LPL rs264, PROCR rs867186 and PDGF rs974819 Gene Polymorphisms in Patients with Unstable Angina
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Genetic Study
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.S.; Knowles, J.W. Polygenic risk scores in coronary artery disease. Curr. Opin. Cardiol. 2019, 34, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Olivecrona, G. Role of lipoprotein lipase in lipid metabolism. Curr. Opin. Lipidol. 2016, 27, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Mabuchi, H. Lipoprotein lipase and atherosclerosis. Ann. Clin. Biochem. 2015, 52 Pt 6, 632–637. [Google Scholar] [CrossRef]
- He, T.; Wang, J.; Deng, W.S.; Sun, P. Association between Lipoprotein Lipase Polymorphism and the Risk of Stroke: A Meta-analysis. J. Stroke Cerebrovasc. Dis. 2017, 26, 2570–2578. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Du, S.; Wang, J.; Zhu, M.; Wen, X.; Yang, W. Association of the lipoprotein lipase gene Ser447Ter polymorphism with hypertension and blood pressure variation: Evidence from an updated meta-analysis. Clin. Exp. Hypertens. 2017, 39, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Li, Y.M. Lipoprotein Lipase (LPL) Polymorphism and the Risk of Coronary Artery Disease: A Meta-Analysis. Int. J. Environ. Res. Public. Health 2017, 14, 84. [Google Scholar] [CrossRef]
- Oto, J.; Fernández-Pardo, Á.; Miralles, M.; Plana, E.; España, F.; Navarro, S.; Medina, P. Activated protein C assays: A review. Clin. Chim. Acta. 2020, 502, 227–232. [Google Scholar] [CrossRef]
- Pendurthi, U.R.; Rao, L.V.M. Endothelial cell protein C receptor-dependent signaling. Curr. Opin. Hematol. 2018, 25, 219–226. [Google Scholar] [CrossRef]
- Müller-Calleja, N.; Hollerbach, A.; Royce, J.; Ritter, S.; Pedrosa, D.; Madhusudhan, T.; Teifel, S.; Meineck, M.; Häuser, F.; Canisius, A. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021, 371, eabc0956. [Google Scholar] [CrossRef]
- Dennis, J.; Johnson, C.Y.; Adediran, A.S.; de Andrade, M.; Heit, J.A.; Morange, P.-E.; Trégouët, D.-A.; Gagnon, F. The endothelial protein C receptor (PROCR) Ser219Gly variant and risk of common thrombotic disorders: A HuGE review and meta-analysis of evidence from observational studies. Blood 2012, 119, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Wang, M.; Wan, S. Platelet derived growth factor and its receptor in intracerebral hemorrhage. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022, 51, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Medamana, J.; Clark, R.A.; Butler, J. Platelet-Derived Growth Factor in Heart Failure. Handb. Exp. Pharmacol. 2017, 243, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, B.S.; Shin, D.J.; Park, K.W.; Shin, Y.-A.; Kim, K.J.; Heo, L.; Lee, J.Y.; Kim, Y.K.; Kim, Y.J.; et al. A genome-wide association study of a coronary artery disease risk variant. J. Hum. Genet. 2013, 58, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.A. Targeting Inflammation in Coronary Artery Disease. N. Engl. J. Med. 2017, 377, 1197–1198. [Google Scholar] [CrossRef] [PubMed]
- Basu, D.; Goldberg, I.J. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides. Curr. Opin. Lipidol. 2020, 31, 154–160. [Google Scholar] [CrossRef]
- Tang, M.; Zong, P.; Zhang, T.; Wang, D.; Wang, Y.; Zhao, Y. Lipoprotein lipase gene-deficient mice with hypertriglyceridaemia associated with acute pancreatitis. Acta Cir. Bras. 2016, 31, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qi, R.; Xian, X.; Yang, F.; Blackstein, M.; Deng, X.; Fan, J.; Ross, C.J.; Karasinska, J.; Hayden, M.R.; et al. Spontaneous atherosclerosis in aged lipoprotein lipase-deficient mice with severe hypertriglyceridemia on a normal chow diet. Circ. Res. 2008, 102, 250–256. [Google Scholar] [CrossRef]
- Mo, X.; Liu, X.; Wang, L.; Li, H.; Lu, X.; Huang, J.; Chen, J.; Cao, J.; Li, J.; Chen, S.; et al. Lipoprotein lipase gene polymorphism rs1059611 functionally influences serum lipid concentrations. Atherosclerosis 2013, 229, 511–516. [Google Scholar] [CrossRef]
- Matsuoka, R.; Abe, S.; Tokoro, F.; Arai, M.; Noda, T.; Watanabe, S.; Horibe, H.; Fujimaki, T.; Oguri, M.; Kato, K.; et al. Association of six genetic variants with myocardial infarction. Int. J. Mol. Med. 2015, 35, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Osman, W.; Hassoun, A.; Jelinek, H.F.; Almahmeed, W.; Afandi, B.; Tay, G.K.; Alsafar, H. Genetics of type 2 diabetes and coronary artery disease and their associations with twelve cardiometabolic traits in the United Arab Emirates population. Gene 2020, 750, 144722. [Google Scholar] [CrossRef] [PubMed]
- Holmer, S.R.; Hengstenberg, C.; Mayer, B.; Döring, A.; Löwel, H.; Engel, S.; Hense, H.-W.; Wolf, M.; Klein, G.; Riegger, G.A.; et al. Lipoprotein lipase gene polymorphism, cholesterol subfractions and myocardial infarction in large samples of the general population. Cardiovasc. Res. 2000, 47, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.C.; Reich, D.; Tandon, A.; Akylbekova, E.; Patterson, N.; Waliszewska, A.; Kathiresan, S.; Sarpong, D.; Taylor, H.A.; Wilson, J.G. Genetic differences between the determinants of lipid profile phenotypes in African and European Americans: The Jackson Heart Study. PLoS Genet. 2009, 5, e1000342. [Google Scholar] [CrossRef]
- Griffin, J.H.; Zlokovic, B.V.; Mosnier, L.O. Protein C anticoagulant and cytoprotective pathways. Int. J. Hematol. 2012, 95, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; Bonet, E.; Estellés, A.; Montes, R.; Hermida, J.; Martos, L.; España, F.; Medina, P. The endothelial cell protein C receptor: Its role in thrombosis. Thromb. Res. 2011, 128, 410–416. [Google Scholar] [CrossRef]
- Mohan Rao, L.V.; Esmon, C.T.; Pendurthi, U.R. Endothelial cell protein C receptor: A multiliganded and multifunctional receptor. Blood 2014, 124, 1553–1562. [Google Scholar] [CrossRef]
- Fidalgo, T.; Martinho, P.; Salvado, R.; Manco, L.; Oliveira, A.C.; Pinto, C.S.; Gonçalves, E.; Marques, D.; Sevivas, T.; Martins, N.; et al. Familial thrombotic risk based on the genetic background of Protein C Deficiency in a Portuguese Study. Eur. J. Haematol. 2015, 95, 294–307. [Google Scholar] [CrossRef]
- Manderstedt, E.; Halldén, C.; Lind-Halldén, C.; Elf, J.; Svensson, P.J.; Engström, G.; Melander, O.; Baras, A.; Lotta, L.A.; Zöller, B.A.; et al. Thrombotic Risk Determined by Protein C Receptor (PROCR) Variants among Middle-Aged and Older Adults: A Population-Based Cohort Study. Thromb. Haemost. 2022, 122, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Karabıyık, A.; Yılmaz, E.; Eğin, Y.; Akar, N. The Effects of Endothelial Protein C Receptor Gene Polymorphisms on the Plasma sEPCR Level in Venous Thrombosis Patients. Turk. J. Haematol. 2012, 29, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Olson, N.C.; Raffield, L.M.; Lange, L.A.; Lange, E.M.; Longstreth, W.; Chauhan, G.; Debette, S.; Seshadri, S.; Reiner, A.P.; Tracy, R.P. Associations of activated coagulation factor VII and factor VIIa-antithrombin levels with genome-wide polymorphisms and cardiovascular disease risk. J. Thromb. Haemost. 2018, 16, 19–30. [Google Scholar] [CrossRef]
- Kallel, C.; Cohen, W.; Saut, N.; Blankenberg, S.; Schnabel, R.; Rupprecht, H.J.; Bickel, C.; Munzel, T.; Tregouet, D.-A.; Morange, P.-E. Association of soluble endothelial protein C receptor plasma levels and PROCR rs867186 with cardiovascular risk factors and cardiovascular events in coronary artery disease patients: The Athero Gene study. BMC Med. Genet. 2012, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Howson, J.M.M.; Zhao, W.; Barnes, D.R.; Ho, W.-K.; Young, R.; Paul, D.S.; Waite, L.L.; Freitag, D.F.; Fauman, E.B.; Salfati, E.L.; et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 2017, 49, 1113–1119. [Google Scholar] [CrossRef]
- Pang, S.; Tao, Z.; Min, X.; Zhou, C.; Pan, D.; Cao, Z.; Wang, X. Correlation between the Serum Platelet-Derived Growth Factor, Angiopoietin-1, and Severity of Coronary Heart Disease. Cardiol. Res. Pract. 2020, 2020, 3602608. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Y.; Huang, R.S.; Wang, F.; Xu, L.; Le, Y.; Yang, X.; Xu, W.; Huang, X.; Lian, J.; et al. A case-control study provides evidence of association for a common SNP rs974819 in PDGFD to coronary heart disease and suggests a sex-dependent effect. Thromb. Res. 2012, 130, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Dechamethakun, S.; Ikeda, S.; Arai, T.; Sato, N.; Sawabe, M.; Muramatsu, M. Associations between the CDKN2A/B, ADTRP and PDGFD polymorphisms and the development of coronary atherosclerosis in Japanese patients. J. Atheroscler. Thromb. 2014, 21, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U.; Olsen, R.S.; Länne, T.; Matussek, A.; Wågsäter, D. PDGF-D gene polymorphism is associated with increased cardiovascular mortality in elderly men. BMC Med. Genet. 2016, 17, 62. [Google Scholar] [CrossRef]
Control Group (n = 144) | Unstable Angina (n = 232) | p-value ^ | Compared Genotypes or Alleles | p-value # | OR (95% CI) | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
PDGF rs974819 | ||||||||
Genotype | ||||||||
CC | 64 | 44.44% | 117 | 50.43% | TT + CT vs. CC | 0.29 | 0.79 (0.52–1.19) | |
CT | 69 | 47.92% | 101 | 43.53% | 0.501 | TT vs. CT + CC | 0.53 | 0.78 (0.34–1.76) |
TT | 11 | 7.64% | 14 | 6.04% | TT vs. CC | 0.51 | 0.70 (0.30–1.62) | |
CT vs. CC | 0.32 | 0.80 (0.52–1.23) | ||||||
TT vs. CT | 0.83 | 0.87 (0.37–2.03) | ||||||
Allele | ||||||||
C | 197 | 68.40% | 335 | 72.20% | ||||
T | 91 | 31.60% | 129 | 27.80% | T vs. C | 0.28 | 0.83 (0.61–1.15) | |
LPL rs264 | ||||||||
Genotype | ||||||||
GG | 111 | 77.08% | 179 | 77.16% | AA + GA vs. GG | 1.00 | 1.00 (0.61–1.63) | |
GA | 29 | 20.14% | 46 | 19.83% | 0.989 | AA vs. GA + GG | 1.00 | 1.09 (0.31–3.79) |
AA | 4 | 2.78% | 7 | 3.01% | AA vs. GG | 1.00 | 1.09 (0.31–3.79) | |
GA vs. GG | 1.00 | 0.98 (0.58–1.66) | ||||||
AA vs. GA | 1.00 | 1.10 (0.30–4.10) | ||||||
Allele | ||||||||
G | 251 | 87.15% | 404 | 87.07% | ||||
A | 37 | 12.85% | 60 | 12.93% | A vs. G | 1.00 | 1.01 (0.65–1.56) | |
PROCR rs867186 | ||||||||
Genotype | ||||||||
AA | 129 | 89.58% | 194 | 83.62% | GG + AG vs. AA | 0.13 | 1.69 (0.89–3.19) | |
AG | 13 | 9.03% | 38 | 16.38% | 0.028 | GG vs. AG + AA | 0.15 | - |
GG | 2 | 1.39% | 0 | 0.00% | GG vs. AA | 0.16 | - | |
AG vs. AA | 0.06 | 1.94 (1.00–3.79) | ||||||
GG vs. AG | 0.08 | - | ||||||
Allele | ||||||||
A | 271 | 94.10% | 426 | 91.81% | ||||
G | 17 | 5.90% | 38 | 8.19% | G vs. A | 0.25 | 1.42 (0.79–2.57) |
Without Diabetes Mellitus (n = 175) | Diabetes Mellitus (n = 57) | p-value ^ | Compared Genotypes or Alleles | p-value * | OR (95% CI) | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
PDGF rs974819 | ||||||||
Genotype | ||||||||
CC | 90 | 51.43% | 27 | 47.37% | TT + CT vs. CC | 0.65 | 1.18 (0.65–2.14) | |
CT | 76 | 43.43% | 25 | 43.86% | 0.583 | TT vs. CT + CC | 0.34 | 1.77 (0.57–5.53) |
TT | 9 | 5.14% | 5 | 8.77% | TT vs. CC | 0.33 | 1.85 (0.57–6.00) | |
CT vs. CC | 0.87 | 1.10 (0.59–2.05) | ||||||
TT vs. CT | 0.52 | 1.69 (0.52–5.51) | ||||||
Allele | ||||||||
C | 256 | 73.14% | 79 | 69.30% | ||||
T | 94 | 26.86% | 35 | 30.70% | T vs. C | 0.47 | 1.21 (0.76–1.92) | |
LPL rs264 | ||||||||
Genotype | ||||||||
GG | 139 | 79.43% | 40 | 70.17% | AA + GA vs. GG | 0.15 | 1.64 (0.84–3.23) | |
GA | 33 | 18.86% | 13 | 22.81% | 0.090 | AA vs. GA + GG | 0.06 | 4.33 (0.94–19.95) |
AA | 3 | 1.71% | 4 | 7.02% | AA vs. GG | 0.06 | 4.63 (1.00–21.56) | |
GA vs. GG | 0.44 | 1.37 (0.66–2.85) | ||||||
AA vs. GA | 0.19 | 3.39 (0.66–17.25) | ||||||
Allele | ||||||||
G | 311 | 88.86% | 93 | 81.58% | ||||
A | 39 | 11.14% | 21 | 18.42% | A vs. G | 0.05 | 1.80 (1.01–3.21) | |
PROCR rs867186 | ||||||||
Genotype | ||||||||
AA | 147 | 84.00% | 47 | 82.46% | GG + AG vs. AA | 0.84 | 1.12 (0.51–2.47) | |
AG | 28 | 16.00% | 10 | 17.54% | 0.784 | GG vs. AG + AA | 1.00 | - |
GG | 0 | 0.00% | 0 | 0.00% | GG vs. AA | 1.00 | - | |
AG vs. AA | 0.84 | 1.12 (0.51–2.47) | ||||||
GG vs. AG | 1.00 | - | ||||||
Allele | ||||||||
A | 322 | 92.00% | 104 | 91.23% | ||||
G | 28 | 8.00% | 10 | 8.77% | G vs. A | 0.84 | 1.11 (0.52–2.35) |
Without Arterial Hypertension (n = 87) | Arterial Hypertension (n = 145) | p-value ^ | Compared Genotypes or Alleles | p-value * | OR (95% CI) | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
PDGF rs974819 | ||||||||
Genotype | ||||||||
CC | 40 | 45.98% | 77 | 53.10% | TT + CT vs. CC | 0.28 | 0.74 (0.43–1.25) | |
CT | 39 | 44.83% | 62 | 42.76% | 0.234 | TT vs. CT + CC | 0.16 | 0.43 (0.14–1.27) |
TT | 8 | 9.19% | 6 | 4.14% | TT vs. CC | 0.14 | 0.39 (0.13–1.20) | |
CT vs. CC | 0.57 | 0.83 (0.48–1.44) | ||||||
TT vs. CT | 0.25 | 0.47 (0.15–1.46) | ||||||
Allele | ||||||||
C | 119 | 68.39% | 216 | 74.48% | ||||
T | 55 | 31.61% | 74 | 25.52% | T vs. C | 0.17 | 0.74 (0.49–1.12) | |
LPL rs264 | ||||||||
Genotype | ||||||||
GG | 68 | 78.16% | 111 | 76.55% | AA + GA vs. GG | 0.87 | 1.10 (0.58–2.07) | |
GA | 17 | 19.54% | 29 | 20.00% | 0.877 | AA vs. GA + GG | 0.71 | 1.52 (0.29–8.00) |
AA | 2 | 2.30% | 5 | 3.45% | AA vs. GG | 0.71 | 1.53 (0.29–8.12) | |
GA vs. GG | 1.00 | 1.05 (0.54–2.04) | ||||||
AA vs. GA | 1.00 | 1.47 (0.26–8.40) | ||||||
Allele | ||||||||
G | 153 | 87.93% | 251 | 86.55% | ||||
A | 21 | 12.07% | 39 | 13.45% | A vs. G | 0.78 | 1.13 (0.64–2.00) | |
PROCR rs867186 | ||||||||
Genotype | ||||||||
AA | 76 | 87.36% | 118 | 81.38% | GG + AG vs. AA | 0.27 | 1.58 (0.74–3.37) | |
AG | 11 | 12.64% | 27 | 18.62% | 0.234 | GG vs. AG + AA | 1.00 | - |
GG | 0 | 0.00% | 0 | 0.00% | GG vs. AA | 1.00 | - | |
AG vs. AA | 0.27 | 1.58 (0.74–3.37) | ||||||
GG vs. AG | 1.00 | - | ||||||
Allele | ||||||||
A | 163 | 93.68% | 263 | 90.69% | ||||
G | 11 | 6.32% | 27 | 9.31% | G vs. A | 0.30 | 1.52 (0.74–3.15) |
Parameters | PROCR rs867186 Genotypes | ||||
---|---|---|---|---|---|
AA | AG | AA vs. AG | |||
n | Mean ± SD | n | Mean ± SD | p & | |
Age [years] | 194 | 62.06 ± 9.63 | 38 | 62.08 ± 10.05 | 0.979 |
BMI [kg/m2] | 194 | 28.36 ± 4.04 | 38 | 28.45 ± 3.52 | 0.946 |
CH [mg/dL] | 186 | 230.64 ± 56.57 | 37 | 228.43 ± 55.11 | 0.870 |
HDL [mg/dL] | 154 | 45.34 ± 8.52 | 32 | 42.00 ± 7.35 | 0.043 |
LDL [mg/dL] | 154 | 163.62 ± 50.23 | 32 | 164.09 ± 52.58 | 0.944 |
TG [mg/dL] | 185 | 141.45 ± 76.15 | 37 | 131.32 ± 57.00 | 0.696 |
Parameters | LPL rs264 Genotypes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GG | GA | AA | GG vs. GA | AA vs. GA | GG vs. AA | GG + GA vs. AA | AA + GA vs. GG | ||||
n | Mean ± SD | n | Mean ± SD | n | Mean ± SD | p & | |||||
Age [years] | 179 | 61.75 ± 9.38 | 46 | 62.98 ± 11.01 | 7 | 64.00 ± 8.39 | 0.445 | 0.793 | 0.534 | 0.577 | 0.365 |
BMI [kg/m2] | 179 | 28.30 ± 3.73 | 46 | 28.76 ± 4.83 | 7 | 27.57 ± 3.64 | 0.996 | 0.674 | 0.539 | 0.558 | 0.837 |
CH [mg/dL] | 172 | 231.20 ± 56.71 | 44 | 231.27 ± 57.17 | 7 | 201.29 ± 28.66 | 0.950 | 0.198 | 0.122 | 0.128 | 0.648 |
HDL [mg/dL] | 143 | 44.37 ± 8.47 | 38 | 46.90 ± 8.25 | 5 | 40.00 ± 3.74 | 0.116 | 0.049 | 0.279 | 0.193 | 0.260 |
LDL [mg/dL] | 143 | 163.56 ± 50.21 | 38 | 165.92 ± 54.65 | 5 | 151.00 ± 23.48 | 0.660 | 0.532 | 0.585 | 0.564 | 0.801 |
TG [mg/dL] | 172 | 137.99 ± 74.67 | 43 | 149.77 ± 69.17 | 7 | 121.86 ± 65.22 | 0.262 | 0.364 | 0.468 | 0.435 | 0.436 |
Parameters | PDGF rs974819 Genotypes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | CC vs. CT | TT vs. CT | CC vs. TT | CC + CT vs. TT | TT + CT vs. CC | ||||
n | Mean ± SD | n | Mean ± SD | n | Mean ± SD | p & | |||||
Age [years] | 117 | 62.00 ± 9.83 | 101 | 62.47 ± 9.79 | 14 | 59.71 ± 7.56 | 0.743 | 0.263 | 0.375 | 0.304 | 0.949 |
BMI [kg/m2] | 117 | 28.61 ± 4.23 | 101 | 28.20 ± 3.61 | 14 | 27.64 ± 4.11 | 0.679 | 0.798 | 0.677 | 0.722 | 0.627 |
CH [mg/dL] | 113 | 238.42 ± 58.89 | 96 | 221.97 ± 53.51 | 14 | 221.50 ± 44.60 | 0.032 | 0.851 | 0.384 | 0.695 | 0.029 |
HDL [mg/dL] | 93 | 44.41 ± 8.20 | 80 | 45.20 ± 8.63 | 13 | 44.69 ± 9.02 | 0.510 | 0.618 | 0.881 | 0.745 | 0.585 |
LDL [mg/dL] | 93 | 174.23 ± 49.50 | 80 | 153.58 ± 51.07 | 13 | 150.77 ± 40.45 | 0.006 | 0.890 | 0.085 | 0.305 | 0.003 |
TG [mg/dL] | 113 | 142.98 ± 70.73 | 95 | 138.07 ± 77.73 | 14 | 125.29 ± 64.74 | 0.341 | 0.565 | 0.197 | 0.320 | 0.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, D.; Safranow, K.; Pawlik, A. LPL rs264, PROCR rs867186 and PDGF rs974819 Gene Polymorphisms in Patients with Unstable Angina. J. Pers. Med. 2024, 14, 213. https://doi.org/10.3390/jpm14020213
Malinowski D, Safranow K, Pawlik A. LPL rs264, PROCR rs867186 and PDGF rs974819 Gene Polymorphisms in Patients with Unstable Angina. Journal of Personalized Medicine. 2024; 14(2):213. https://doi.org/10.3390/jpm14020213
Chicago/Turabian StyleMalinowski, Damian, Krzysztof Safranow, and Andrzej Pawlik. 2024. "LPL rs264, PROCR rs867186 and PDGF rs974819 Gene Polymorphisms in Patients with Unstable Angina" Journal of Personalized Medicine 14, no. 2: 213. https://doi.org/10.3390/jpm14020213
APA StyleMalinowski, D., Safranow, K., & Pawlik, A. (2024). LPL rs264, PROCR rs867186 and PDGF rs974819 Gene Polymorphisms in Patients with Unstable Angina. Journal of Personalized Medicine, 14(2), 213. https://doi.org/10.3390/jpm14020213