Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine
Abstract
:1. Introduction
2. Wearable Technology, IoT/IoMT Integration, Telemedicine, and Virtual Healthcare Platforms
3. Advanced Data Integration and Analysis and Biomarker (Genomic and Molecular) Research
4. Personalized Sleep Stage Estimation and Circadian Rhythm Analysis
5. Computational Models of Sleep Disorders
6. Customized Sleep Pharmacogenetics and Pharmacotherapy
7. Obstructive Sleep Apnea as a Case Study
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vyazovskiy, V.V. Sleep, recovery, and metaregulation: Explaining the benefits of sleep. Nat. Sci. Sleep 2015, 7, 171–184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assefa, S.Z.; Diaz-Abad, M.; Wickwire, E.M.; Scharf, S.M. The Functions of Sleep. AIMS Neurosci. 2015, 2, 155–171. [Google Scholar] [CrossRef]
- Eban-Rothschild, A. Beyond model organisms: Diversifying experimental species and ecological complexity to reveal the evolutionary history and functions of sleep. Sleep 2022, 45, zsac102. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.P.; Sidol, C.A.; Van Dyk, T.R.; Epstein, J.N.; Beebe, D.W. Intraindividual variability of sleep/wake patterns in relation to child and adolescent functioning: A systematic review. Sleep Med. Rev. 2017, 34, 94–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, D.A.; Jackson, C.L.; Williams, N.J.; Alcántara, C. Are sleep patterns influenced by race/ethnicity—A marker of relative advantage or disadvantage? Evidence to date. Nat. Sci. Sleep 2019, 11, 79–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemola, S.; Ledermann, T.; Friedman, E.M. Variability of sleep duration is related to subjective sleep quality and subjective well-being: An actigraphy study. PLoS ONE 2013, 8, e71292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, A.S.C.; Massar, S.A.A.; Bei, B.; Chee, M.W.L. Assessing ‘readiness’ by tracking fluctuations in daily sleep duration and their effects on daily mood, motivation, and sleepiness. Sleep Med. 2023, 112, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Forger, D.B.; Frank, E.; Sen, S.; Goldstein, C. Day-to-day variability in sleep parameters and depression risk: A prospective cohort study of training physicians. NPJ Digit. Med. 2021, 4, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bei, B.; Wiley, J.F.; Trinder, J.; Manber, R. Beyond the mean: A systematic review on the correlates of daily intraindividual variability of sleep/wake patterns. Sleep Med. Rev. 2016, 28, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Stewart, E.M.; Landry, S.; Edwards, B.A.; Drummond, S.P. The bidirectional relationship between sleep and health. In The Wiley Encyclopedia of Health Psychology; Wiley: New York, NY, USA, 2020; pp. 165–188. [Google Scholar]
- Bragazzi, N.L.; Guglielmi, O.; Garbarino, S. SleepOMICS: How Big Data Can Revolutionize Sleep Science. Int. J. Environ. Res. Public Health 2019, 16, 291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Genderson, M.R.; Rana, B.K.; Panizzon, M.S.; Grant, M.D.; Toomey, R.; Jacobson, K.C.; Xian, H.; Cronin-Golomb, A.; Franz, C.E.; Kremen, W.S.; et al. Genetic and environmental influences on sleep quality in middle-aged men: A twin study. J. Sleep Res. 2013, 22, 519–526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sejbuk, M.; Mirończuk-Chodakowska, I.; Witkowska, A.M. Sleep Quality: A Narrative Review on Nutrition, Stimulants, and Physical Activity as Important Factors. Nutrients 2022, 14, 1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Redline, S.; Purcell, S.M. Sleep and Big Data: Harnessing data, technology, and analytics for monitoring sleep and improving diagnostics, prediction, and interventions-an era for Sleep-Omics? Sleep 2021, 44, zsab107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheung, J.M.; Menczel Schrire, Z.; Aji, M.; Rahimi, M.; Salomon, H.; Doggett, I.; Glozier, N.; Bartlett, D.J.; Wong, K.; Grunstein, R.R.; et al. Embedding digital sleep health into primary care practice: A triangulation of perspectives from general practitioners, nurses, and pharmacists. Digit. Health 2023, 9, 20552076231180970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vijayan, V.; Connolly, J.P.; Condell, J.; McKelvey, N.; Gardiner, P. Review of Wearable Devices and Data Collection Considerations for Connected Health. Sensors 2021, 21, 5589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sports Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bragazzi, N.L.; Garbarino, S. Toward Clinical Generative AI: Conceptual Framework. JMIR AI 2024. [Google Scholar]
- Bragazzi, N.L.; Garbarino, S. Assessing the Accuracy of Generative Conversational Artificial Intelligence in Debunking Sleep Health Myths: Mixed Methods Comparative Study with Expert Analysis. JMIR Form. Res. 2024, 8, e55762. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, S.; Bragazzi, N.L. Evaluating the effectiveness of artificial intelligence-based tools in detecting and understanding sleep health misinformation: Comparative analysis using Google Bard and OpenAI ChatGPT-4. J. Sleep Res. 2024, 5, e14210. [Google Scholar] [CrossRef] [PubMed]
- Watson, N.F.; Fernandez, C.R. Artificial intelligence and sleep: Advancing sleep medicine. Sleep Med. Rev. 2021, 59, 101512. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pozuelo, I.; Zhai, B.; Palotti, J.; Mall, R.; Aupetit, M.; Garcia-Gomez, J.M.; Taheri, S.; Guan, Y.; Fernandez-Luque, L. The future of sleep health: A data-driven revolution in sleep science and medicine. NPJ Digit. Med. 2020, 3, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foster, R.G. Sleep, circadian rhythms and health. Interface Focus. 2020, 10, 20190098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, C.L.; Collen, J. A Systematic Approach to Central Sleep Apnea in an Era of Medical Complexity. Fed. Pract. 2023, 40, 76–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryba-White, B.; Gupta, S.; Khalil, W.; Irfan, M. Integrating telemedicine into sleep medicine: A learner’s perspective. J. Clin. Sleep Med. 2021, 17, 2573–2576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramar, K.; Malhotra, R.K.; Carden, K.A.; Martin, J.L.; Abbasi-Feinberg, F.; Aurora, R.N.; Kapur, V.K.; Olson, E.J.; Rosen, C.L.; Rowley, J.A.; et al. Sleep is essential to health: An American Academy of Sleep Medicine position statement. J. Clin. Sleep Med. 2021, 17, 2115–2119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaworski, D.J.; Park, A.; Park, E.J. Internet of Things for Sleep Monitoring. IEEE Instrum. Meas. Mag. 2021, 24, 30–36. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sens. Int. 2021, 2, 100117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niu, Y.; Xi, H.; Zhu, R.; Guo, Y.; Wang, S.; Xiong, X.; Wang, S.; Guo, L. Effects of telemedicine-based follow-up management on adults with obstructive sleep apnea: A systematic review and meta-analysis. Int. J. Med. Inf. 2023, 176, 105108. [Google Scholar] [CrossRef] [PubMed]
- Shamim-Uzzaman, Q.A.; Bae, C.J.; Ehsan, Z.; Setty, A.R.; Devine, M.; Dhankikar, S.; Donskoy, I.; Fields, B.; Hearn, H.; Hwang, D.; et al. The use of telemedicine for the diagnosis and treatment of sleep disorders: An American Academy of Sleep Medicine update. J. Clin. Sleep Med. 2021, 17, 1103–1107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belkora, J.K.; Ortiz DeBoque, L.; Folmer, R.L.; Totten, A.M.; Williams, K.; Whooley, M.A.; Boudreau, E.; Atwood, C.W.; Zeidler, M.; Rezayat, T.; et al. Sustainment of the TeleSleep program for rural veterans. Front. Health Serv. 2023, 3, 1214071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chun, V.S.; Whooley, M.A.; Williams, K.; Zhang, N.; Zeidler, M.R.; Atwood, C.W.; Folmer, R.L.; Totten, A.M.; Smith, C.J.; Boudreau, E.A.; et al. Veterans Health Administration TeleSleep Enterprise-Wide Initiative 2017–2020: Bringing sleep care to our nation’s veterans. J. Clin. Sleep Med. 2023, 19, 913–923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verma, R.K.; Dhillon, G.; Grewal, H.; Prasad, V.; Munjal, R.S.; Sharma, P.; Buddhavarapu, V.; Devadoss, R.; Kashyap, R.; Surani, S. Artificial intelligence in sleep medicine: Present and future. World J. Clin. Cases 2023, 11, 8106–8110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jan, M.; O’Hara, B.F.; Franken, P. Recent advances in understanding the genetics of Sleep. F1000Res 2020, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.M.; Qian, J.; Mignot, E.; Redline, S.; Scheer, F.A.J.L.; Saxena, R. Genetics of circadian rhythms and sleep in human health and disease. Nat. Rev. Genet. 2023, 24, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J.; Hek, K.; Chen, T.H.; Watson, N.F.; Eiriksdottir, G.; Byrne, E.M.; Cornelis, M.; Warby, S.C.; Bandinelli, S.; Cherkas, L.; et al. Novel loci associated with usual sleep duration: The CHARGE Consortium Genome-Wide Association Study. Mol. Psychiatry 2015, 20, 1232–1239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Foo, H.; Thalamuthu, A.; Jiang, J.; Koch, F.C.; Mather, K.A.; Wen, W.; Sachdev, P.S. Novel genetic variants associated with brain functional networks in 18,445 adults from the UK Biobank. Sci. Rep. 2021, 11, 14633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, W.; Torous, J.; Kossowsky, J.; Chen, C.Y.; Huang, H.; Wright, A. Genome-wide association analysis of insomnia using data from Partners Biobank. Sci. Rep. 2020, 10, 6928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- von Schantz, M.; Archer, S.N. Clocks, genes and Sleep. J. R. Soc. Med. 2003, 96, 486–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, Y.; Qin, Y.; Chen, S.; Xu, T.; Lin, J.; Su, D.; Yu, W.; Chen, X. Emerging trends and hot spots of sleep and genetic research: A bibliometric analysis of publications from 2002 to 2022 in the field. Front. Neurol. 2023, 14, 1264177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mignot, E.; Lin, L.; Rogers, W.; Honda, Y.; Qiu, X.; Lin, X.; Okun, M.; Hohjoh, H.; Miki, T.; Hsu, S.; et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 2001, 68, 686–699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Veler, H. Sleep and Inflammation: Bidirectional Relationship. Sleep Med. Clin. 2023, 18, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, S.; Lanteri, P.; Bragazzi, N.L.; Magnavita, N.; Scoditti, E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 2021, 4, 1304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campos, A.I.; Ingold, N.; Huang, Y.; Mitchell, B.L.; Kho, P.F.; Han, X.; García-Marín, L.M.; Ong, J.S.; 23andMe Research Team; Law, M.H.; et al. Discovery of genomic loci associated with sleep apnea risk through multi-trait GWAS analysis with snoring. Sleep 2023, 46, zsac308. [Google Scholar] [CrossRef] [PubMed]
- Sofer, T.; Kurniansyah, N.; Murray, M.; Ho, Y.L.; Abner, E.; Esko, T.; Estonian Biobank Research Team; Huffman, J.E.; Cho, K.; Wilson, P.W.F.; et al. Genome-wide association study of obstructive sleep apnoea in the Million Veteran Program uncovers genetic heterogeneity by sex. EBioMedicine 2023, 90, 104536. [Google Scholar] [CrossRef] [PubMed]
- Austin-Zimmerman, I.; Levey, D.F.; Giannakopoulou, O.; Deak, J.D.; Galimberti, M.; Adhikari, K.; Zhou, H.; Denaxas, S.; Irizar, H.; Kuchenbaecker, K.; et al. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nat. Commun. 2023, 14, 6059. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khoury, S.; Wang, Q.P.; Parisien, M.; Gris, P.; Bortsov, A.V.; Linnstaedt, S.D.; McLean, S.A.; Tungate, A.S.; Sofer, T.; Lee, J.; et al. Multi-ethnic GWAS and meta-analysis of sleep quality identify MPP6 as a novel gene that functions in sleep center neurons. Sleep 2021, 44, zsaa211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morrison, C.L.; Winiger, E.A.; Rieselbach, M.M.; Vetter, C.; Wright, K.P., Jr.; LeBourgeois, M.K.; Friedman, N.P. Sleep Health at the Genomic Level: Six Distinct Factors and Their Relationships with Psychopathology. Biol. Psychiatry Glob. Open Sci. 2022, 3, 530–540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, J.; Goodman, M.; Huang, T.; Wallace, M.L.; Lutsey, P.L.; Chen, J.T.; Castro-Diehl, C.; Bertisch, S.; Redline, S. Multi-dimensional sleep and mortality: The Multi-Ethnic Study of Atherosclerosis. Sleep 2023, 46, zsad048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jan, M.; Gobet, N.; Diessler, S.; Franken, P.; Xenarios, I. A multi-omics digital research object for the genetics of sleep regulation. Sci. Data 2019, 6, 258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watanabe, T.; Watanabe, K. Noncontact method for sleep stage estimation. IEEE Trans. Biomed. Eng. 2004, 51, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Kamon, M.; Okada, S.; Furuta, M.; Yoshida, K. Development of a non-contact sleep monitoring system for children. Front. Digit. Health 2022, 4, 877234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sridhar, N.; Shoeb, A.; Stephens, P.; Kharbouch, A.; Shimol, D.B.; Burkart, J.; Ghoreyshi, A.; Myers, L. Deep learning for automated sleep staging using instantaneous heart rate. NPJ Digit. Med. 2020, 3, 106, Erratum in NPJ Digit. Med. 2020, 3, 131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, Y.M.; Choi, S.J.; Park, S.H.; Lee, S.J.; Joo, E.Y.; Kim, J.K. A real-time, personalized sleep intervention using mathematical modeling and wearable devices. Sleep 2023, 46, zsad179. [Google Scholar] [CrossRef] [PubMed]
- Borbély, A. The two-process model of sleep regulation: Beginnings and outlook. J. Sleep Res. 2022, 31, e13598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakari, I.; Takadama, K. Personalized Non-contact Sleep Stage Estimation with Weighted Probability Estimation by Ultradian Rhythm. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ayyalasomayajula, V.; Moxness, M.; Skallerud, B. Potential of computational models in personalized treatment of obstructive sleep apnea: A patient-specific partial 3D finite element study. Biomech. Model. Mechanobiol. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Holst, S.C.; Valomon, A.; Landolt, H.P. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 577–603. [Google Scholar] [CrossRef] [PubMed]
- Landolt, H.P.; Holst, S.C.; Valomon, A. Clinical and Experimental Human Sleep-Wake Pharmacogenetics. Handb. Exp. Pharmacol. 2019, 253, 207–241. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, D.P.; Brown, G.M.; Pandi-Perumal, S.R. Chronotherapy. Handb. Clin. Neurol. 2021, 179, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Zečević, K.; Popović, N.; Vuksanović Božarić, A.; Vukmirović, M.; Rizzo, M.; Muzurović, E. Timing Is Important-Management of Metabolic Syndrome According to the Circadian Rhythm. Biomedicines 2023, 11, 1171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erland, L.A.; Saxena, P.K. Melatonin Natural Health Products and Supplements: Presence of Serotonin and Significant Variability of Melatonin Content. J. Clin. Sleep Med. 2017, 13, 275–281. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moroni, I.; Garcia-Bennett, A.; Chapman, J.; Grunstein, R.R.; Gordon, C.J.; Comas, M. Pharmacokinetics of exogenous melatonin in relation to formulation, and effects on sleep: A systematic review. Sleep Med. Rev. 2021, 57, 101431. [Google Scholar] [CrossRef] [PubMed]
- Karamitri, A.; Renault, N.; Clement, N.; Guillaume, J.L.; Jockers, R. Minireview: Toward the establishment of a link between melatonin and glucose homeostasis: Association of melatonin MT2 receptor variants with type 2 diabetes. Mol. Endocrinol. 2013, 27, 1217–1233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolomeichuk, S.N.; Korneva, V.A.; Kuznetsova, T.Y.; Korostovtseva, L.S.; Bochkarev, M.V.; Sviryaev, Y.V.; Blagonravov, M.L. MTNR1A and MTNR1B Gene Variants of the Melatonin Receptor and Arterial Stiffness in Persons without Arterial Hypertension. Bull. Exp. Biol. Med. 2023, 174, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Skelton, R.L.; Kornhauser, J.M.; Tate, B.A. Personalized medicine for pathological circadian dysfunctions. Front. Pharmacol. 2015, 6, 125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torres, R.; Kramer, W.G.; Baroldi, P. Pharmacokinetics of the dual melatonin receptor agonist tasimelteon in subjects with hepatic or renal impairment. J. Clin. Pharmacol. 2015, 55, 525–533. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bar, N.; Sobel, J.A.; Penzel, T.; Shamay, Y.; Behar, J.A. From sleep medicine to medicine during sleep—A clinical perspective. Physiol. Meas. 2021, 42, 044006. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.A.; Li, R.; Tse, Z.T.H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho, D.; Quake, S.R.; McCabe, E.R.B.; Chng, W.J.; Chow, E.K.; Ding, X.; Gelb, B.D.; Ginsburg, G.S.; Hassenstab, J.; Ho, C.M.; et al. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol. 2020, 38, 497–518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alroobaea, R.; Rubaiee, S.; Hanbazazah, A.S.; Jahrami, H.; Garbarino, S.; Damiani, G.; Wu, J.; Bragazzi, N.L. IL-4/13 Blockade and sleep-related adverse drug reactions in over 37,000 Dupilumab reports from the World Health Organization Individual Case Safety reporting pharmacovigilance database (VigiBase™): A big data and machine learning analysis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4074–4081. [Google Scholar] [CrossRef] [PubMed]
- Leonidis, A.; Korozi, M.; Sykianaki, E.; Tsolakou, E.; Kouroumalis, V.; Ioannidi, D.; Stavridakis, A.; Antona, M.; Stephanidis, C. Improving Stress Management and Sleep Hygiene in Intelligent Homes. Sensors 2021, 21, 2398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abbasi, A.; Gupta, S.S.; Sabharwal, N.; Meghrajani, V.; Sharma, S.; Kamholz, S.; Kupfer, Y. A comprehensive review of obstructive sleep apnea. Sleep Sci. 2021, 14, 142–154. [Google Scholar] [PubMed] [PubMed Central]
- Veasey, S.C.; Rosen, I.M. Obstructive Sleep Apnea in Adults. N. Engl. J. Med. 2019, 380, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, S.; Magnavita, N.; Sanna, A.; Bragazzi, N.L. Estimating the hidden burden of obstructive sleep apnoea: Challenges and pitfalls. Lancet Respir. Med. 2020, 8, e1. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and Management of Obstructive Sleep Apnea: A Review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, W.T.; Korkalainen, H. Translation of obstructive sleep apnea pathophysiology and phenotypes to personalized treatment: A narrative review. Front. Neurol. 2023, 14, 1239016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Subramani, Y.; Singh, M.; Wong, J.; Kushida, C.A.; Malhotra, A.; Chung, F. Understanding Phenotypes of Obstructive Sleep Apnea: Applications in Anesthesia, Surgery, and Perioperative Medicine. Anesth. Analg. 2017, 124, 179–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malhotra, A.; Mesarwi, O.; Pepin, J.L.; Owens, R.L. Endotypes and phenotypes in obstructive sleep apnea. Curr. Opin. Pulm. Med. 2020, 26, 609–614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bailly, S.; Grote, L.; Hedner, J.; Schiza, S.; McNicholas, W.T.; Basoglu, O.K.; Lombardi, C.; Dogas, Z.; Roisman, G.; Pataka, A.; et al. Clusters of sleep apnoea phenotypes: A large pan-European study from the European Sleep Apnoea Database (ESADA). Respirology 2021, 26, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, J.B.; Maislin, G.; Schwab, R.J. Physical findings and the risk for obstructive sleep apnea. The importance of oropharyngeal structures. Am. J. Respir. Crit. Care Med. 2000, 162 Pt 1, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Uniken Venema, J.A.M.; Rosenmöller, B.R.A.M.; de Vries, N.; de Lange, J.; Aarab, G.; Lobbezoo, F.; Hoekema, A. Mandibular advancement device design: A systematic review on outcomes in obstructive sleep apnea treatment. Sleep Med. Rev. 2021, 60, 101557. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Mayoral, P.; Almeida, G.Z.; Durán-Cantolla, J.; Alkhraisat, M.H. A Multicenter Prospective Study on the Use of a Mandibular Advancement Device in the Treatment of Obstructive Sleep Apnea. Dent. J. 2023, 11, 247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, D.H.; Wang, X.X.; Ma, D.; Zhou, Y.; Zhang, J. Upper airway asymmetry in skeletal Class III malocclusions with mandibular deviation. Sci. Rep. 2017, 7, 12185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carberry, J.C.; Amatoury, J.; Eckert, D.J. Personalized Management Approach for OSA. Chest 2018, 153, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Kubin, L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr. Physiol. 2016, 6, 1801–1850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rukhadze, I.; Fenik, V.B. Neuroanatomical Basis of State-Dependent Activity of Upper Airway Muscles. Front. Neurol. 2018, 9, 752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duong-Quy, S.; Nguyen-Huu, H.; Hoang-Chau-Bao, D.; Tran-Duc, S.; Nguyen-Thi-Hong, L.; Nguyen-Duy, T.; Tang-Thi-Thao, T.; Phan, C.; Bui-Diem, K.; Vu-Tran-Thien, Q.; et al. Personalized Medicine and Obstructive Sleep Apnea. J. Pers. Med. 2022, 12, 2034. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nokes, B.; Baptista, P.M.; de Apodaca, P.M.R.; Carrasco-Llatas, M.; Fernandez, S.; Kotecha, B.; Wong, P.Y.; Zhang, H.; Hassaan, A.; Malhotra, A. Transoral awake state neuromuscular electrical stimulation therapy for mild obstructive sleep apnea. Sleep Breath. 2023, 27, 527–534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Labarca, G.; Schmidt, A.; Dreyse, J.; Jorquera, J.; Enos, D.; Torres, G.; Barbe, F. Efficacy of continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) and resistant hypertension (RH): Systematic review and meta-analysis. Sleep Med. Rev. 2021, 58, 101446. [Google Scholar] [CrossRef] [PubMed]
- Labarca, G.; Schmidt, A.; Dreyse, J.; Jorquera, J.; Barbe, F. Telemedicine interventions for CPAP adherence in obstructive sleep apnea patients: Systematic review and meta-analysis. Sleep Med. Rev. 2021, 60, 101543. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, C.M.; Cohen, R.V.; Sumithran, P.; Clément, K.; Frühbeck, G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023, 401, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- An, H.J.; Baek, S.H.; Kim, S.W.; Kim, S.J.; Park, Y.G. Clustering-based characterization of clinical phenotypes in obstructive sleep apnoea using severity, obesity, and craniofacial pattern. Eur. J. Orthod. 2020, 42, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Palmer, L.J.; Redline, S. Genomic approaches to understanding obstructive sleep apnea. Respir. Physiol. Neurobiol. 2003, 135, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Saxena, R.; Palmer, L.J. The genetics of obstructive sleep apnoea. Respirology 2018, 23, 18–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Conte, L.; Greco, M.; Toraldo, D.M.; Arigliani, M.; Maffia, M.; De Benedetto, M. A review of the “OMICS” for management of patients with obstructive sleep apnoea. Acta Otorhinolaryngol. Ital. 2020, 40, 164–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khalyfa, A.; Marin, J.M.; Sanz-Rubio, D.; Lyu, Z.; Joshi, T.; Gozal, D. Multi-Omics Analysis of Circulating Exosomes in Adherent Long-Term Treated OSA Patients. Int. J. Mol. Sci. 2023, 24, 16074. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Templier, L.; Rossi, C.; Miguez, M.; Pérez, J.C.; Curto, A.; Albaladejo, A.; Vich, M.L. Combined Surgical and Orthodontic Treatments in Children with OSA: A Systematic Review. J. Clin. Med. 2020, 9, 2387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fank, F.; Artismo, R.S.; de Santana, M.G.; Esteves, A.M.; Matte, D.L.; Mazo, G.Z. Effects of combined exercise training with sleep education in older adults with obstructive sleep apnea: Protocol for a randomized clinical trial. Front. Psychol. 2024, 15, 1322545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rokou, A.; Eleftheriou, A.; Tsigalou, C.; Apessos, I.; Nena, E.; Dalamaga, M.; Voulgaris, A.; Steiropoulos, P. Effect of the Implementation of a Structured Diet Management Plan on the Severity of Obstructive Sleep Apnea: A Systematic Review. Curr. Nutr. Rep. 2023, 12, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Al Oweidat, K.; Toubasi, A.A.; Tawileh, R.B.A.; Tawileh, H.B.A.; Hasuneh, M.M. Bariatric surgery and obstructive sleep apnea: A systematic review and meta-analysis. Sleep Breath 2023, 27, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Randerath, W.; Verbraecken, J.; de Raaff, C.A.L.; Hedner, J.; Herkenrath, S.; Hohenhorst, W.; Jakob, T.; Marrone, O.; Marklund, M.; McNicholas, W.T.; et al. European Respiratory Society guideline on non-CPAP therapies for obstructive sleep apnoea. Eur. Respir. Rev. 2021, 30, 210200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, Y.C.; Lu, C.T.; Chuang, L.P.; Lee, L.A.; Fang, T.J.; Cheng, W.N.; Li, H.Y. Pharmacotherapy for obstructive sleep apnea—A systematic review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 2023, 70, 101809. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K.; Almeida, F.R.; de Chazal, P.; Cistulli, P.A. Prediction in obstructive sleep apnoea: Diagnosis, comorbidity risk, and treatment outcomes. Expert. Rev. Respir. Med. 2018, 12, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.C.; Sutherland, K.; Cistulli, P.A.; Pack, A.I. P4 medicine approach to obstructive sleep apnoea. Respirology 2017, 22, 849–860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arachchige, M.A.; Steier, J. Beyond Usual Care: A Multidisciplinary Approach Towards the Treatment of Obstructive Sleep Apnoea. Front. Cardiovasc. Med. 2022, 8, 747495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hwang, D. Monitoring Progress and Adherence with Positive Airway Pressure Therapy for Obstructive Sleep Apnea: The Roles of Telemedicine and Mobile Health Applications. Sleep Med. Clin. 2016, 11, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Spicuzza, L.; Caruso, D.; Di Maria, G. Obstructive sleep apnoea syndrome and its management. Ther. Adv. Chronic Dis. 2015, 6, 273–285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zinchuk, A.; Yaggi, H.K. Phenotypic Subtypes of OSA: A Challenge and Opportunity for Precision Medicine. Chest 2020, 157, 403–420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parrino, L.; Halasz, P.; Szucs, A.; Thomas, R.J.; Azzi, N.; Rausa, F.; Pizzarotti, S.; Zilioli, A.; Misirocchi, F.; Mutti, C. Sleep medicine: Practice, challenges and new frontiers. Front. Neurol. 2022, 13, 966659. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Askland, K.; Wright, L.; Wozniak, D.R.; Emmanuel, T.; Caston, J.; Smith, I. Educational, supportive and behavioural interventions to improve usage of continuous positive airway pressure machines in adults with obstructive sleep apnoea. Cochrane Database Syst. Rev. 2020, 4, CD007736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mijnster, T.; Boersma, G.J.; Meijer, E.; Lancel, M. Effectivity of (Personalized) Cognitive Behavioral Therapy for Insomnia in Mental Health Populations and the Elderly: An Overview. J. Pers. Med. 2022, 12, 1070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haiech, J.; Kilhoffer, M.C. Personalized medicine and education: The challenge. Croat. Med. J. 2012, 53, 298–300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguilera-Cobos, L.; García-Sanz, P.; Rosario-Lozano, M.P.; Claros, M.G.; Blasco-Amaro, J.A. An innovative framework to determine the implementation level of personalized medicine: A systematic review. Front. Public Health 2023, 11, 1039688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glackin, S.N.; d’Ancona, G. Ethical, philosophical, and practical considerations in adherence to therapy in sleep medicine. Curr. Opin. Pulm. Med. 2019, 25, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.R.; Williams, S.L.; Haskard, K.B.; Dimatteo, M.R. The challenge of patient adherence. Ther. Clin. Risk Manag. 2005, 1, 189–199. [Google Scholar] [PubMed] [PubMed Central]
- Martin, L.R.; Feig, C.; Maksoudian, C.R.; Wysong, K.; Faasse, K. A perspective on nonadherence to drug therapy: Psychological barriers and strategies to overcome nonadherence. Patient Prefer. Adherence 2018, 12, 1527–1535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flores, M.; Glusman, G.; Brogaard, K.; Price, N.D.; Hood, L. P4 medicine: How systems medicine will transform the healthcare sector and society. Pers. Med. 2013, 10, 565–576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amram, D.; Cignoni, A.; Banfi, T.; Ciuti, G. From P4 medicine to P5 medicine: Transitional times for a more human-centric approach to AI-based tools for hospitals of tomorrow. Open Res. Eur. 2022, 2, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorini, A.; Pravettoni, G. P5 medicine: A plus for a personalized approach to oncology. Nat. Rev. Clin. Oncol. 2011, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Bragazzi, N.L. From P0 to P6 medicine, a model of highly participatory, narrative, interactive, and “augmented” medicine: Some considerations on Salvatore Iaconesi’s clinical story. Patient Prefer. Adherence 2013, 7, 353–359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Concept/Advancement/Application/Technology | Description |
---|---|
Personalized Approach | Tailoring sleep-related healthcare to individual needs, recognizing the unique physiological and psychological characteristics of each person |
Taking into Account Different Influencing Factors | Considering genetic predispositions, lifestyle habits, environmental influences, and underlying health conditions |
Technology Integration (Wearable Devices and IoT/IoMT) | Making use of sophisticated devices for non-intrusive monitoring of sleep patterns, including wearable devices, mobile health applications, and advanced diagnostic tools for detailed data collection and analysis; integration with IoT/IoMT for optimizing sleep environments |
Data Analysis Techniques (Machine Learning and AI in Sleep Analysis) | Employing machine learning and AI for interpreting large datasets and providing customized treatment plans, including utilization of non-contact devices and advanced algorithms (machine learning/deep learning techniques) for personalized sleep stage estimation, analysis of sleep patterns, and circadian rhythm analysis |
Circadian Rhythms and Sleep Physiology | Researching these areas and contributing to a deeper understanding of sleep’s impact on health to inform personalized treatment approaches in an evidence-based, data-driven fashion |
Advanced Data Integration and Analysis | Emphasizing the integration of genetic, environmental, and lifestyle data for comprehensive sleep assessments and treatments |
Biomarker (Genomic and Molecular) Research | Exploring individual sleep disorders and determinants of sleep health, leading to personalized treatment plans |
Computational and Mathematical Models for Sleep Disorders, Including Patient-specific 3D Computational Models | Creating patient-specific treatments for conditions like obstructive sleep apnea using computational models |
Customized Sleep Pharmacogenetics and Pharmacotherapy | Delivering personalized and data-driven insights for the selection of drugs; customizing dosages and timing of sleep medication based on genetic predispositions, molecular pathways, metabolism, and underlying health status; and providing continuous pharmacological monitoring and feedback |
Customized Non-pharmacological Interventions | Incorporating advice on sleep hygiene, dietary changes, and stress management techniques to complement pharmacological treatments |
Cross-disciplinary and Multidisciplinary Collaborations | Collaboration among various experts and specialists (like dentists, surgeons, neurologists, pulmonologists, otorhinolaryngologists, and dietitians) for a comprehensive approach to treating complex sleep disorders, innovative solutions, and a deeper understanding of sleep issues |
Regulatory and Ethical Considerations. | Addressing concerns related to privacy, data security, and the use of genetic/biometric data |
Educational Initiatives and Public Awareness | Increasing awareness about personalized sleep health, leading to earlier recognition and proactive management of sleep disorders |
Compliance and Patient Engagement | Ensuring adherence to treatment plans through education, support systems, and regular follow-up |
Longitudinal Studies and Continuous Monitoring | Providing insights into the evolution of sleep patterns over time, refining personalized treatment approaches |
Telemedicine and Virtual Healthcare Platforms | Expanding services for accessible personalized sleep medicine, especially beneficial for remote or underserved areas. |
Holistic and Integrative Approaches | Integrating mental health interventions and cognitive behavioral therapy in sleep medicine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbarino, S.; Bragazzi, N.L. Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine. J. Pers. Med. 2024, 14, 598. https://doi.org/10.3390/jpm14060598
Garbarino S, Bragazzi NL. Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine. Journal of Personalized Medicine. 2024; 14(6):598. https://doi.org/10.3390/jpm14060598
Chicago/Turabian StyleGarbarino, Sergio, and Nicola Luigi Bragazzi. 2024. "Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine" Journal of Personalized Medicine 14, no. 6: 598. https://doi.org/10.3390/jpm14060598
APA StyleGarbarino, S., & Bragazzi, N. L. (2024). Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine. Journal of Personalized Medicine, 14(6), 598. https://doi.org/10.3390/jpm14060598