Engl. J. Med. 2007, 357, 535–544. [Google Scholar] [CrossRef]
- Di Minno, M.N.; Iervolino, S.; Soscia, E.; Tosetto, A.; Coppola, A.; Schiavulli, M.; Marrone, E.; Ruosi, C.; Salvatore, M.; Di Minno, G. Magnetic resonance imaging and ultrasound evaluation of “healthy” joints in young subjects with severe haemophilia A. Haemophilia 2013, 19, e167–e173. [Google Scholar] [CrossRef] [PubMed]
- Daffunchio, C.; Galatro, G.; Faurlin, V.; Neme, D.; Caviglia, H. The hidden joint in children with haemophilia on prophylaxis. Thromb. Res. 2023, 226, 86–92. [Google Scholar] [CrossRef]
- Nijdam, A.; Foppen, W.; De Kleijn, P.; Mauser-Bunschoten, E.P.; Roosendaal, G.; van Galen, K.P.; Schutgens, R.E.; van der Schouw, Y.T.; Fischer, K. Discontinuing early prophylaxis in severe haemophilia leads to deterioration of joint status despite low bleeding rates. Thromb. Haemost. 2016, 115, 931–938. [Google Scholar] [CrossRef]
- Leuci, A.; Dargaud, Y. Blood-Induced Arthropathy: A Major Disabling Complication of Haemophilia. J. Clin. Med. 2023, 13, 225. [Google Scholar] [CrossRef]
- van Vulpen, L.F.D.; Mastbergen, S.C.; Lafeber, F.; Schutgens, R.E.G. Differential effects of bleeds on the development of arthropathy—Basic and applied issues. Haemophilia 2017, 23, 521–527. [Google Scholar] [CrossRef]
- Gomperts, E.D.; Schwarz, J.; Donfield, S.M.; Lail, A.E.; Astermark, J.; Hoots, W.K.; Winkler, C.A.; Berntorp, E. The importance of genetic factors for the development of arthropathy: A longitudinal study of children and adolescents with haemophilia A. Thromb. Haemost. 2017, 117, 277–285. [Google Scholar] [CrossRef]
- Pulles, A.E.; Mastbergen, S.C.; Schutgens, R.E.; Lafeber, F.P.; van Vulpen, L.F. Pathophysiology of hemophilic arthropathy and potential targets for therapy. Pharmacol. Res. 2017, 115, 192–199. [Google Scholar] [CrossRef]
- van Vulpen, L.F.D.; van Bergen, E.D.P.; Pulles, A.E.; Mastbergen, S.C. The detrimental effects of iron to the joint; aggravation by inflammation. Haemophilia 2023, 29, 365–366. [Google Scholar] [CrossRef]
- Colak, T.S.; Bicer, E.K.; Kücük, L.; Doganavsargil, B.; Sezak, M.; Aydogdu, S. Which part of the blood in the knee joint is responsible for its detrimental effects? (An experimental study on the knee joint in rabbits). Haemophilia 2022, 28, 865–871. [Google Scholar] [CrossRef]
- Hakobyan, N.; Kazarian, T.; Jabbar, A.A.; Jabbar, K.J.; Valentino, L.A. Pathobiology of hemophilic synovitis I: Overexpression of mdm2 oncogene. Blood 2004, 104, 2060–2064. [Google Scholar] [CrossRef]
- Wen, F.Q.; Jabbar, A.A.; Chen, Y.X.; Kazarian, T.; Patel, D.A.; Valentino, L.A. c-myc proto-oncogene expression in hemophilic synovitis: In Vitro studies of the effects of iron and ceramide. Blood 2002, 100, 912–916. [Google Scholar] [CrossRef]
- Pang, N.; Ding, M.; Yang, H.; Zhong, Q.; Zheng, L.; Luo, D.; Yao, Y. Iron overload causes macrophages to produce a pro-inflammatory phenotype in the synovium of hemophiliac arthritis via the acetyl-p53 pathway. Haemophilia 2024, 30, 195–203. [Google Scholar] [CrossRef]
- Zheng, L.; Han, Z.; Luo, D.; Li, J.; Ye, H.; Feng, R.; Zhong, Q.; Jing, J.; Yao, Y. FGF23 and SOX9 expression in haemophilic cartilage: In Vitro studies of the effects of iron. Haemophilia 2022, 28, 1062–1068. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Wong, J.H.; Berman, Z.T.; Lombardi, A.F.; Chang, E.Y.; von Drygalski, A. Bleeding with iron deposition and vascular remodelling in subchondral cysts: A newly discovered feature unique to haemophilic arthropathy. Haemophilia 2021, 27, e730–e738. [Google Scholar] [CrossRef]
- Kawabata, H. The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int. J. Hematol. 2018, 107, 31–43. [Google Scholar] [CrossRef]
- Hanson, E.H.; Imperatore, G.; Burke, W. HFE gene and hereditary hemochromatosis: A HuGE review. Human Genome Epidemiology. Am. J. Epidemiol. 2001, 154, 193–206. [Google Scholar] [CrossRef]
- van Vulpen, L.F.D.; Roosendaal, G.; van Asbeck, B.S.; Mastbergen, S.C.; Lafeber, F.P.J.G.; Schutgens, R.E.G. The detrimental effects of iron on the joint: A comparison between haemochromatosis and haemophilia. J. Clin. Pathol. 2015, 68, 592–600. [Google Scholar] [CrossRef]
- Loret, A.; Jacob, C.; Mammou, S.; Bigot, A.; Blasco, H.; Audemard-Verger, A.; Schwartz, I.V.; Mulleman, D.; Maillot, F. Joint manifestations revealing inborn metabolic diseases in adults: A narrative review. Orphanet J. Rare Dis. 2023, 18, 239. [Google Scholar] [CrossRef]
- Braner, A. Haemochromatosis and Arthropathies. Dtsch. Med. Wochenschr. 2018, 143, 1167–1173. [Google Scholar] [CrossRef]
- Barton, J.C.; Barton, J.C.; Acton, R.T. Clinical and Laboratory Characteristics of Individuals Aged ≤ 17 Years with Homeostatic Iron Regulator (HFE) p.C282Y Homozygosity, a Common Hemochromatosis Genotype. Cureus 2023, 15, e50043. [Google Scholar] [CrossRef]
- Cruz, E.; Porto, G.; Morais, S.; Campos, M.; de Sousa, M. HFE mutations in the pathobiology of hemophilic arthropathy. Blood 2005, 105, 3381–3382. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.L.; Sun, L.; Wang, Y.X.; Sun, B.H.; Li, Y.F.; Jin, Y.L. Association between HO-1 gene promoter polymorphisms and diseases (Review). Mol. Med. Rep. 2022, 25, 12545. [Google Scholar] [CrossRef]
- Rueda, B.; Oliver, J.; Robledo, G.; Lopez-Nevot, M.A.; Balsa, A.; Pascual-Salcedo, D.; Gonzalez-Gay, M.A.; Gonzalez-Escribano, M.F.; Martin, J. HO-1 promoter polymorphism associated with rheumatoid arthritis. Arthritis Rheum. 2007, 56, 3953–3958. [Google Scholar] [CrossRef]
- Wagener, F.A.; Toonen, E.J.; Wigman, L.; Fransen, J.; Creemers, M.C.; Radstake, T.R.; Coenen, M.J.; Barrera, P.; van Riel, P.L.; Russel, F.G. HMOX1 promoter polymorphism modulates the relationship between disease activity and joint damage in rheumatoid arthritis. Arthritis Rheum. 2008, 58, 3388–3393. [Google Scholar] [CrossRef]
- Pettersson, H.; Ahlberg, A.; Nilsson, I.M. A radiologic classification of hemophilic arthropathy. Clin. Orthop. Relat. Res. 1980, 149, 153–159. [Google Scholar] [CrossRef]
- Foppen, W.; van der Schaaf, I.C.; Beek, F.J.; Verkooijen, H.M.; Fischer, K. Scoring haemophilic arthropathy on X-rays: Improving inter- and intra-observer reliability and agreement using a consensus atlas. Eur. Radiol. 2016, 26, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Plug, I.; van der Bom, J.G.; Peters, M.; Mauser-Bunschoten, E.P.; de Goede-Bolder, A.; Heijnen, L.; Smit, C.; Zwart-van Rijkom, J.E.; Willemse, J.; Rosendaal, F.R. Thirty years of hemophilia treatment in the Netherlands, 1972–2001. Blood 2004, 104, 3494–3500. [Google Scholar] [CrossRef] [PubMed]
Forward | 5′-GTTTTCCCAGTCACGACCTGCAACTCACCCTTCACAA-3′ |
Reverse | 5′-CAACAGTGAACATGTGATCCC-3′ |
Forward | 5′-GGTCTTTCCTTGTTTGAAGCTT-3′ |
Reverse | 5′-GTTTTCCCAGTCACGACAAATTCCTTCCCTCTTCCCTG-3′ |
Forward | 5′-ATAGAAGGAAGTGAAAGTTCCAGTC-3′ |
Reverse | 5′-GTTTTCCCAGTCACGACCAAGGTTATCCAGCCCTGGTA-3′ |
Forward | 5′-GTTTTCCCAGTCACGACGTGTCGGGCCTTGAACTAC-3′ |
Reverse | 5′-CATAATTACCTCCTCAGGCACTC-3′ |
Severe Haemophilia n = 211 | Moderate Haemophilia n = 41 | p | |
---|---|---|---|
Age at inclusion, mean (range) | 44 (18–79) | 44 (18–75) | 0.95 |
Age at evaluation, mean (range) | 37 (11–79) | 42 (15–75) | 0.05 |
Haemophilia A, n (%) | 185 (88%) | 38 (93%) | 0.44 |
Inhibitor history, n (%) | 26 (12%) | 1 (2%) | 0.09 |
Currently on prophylaxis, n (%) | 165 (78%) | 3 (7%) | 0.00 |
Clotting factor consumption (1000 IU/kg/y), median (IQR) | 1.9 * (1.1–2.3) | 0.2 (0.07–1.8) | 0.00 |
AJBR, median (IQR) | 2.3 (1.0–4.6) | 0.5 (0.1–2.2) | 0.00 |
Pettersson score, median (IQR) | 22 (5–44) | 4 (1–13) | 0.00 |
Predictor | Regression Coefficient | 95% CI | p |
---|---|---|---|
Age at evaluation (per y) | 0.48 | 0.29–0.67 | 0.00 |
Clotting factor activity (severe vs. non-severe) | −16.2 | −21.4–−10.8 | 0.00 |
Clotting factor consumption (per 1000/IU/kg/y) | 3.4 | 1.5–5.3 | 0.00 |
AJBR (per bleed) | 1.0 | 0.5–1.6 | 0.00 |
Year of birth (≤1965 vs. later) | −15.0 | −20.2–−9.8 | 0.00 |
Entry into the clinic (≤age 4 y or later) | 6.6 | 2.4–10.8 | 0.00 |
HFE mutation | 1.0 | −2.7–4.6 | 0.60 |
HMOX1 polymorphism SL | 1.8 | −4.7–8.3 | 0.59 |
LL | 0.3 | −6.1–6.8 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Vulpen, L.F.D.; Mastbergen, S.C.; Foppen, W.; Fischer, K.; Lafeber, F.P.J.G.; Schutgens, R.E.G. Towards Personalized Treatment in Haemophilia: The Role of Genetic Factors in Iron and Heme Control to Identify Patients at Risk for Haemophilic Arthropathy. J. Pers. Med. 2024, 14, 145. https://doi.org/10.3390/jpm14020145
van Vulpen LFD, Mastbergen SC, Foppen W, Fischer K, Lafeber FPJG, Schutgens REG. Towards Personalized Treatment in Haemophilia: The Role of Genetic Factors in Iron and Heme Control to Identify Patients at Risk for Haemophilic Arthropathy. Journal of Personalized Medicine. 2024; 14(2):145. https://doi.org/10.3390/jpm14020145
Chicago/Turabian Stylevan Vulpen, Lize F. D., Simon C. Mastbergen, Wouter Foppen, Kathelijn Fischer, Floris P. J. G. Lafeber, and Roger E. G. Schutgens. 2024. "Towards Personalized Treatment in Haemophilia: The Role of Genetic Factors in Iron and Heme Control to Identify Patients at Risk for Haemophilic Arthropathy" Journal of Personalized Medicine 14, no. 2: 145. https://doi.org/10.3390/jpm14020145
APA Stylevan Vulpen, L. F. D., Mastbergen, S. C., Foppen, W., Fischer, K., Lafeber, F. P. J. G., & Schutgens, R. E. G. (2024). Towards Personalized Treatment in Haemophilia: The Role of Genetic Factors in Iron and Heme Control to Identify Patients at Risk for Haemophilic Arthropathy. Journal of Personalized Medicine, 14(2), 145. https://doi.org/10.3390/jpm14020145