Development Perspectives for Curative Technologies in Primary Demyelinating Disorders of the Central Nervous System with Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD) at the Forefront
Abstract
:1. Introduction
2. Clinical Considerations
2.1. Epidemiology
2.2. Unmet Clinical Need
3. Regulatory Requirements of the Clinical Development Program
4. Market-Related Considerations
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- De Stefano, N.; Narayanan, S.; Francis, G.S.; Arnaoutelis, R.; Tartaglia, M.C.; Antel, J.P.; Matthews, P.M.; Arnold, D.L. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch. Neurol. 2001, 58, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Bakirtzis, C.; Lima, M.; De Lorenzo, S.S.; Artemiadis, A.; Theotokis, P.; Kesidou, E.; Konstantinidou, N.; Sintila, S.A.; Boziki, M.K.; Parissis, D.; et al. Secondary Central Nervous System Demyelinating Disorders in the Elderly: A Narrative Review. Healthcare 2023, 11, 2126. [Google Scholar] [CrossRef] [PubMed]
- Koch-Henriksen, N.; Sørensen, P.S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010, 9, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Fadda, G.; Flanagan, E.P.; Cacciaguerra, L.; Jitprapaikulsan, J.; Solla, P.; Zara, P.; Sechi, E. Myelitis features and outcomes in CNS demyelinating disorders: Comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front. Neurol. 2022, 13, 1011579. [Google Scholar] [CrossRef] [PubMed]
- Touma, L.; Muccilli, A. Diagnosis and Management of Central Nervous System Demyelinating Disorders. Neurol. Clin. 2022, 40, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Bhagavati, S. Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. Front. Neurol. 2021, 12, 664664. [Google Scholar] [CrossRef] [PubMed]
- Sechi, E.; Cacciaguerra, L.; Chen, J.J.; Mariotto, S.; Fadda, G.; Dinoto, A.; Lopez-Chiriboga, A.S.; Pittock, S.J.; Flanagan, E.P. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management. Front. Neurol. 2022, 13, 885218. [Google Scholar] [CrossRef] [PubMed]
- Tillema, J.M. Imaging of Central Nervous System Demyelinating Disorders. Continuum 2023, 29, 292–323. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.M.; Anderson, A.E.; Diboll, J.; Reece, R.; Eltherington, O.; Harry, R.A.; Fouweather, T.; MacDonald, C.; Chadwick, T.; McColl, E.; et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann. Rheum. Dis. 2017, 76, 227–234. [Google Scholar] [CrossRef]
- Giannoukakis, N.; Phillips, B.; Finegold, D.; Harnaha, J.; Trucco, M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 2011, 34, 2026–2032. [Google Scholar] [CrossRef]
- Nikolic, T.; Suwandi, J.S.; Wesselius, J.; Laban, S.; Joosten, A.M.; Sonneveld, P.; Mul, D.; Aanstoot, H.J.; Kaddis, J.S.; Zwaginga, J.J.; et al. Tolerogenic dendritic cells pulsed with islet antigen induce long-term reduction in T-cell autoreactivity in type 1 diabetes patients. Front. Immunol. 2022, 13, 1054968. [Google Scholar] [CrossRef] [PubMed]
- Jauregui-Amezaga, A.; Cabezón, R.; Ramírez-Morros, A.; España, C.; Rimola, J.; Bru, C.; Pinó-Donnay, S.; Gallego, M.; Masamunt, M.C.; Ordás, I.; et al. Intraperitoneal Administration of Autologous Tolerogenic Dendritic Cells for Refractory Crohn’s Disease: A Phase I Study. J. Crohns Colitis. 2015, 9, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Willekens, B.; Presas-Rodríguez, S.; Mansilla, M.J.; Derdelinckx, J.; Lee, W.P.; Nijs, G.; De Laere, M.; Wens, I.; Cras, P.; Parizel, P.; et al. Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): A harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open 2019, 9, e030309. [Google Scholar] [CrossRef] [PubMed]
- Zubizarreta, I.; Flórez-Grau, G.; Vila, G.; Cabezón, R.; España, C.; Andorra, M.; Saiz, A.; Llufriu, S.; Sepulveda, M.; Sola-Valls, N.; et al. Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proc. Natl. Acad. Sci. USA 2019, 116, 8463–8470. [Google Scholar] [CrossRef]
- Mehta, J.M.; Hiremath, S.C.; Chilimba, C.; Ghasemi, A.; Weaver, J.D. Translation of cell therapies to treat autoimmune disorders. Adv. Drug Deliv. Rev. 2024, 205, 115161. [Google Scholar] [CrossRef] [PubMed]
- Morante-Palacios, O.; Fondelli, F.; Ballestar, E.; Martínez-Cáceres, E.M. Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends Immunol. 2021, 42, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Ten Brinke, A.; Marek-Trzonkowska, N.; Mansilla, M.J.; Turksma, A.W.; Piekarska, K.; Iwaszkiewicz-Grześ, D.; Passerini, L.; Locafaro, G.; Puñet-Ortiz, J.; van Ham, S.M.; et al. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses. Front. Immunol. 2017, 8, 1870. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Bouchet-Delbos, L.; Renoult, O.; Louvet, C.; Nerriere-Daguin, V.; Managh, A.J.; Even, A.; Giraud, M.; Vu Manh, T.P.; Aguesse, A.; et al. Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metab. 2019, 30, 1075–1090.e1078. [Google Scholar] [CrossRef]
- Navarro-Barriuso, J.; Mansilla, M.J.; Quirant-Sánchez, B.; Teniente-Serra, A.; Ramo-Tello, C.; Martínez-Cáceres, E.M. Vitamin D3-Induced Tolerogenic Dendritic Cells Modulate the Transcriptomic Profile of T CD4(+) Cells towards a Functional Hyporesponsiveness. Front. Immunol. 2020, 11, 599623. [Google Scholar] [CrossRef]
- Passeri, L.; Andolfi, G.; Bassi, V.; Russo, F.; Giacomini, G.; Laudisa, C.; Marrocco, I.; Cesana, L.; Di Stefano, M.; Fanti, L.; et al. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases. J. Autoimmun. 2023, 138, 103051. [Google Scholar] [CrossRef]
- Kenison, J.E.; Stevens, N.A.; Quintana, F.J. Therapeutic induction of antigen-specific immune tolerance. Nat. Rev. Immunol. 2024, 24, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; Gryba, C. The incidence and prevalence of neuromyelitis optica: A systematic review. Int. J. MS Care 2013, 15, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Bezzini, D.; Battaglia, M.A. Multiple Sclerosis Epidemiology in Europe. Adv. Exp. Med. Biol. 2017, 958, 141–159. [Google Scholar] [PubMed]
- Ziemssen, T.; Bhan, V.; Chataway, J.; Chitnis, T.; Campbell Cree, B.A.; Havrdova, E.K.; Kappos, L.; Labauge, P.; Miller, A.; Nakahara, J.; et al. Secondary Progressive Multiple Sclerosis: A Review of Clinical Characteristics, Definition, Prognostic Tools, and Disease-Modifying Therapies. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200064. [Google Scholar] [CrossRef]
- Krieger, S.C.; Sumowski, J. New Insights into Multiple Sclerosis Clinical Course from the Topographical Model and Functional Reserve. Neurol. Clin. 2018, 36, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Hor, J.Y.; Asgari, N.; Nakashima, I.; Broadley, S.A.; Leite, M.I.; Kissani, N.; Jacob, A.; Marignier, R.; Weinshenker, B.G.; Paul, F.; et al. Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Front Neurol. 2020, 11, 501. [Google Scholar] [CrossRef]
- Hor, J.Y.; Fujihara, K. Epidemiology of myelin oligodendrocyte glycoprotein antibody-associated disease: A review of prevalence and incidence worldwide. Front Neurol. 2023, 14, 1260358. [Google Scholar] [CrossRef]
- European Medicines Agency. Sponsor’s Guide to an Orphan Designation. 2015. Available online: https://www.ema.europa.eu/system/files/documents/other/wc500191754_en.pdf (accessed on 31 May 2024).
- Food and Drug Agency. Orphan Drugs. 2012. Available online: https://www.fda.gov/industry/designating-orphan-product-drugs-and-biological-products/orphan-drug-act-relevant-excerpts (accessed on 31 May 2024).
- European Commission. Community Register of Orphan Medicinal Products. 2024. Available online: https://ec.europa.eu/health/documents/community-register/html/reg_od_act.htm?sort=a (accessed on 31 May 2024).
- Kümpfel, T.; Giglhuber, K.; Aktas, O.; Ayzenberg, I.; Bellmann-Strobl, J.; Häußler, V.; Havla, J.; Hellwig, K.; Hümmert, M.W.; Jarius, S.; et al. Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD)—Revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management. J. Neurol. 2024, 271, 141–176. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Search Orphan Drug Designations and Approvals. 2024. Available online: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/index.cfm (accessed on 31 May 2024).
- Tahara, M.; Oeda, T.; Okada, K.; Kiriyama, T.; Ochi, K.; Maruyama, H.; Fukaura, H.; Nomura, K.; Shimizu, Y.; Mori, M.; et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020, 19, 298–306. [Google Scholar] [CrossRef]
- Fonseca, D.A.; Amaral, I.; Pinto, A.C.; Cotrim, M.D. Orphan drugs: Major development challenges at the clinical stage. Drug Discov. Today 2019, 24, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Sagoo, G.S.; Robinson, T.; Coughlan, D.; Meader, N.; Rice, S.; Vale, L. Evaluating high-cost technologies—No need to throw the baby out with the bathwater. Expert Rev. Pharmacoecon. Outcomes Res. 2023, 23, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Vella Szijj, J.; Azzopardi, L.M.; Serracino Inglott, A. Orphan drug policies in different countries. J. Pharm. Health Serv. Res. 2019, 10, 295–302. [Google Scholar] [CrossRef]
- López-Gómez, J.; Sacristán Enciso, B.; Caro Miró, M.A.; Querol Pascual, M.R. Clinically isolated syndrome: Diagnosis and risk of developing clinically definite multiple sclerosis. Neurologia (Engl. Ed.) 2023, 38, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Brex, P.A.; O’Riordan, J.I.; Miszkiel, K.A.; Moseley, I.F.; Thompson, A.J.; Plant, G.T.; Miller, D.H. Multisequence MRI in clinically isolated syndromes and the early development of MS. Neurology 1999, 53, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, S.; Dakkali, M.S.; Azarbad, R.; Ghazvini, A.; Asani, M.; Mirzaasgari, Z.; Arish, M. Predicting the conversion from clinically isolated syndrome to multiple sclerosis: An explainable machine learning approach. Mult. Scler. Relat. Disord. 2024, 86, 105614. [Google Scholar] [CrossRef] [PubMed]
- Okuda, D.T.; Lebrun-Frénay, C. Radiologically isolated syndrome in the spectrum of multiple sclerosis. Mult. Scler. 2024, 30, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Preziosa, P.; Rocca, M.A.; Filippi, M. Radiologically isolated syndromes: To treat or not to treat? J. Neurol. 2024, 271, 2370–2378. [Google Scholar] [CrossRef]
- Lebrun-Frenay, C.; Kantarci, O.; Siva, A.; Sormani, M.P.; Pelletier, D.; Okuda, D.T. Radiologically Isolated Syndrome: 10-Year Risk Estimate of a Clinical Event. Ann. Neurol. 2020, 88, 407–417. [Google Scholar] [CrossRef]
- Jarius, S.; Aktas, O.; Ayzenberg, I.; Bellmann-Strobl, J.; Berthele, A.; Giglhuber, K.; Häußler, V.; Havla, J.; Hellwig, K.; Hümmert, M.W.; et al. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD)—Revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis. J. Neurol. 2023, 270, 3341–3368. [Google Scholar] [CrossRef]
- Wu, Y.; Geraldes, R.; Juryńczyk, M.; Palace, J. Double-negative neuromyelitis optica spectrum disorder. Mult. Scler. 2023, 29, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Santoro, J.D.; Gould, J.; Panahloo, Z.; Thompson, E.; Lefelar, J.; Palace, J. Patient Pathway to Diagnosis of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): Findings from a Multinational Survey of 204 Patients. Neurol. Ther. 2023, 12, 1081–1101. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Guideline on Clinical Investigation of Medicinal Products for the Treatment of Multiple Sclerosis, Revision 2; EMA/CHMP/771815/2011, Rev. 2; European Medicines Agency: London, UK, 2015. [Google Scholar]
- Mullard, A. FDA approves first drug for primary progressive multiple sclerosis. Nat. Rev. Drug Discov. 2017, 16, 305. [Google Scholar] [CrossRef]
- Bayas, A.; Christ, M.; Faissner, S.; Klehmet, J.; Pul, R.; Skripuletz, T.; Meuth, S.G. Disease-modifying therapies for relapsing/active secondary progressive multiple sclerosis—A review of population-specific evidence from randomized clinical trials. Ther. Adv. Neurol. Disord. 2023, 16, 17562864221146836. [Google Scholar] [CrossRef] [PubMed]
- Sapko, K.; Jamroz-Wiśniewska, A.; Rejdak, K. Novel Drugs in a Pipeline for Progressive Multiple Sclerosis. J. Clin. Med. 2022, 11, 3342. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Carroll, W.; Ciccarelli, O.; Comi, G.; Cross, A.; Donnelly, A.; Feinstein, A.; Fox, R.J.; Helme, A.; Hohlfeld, R.; et al. Charting a global research strategy for progressive MS-An international progressive MS Alliance proposal. Mult. Scler. 2022, 28, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Bodrogi, J.; Kaló, Z. Principles of pharmacoeconomics and their impact on strategic imperatives of pharmaceutical research and development. Br. J. Pharmacol. 2010, 159, 1367–1373. [Google Scholar] [CrossRef]
- van Nimwegen, K.J.; van Soest, R.A.; Veltman, J.A.; Nelen, M.R.; van der Wilt, G.J.; Vissers, L.E.; Grutters, J.P. Is the $1000 Genome as Near as We Think? A Cost Analysis of Next-Generation Sequencing. Clin. Chem. 2016, 62, 1458–1464. [Google Scholar] [CrossRef]
MS | AQP4-IgG+ NMOSD | MOGAD | |
---|---|---|---|
Female-to-male ratio | 2–4 to 1 | 9 to 1 | 1 to 1 |
Prevalence | Up to 100–200/100,000 in white populations, less than 5–50/100,000 in many non-white populations | 1/100,000 in white populations, 3.5/100,000 in East Asian populations, and from 1.8 to 10/100,000 in black populations | 1.3–2.5/100,000 |
Incidence | Up to 100/million in white populations, with incidence decreasing with decreasing latitude | Around 0.5–0.8/million in white populations, higher in non-white populations | 3.4–4.8/million |
MS | AQP4-IgG+ NMOSD | MOGAD | |
---|---|---|---|
Recently approved drugs (EMA) 1 | ublituximab (2023) ponesimod (2021) ofatumumab (2021) ozanimod (2020) ocrelizumab (2018) cladribine (2017) | ravulizumab (2023) inebilizumab (2022) satralizumab (2021) eculizumab (2019) | none |
Phase II studies | ~200 patients FU: 0.5–2 years | none (dose finding in phase I) | - |
Phase III studies | 877 to 2666 patients FU: 2–4 years | 143 to 230 patients FU: 3–4 years | - |
MS as a Whole | NMOSD | MOGAD | High-Risk CIS or RIS Patients with Rapid Progression to Severe MS | |
---|---|---|---|---|
Incidence in 100,000 person-years | ~5 | ~0.4 | ~0.2 | subject to subgroup definition |
Orphan status | Not eligible | Designated | Eligible | Can be eligible |
CHMP guideline on clinical development | Yes [47] | No | No | Yes [47] (not endorsed without scientific advice) |
Precedent EU developments | >10 drugs | 3 drugs (AQP4-IgG+) | 0 | 0 |
Phase II | >200 patients | skipped | no data; requirements are presumably similar to NMOSD | |
Phase III | >1000 patients | ~200 patients | ||
Competitor landscape | Huge | Some | None | None |
Expected price erosion | Extremely high | Medium/Low | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitter, J.G.; Nagy, L.; Nagy, B.; Hren, R. Development Perspectives for Curative Technologies in Primary Demyelinating Disorders of the Central Nervous System with Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD) at the Forefront. J. Pers. Med. 2024, 14, 599. https://doi.org/10.3390/jpm14060599
Pitter JG, Nagy L, Nagy B, Hren R. Development Perspectives for Curative Technologies in Primary Demyelinating Disorders of the Central Nervous System with Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD) at the Forefront. Journal of Personalized Medicine. 2024; 14(6):599. https://doi.org/10.3390/jpm14060599
Chicago/Turabian StylePitter, János György, László Nagy, Balázs Nagy, and Rok Hren. 2024. "Development Perspectives for Curative Technologies in Primary Demyelinating Disorders of the Central Nervous System with Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD) at the Forefront" Journal of Personalized Medicine 14, no. 6: 599. https://doi.org/10.3390/jpm14060599
APA StylePitter, J. G., Nagy, L., Nagy, B., & Hren, R. (2024). Development Perspectives for Curative Technologies in Primary Demyelinating Disorders of the Central Nervous System with Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD) at the Forefront. Journal of Personalized Medicine, 14(6), 599. https://doi.org/10.3390/jpm14060599