From Sweet to Sour: SGLT-2-Inhibitor-Induced Euglycemic Diabetic Ketoacidosis
Abstract
:1. Introduction
2. The Aim
3. Materials and Methods
4. Mechanisms of SGLT-2-Inhibitor-Induced EDKA
5. Clinical Manifestations and Diagnosis of SGLT-2-Inhibitor-Induced EDKA
6. Treatment of SGLT-2-Inhibitor-Induced EDKA
7. Trigger Identification and Prevention Strategies
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frampton, J.E. Empagliflozin: A Review in Symptomatic Chronic Heart Failure. Drugs 2022, 82, 1591–1602. [Google Scholar] [CrossRef]
- Grempler, R.; Thomas, L.; Eckhardt, M.; Himmelsbach, F.; Sauer, A.; Sharp, D.; Bakker, R.; Mark, M.; Klein, T.; Eickelmann, P. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: Characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes. Metab. 2012, 14, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Lunati, M.E.; Cimino, V.; Gandolfi, A.; Trevisan, M.; Montefusco, L.; Pastore, I.; Pace, C.; Betella, N.; Favacchio, G.; Bulgheroni, M.; et al. SGLT2-inhibitors are effective and safe in the elderly: The SOLD study. Pharmacol. Res. 2022, 183, 106396. [Google Scholar] [CrossRef]
- Shao, S.-C.; Chang, K.-C.; Hung, M.-J.; Yang, N.-I.; Chan, Y.-Y.; Chen, H.-Y.; Yang, Y.-H.K.; Lai, E.C.-C. Comparative risk evaluation for cardiovascular events associated with dapagliflozin vs. empagliflozin in real-world type 2 diabetes patients: A multi-institutional cohort study. Cardiovasc. Diabetol. 2019, 18, 120. [Google Scholar] [CrossRef]
- AAli, A.E.; Mazroua, M.S.; ElSaban, M.; Najam, N.; Kothari, A.S.; Mansoor, T.; Amal, T.; Lee, J.; Kashyap, R. Effect of Dapagliflozin in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Glob. Hear. 2023, 18, 45. [Google Scholar] [CrossRef]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Chertow, G.M.; Correa-Rotter, R.; Vart, P.; Jongs, N.; McMurray, J.J.V.; Rossing, P.; Langkilde, A.M.; Sjöström, C.D.; Toto, R.D.; Wheeler, D.C.; et al. Effects of Dapagliflozin in Chronic Kidney Disease, with and without Other Cardiovascular Medications: DAPA-CKD Trial. JAHA 2023, 12, e028739. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Carvalho, P.E.P.; Veiga, T.M.A.; Simões E Silva, A.C.; Gewehr, D.M.; Dagostin, C.S.; Fernandes, A.; Nasi, G.; Cardoso, R. Cardiovascular and renal effects of SGLT2 inhibitor initiation in acute heart failure: A meta-analysis of randomized controlled trials. Clin. Res. Cardiol. 2023, 112, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.; Vickneson, K.; Singh, J.S. SGLT2-inhibitors; more than just glycosuria and diuresis. Heart Fail Rev. 2021, 26, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Verma, S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu. Rev. Physiol. 2021, 83, 503–528. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Day, C.; Bellary, S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr. Diab. Rep. 2022, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, M.; Akkan, T.; Ertugrul, D.T. Re-emergence of a forgotten diabetes complication: Euglycemic diabetic ketoacidosis. Turk. J. Emerg. Med. 2024, 24, 1–7. [Google Scholar] [PubMed]
- Bonora, B.M.; Avogaro, A.; Fadini, G.P. Euglycemic Ketoacidosis. Curr. Diab. Rep. 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Sampani, E.; Sarafidis, P.; Dimitriadis, C.; Kasimatis, E.; Daikidou, D.; Bantis, K.; Papanikolaou, A.; Papagianni, A. Severe euglycemic diabetic ketoacidosis of multifactorial etiology in a type 2 diabetic patient treated with empagliflozin: Case report and literature review. BMC Nephrol. 2020, 21, 276. [Google Scholar] [CrossRef]
- Long, B.; Lentz, S.; Koyfman, A.; Gottlieb, M. Euglycemic diabetic ketoacidosis: Etiologies, evaluation, and management. Am. J. Emergency Med. 2021, 44, 157–160. [Google Scholar] [CrossRef]
- Dutta, S.; Kumar, T.; Singh, S.; Ambwani, S.; Charan, J.; Varthya, S. Euglycemic diabetic ketoacidosis associated with SGLT2 inhibitors: A systematic review and quantitative analysis. J. Fam. Med. Prim. Care 2022, 11, 927. [Google Scholar]
- Chow, E.; Clement, S.; Garg, R. Euglycemic diabetic ketoacidosis in the era of SGLT-2 inhibitors. BMJ Open Diab. Res. Care 2023, 11, e003666. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.L.; Buschur, E.O.; Buse, J.B.; Cohan, P.; Diner, J.C.; Hirsch, I.B. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium–Glucose Cotransporter 2 Inhibition. Diabetes Care 2015, 38, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Novikov, A.; Vallon, V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes Metab. Res. 2017, 33, e2886. [Google Scholar] [CrossRef] [PubMed]
- Nasa, P.; Chaudhary, S.; Shrivastava, P.K.; Singh, A. Euglycemic diabetic ketoacidosis: A missed diagnosis. WJD 2021, 12, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Milder, D.A.; Milder, T.Y.; Kam, P.C.A. Sodium-glucose co-transporter type-2 inhibitors: Pharmacology and peri-operative considerations. Anaesthesia 2018, 73, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, W.; Sakaguchi, K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: Possible mechanism and contributing factors. J. Diabetes Investig. 2016, 7, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.J.; Rabin-Court, A.; Song, J.D.; Cardone, R.L.; Wang, Y.; Kibbey, R.G.; Shulman, G.I. Dehydration and insulinopenia are necessary and sufficient for euglycemic ketoacidosis in SGLT2 inhibitor-treated rats. Nat. Commun. 2019, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Nair, A. A Literature Review of the Therapeutic Perspectives of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitor-Induced Euglycemic Diabetic Ketoacidosis. Cureus [Internet]. 27 September 2022. Available online: https://www.cureus.com/articles/115109-a-literature-review-of-the-therapeutic-perspectives-of-sodium-glucose-cotransporter-2-sglt2-inhibitor-induced-euglycemic-diabetic-ketoacidosis (accessed on 27 April 2024).
- Boeder, S.C.; Thomas, R.L.; Le Roux, M.J.; Giovannetti, E.R.; Gregory, J.M.; Pettus, J.H. Combination SGLT2 Inhibitor and Glucagon Receptor Antagonist Therapy in Type 1 Diabetes: A Randomized Clinical Trial. Diabetes Care 2024, dc240212. [Google Scholar] [CrossRef] [PubMed]
- Menghoum, N.; Oriot, P.; Hermans, M.P. Clinical and biochemical characteristics and analysis of risk factors for euglycaemic diabetic ketoacidosis in type 2 diabetic individuals treated with SGLT2 inhibitors: A review of 72 cases over a 4.5-year period. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102275. [Google Scholar] [CrossRef]
- Fadini, G.P.; Bonora, B.M.; Avogaro, A. SGLT2 inhibitors and diabetic ketoacidosis: Data from the FDA Adverse Event Reporting System. Diabetologia 2017, 60, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Thiruvenkatarajan, V.; Meyer, E.J.; Nanjappa, N.; Van Wijk, R.M.; Jesudason, D. Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors: A systematic review. Br. J. Anaesth. 2019, 123, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Almazrouei, R.; Afandi, B.; AlKindi, F.; Govender, R.; Al-Shamsi, S. Clinical Characteristics and Outcomes of Diabetic Ketoacidosis in Patients With Type 2 Diabetes using SGLT2 Inhibitors. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 117955142311537. [Google Scholar] [CrossRef] [PubMed]
- Juneja, D.; Nasa, P.; Jain, R.; Singh, O. Sodium-glucose Cotransporter-2 Inhibitors induced euglycemic diabetic ketoacidosis: A meta summary of case reports. World J. Diabetes 2023, 14, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.R.; Schumacher, C.A.; Harpe, S.E. SGLT 2 Inhibitors: A Systematic Review of Diabetic Ketoacidosis and Related Risk Factors in the Primary Literature. Pharmacotherapy 2017, 37, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, Y.; Henry, R.R.; Bloomgarden, Z.T.; Dagogo-Jack, S.; DeFronzo, R.A.; Einhorn, D.; Ferrannini, E.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Position Statement on the Association of SGLT-2 Inhibitors and Diabetic Ketoacidosis. Endocr. Pract. 2016, 22, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Vellipuram, A.R.; Bandaru, S.S.; Pradeep Raj, J. Euglycemic Diabetic Ketoacidosis: A Diagnostic and Therapeutic Dilemma. Endocrinology, Diabetes & Metabolism Case Reports [Internet]. 4 September 2017. Available online: https://edm.bioscientifica.com/view/journals/edm/2017/1/EDM17-0081.xml (accessed on 27 April 2024).
- Dhatariya, K.K.; Glaser, N.S.; Codner, E.; Umpierrez, G.E. Diabetic ketoacidosis. Nat. Rev. Dis. Primers 2020, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Sell, J.; Haas, N.L.; Korley, F.K.; Cranford, J.A.; Bassin, B.S. Euglycemic Diabetic Ketoacidosis: Experience with 44 Patients and Comparison to Hyperglycemic Diabetic Ketoacidosis. WestJEM [Internet]. 20 November 2023. Available online: https://escholarship.org/uc/item/32m1q008 (accessed on 2 June 2024).
- Dhatariya, K.K.; Vellanki, P. Treatment of Diabetic Ketoacidosis (DKA)/Hyperglycemic Hyperosmolar State (HHS): Novel Advances in the Management of Hyperglycemic Crises (UK Versus USA). Curr. Diab. Rep. 2017, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Fayfman, M.; Pasquel, F.J.; Umpierrez, G.E. Management of Hyperglycemic Crises: Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. Med. Clin. N. Am. 2017, 101, 587–606. [Google Scholar] [CrossRef] [PubMed]
- Ata, F.; Yousaf, Z.; Khan, A.A.; Razok, A.; Akram, J.; Ali, E.A.H.; Abdalhadi, A.; Ibrahim, D.A.; Al Mohanadi, D.H.S.H.; Danjuma, M.I. SGLT-2 inhibitors associated euglycemic and hyperglycemic DKA in a multicentric cohort. Sci. Rep. 2021, 11, 10293. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, P.S.; Wong, R.; Ekinci, E.I.; Fourlanos, S.; Shah, S.; Jones, A.R.; Hare, M.J.L.; Calder, G.L.; Epa, D.S.; George, E.M.; et al. SGLT2 Inhibitors Increase the Risk of Diabetic Ketoacidosis Developing in the Community and During Hospital Admission. J. Clin. Endocrinol. Metab. 2019, 104, 3077–3087. [Google Scholar] [CrossRef]
- Dizon, S.; Keely, E.J.; Malcolm, J.; Arnaout, A. Insights Into the Recognition and Management of SGLT2-Inhibitor-Associated Ketoacidosis: It’s Not Just Euglycemic Diabetic Ketoacidosis. Can. J. Diabetes 2017, 41, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Somagutta, M.K.R.; Uday, U.; Shama, N.; Bathula, N.R.; Pendyala, S.; Mahadevaiah, A.; Mahmutaj, G.; Ngardig, N.N. Dietary Changes Leading to Euglycemic Diabetic Ketoacidosis in Sodium-Glucose Cotransporter-2 Inhibitor Users: A Challenge for Primary Care Physicians? Korean J. Fam. Med. 2022, 43, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Selwyn, J.; Pichardo-Lowden, A.R. Managing Hospitalized Patients Taking SGLT2 Inhibitors: Reducing the Risk of Euglycemic Diabetic Ketoacidosis. Diabetology 2023, 4, 86–92. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration Drug Safety Communication: FDA Revises Labels of SGLT2 Inhibitors for Diabetes to Include Warnings about Too Much Acid in the Blood and Serious Urinary Tract Infections. [Internet]. 2022. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-revises-labels-sglt2-inhibitors-diabetes-include-warnings-about-too-much-acid-blood-and-serious (accessed on 2 June 2024).
- Australian Diabetes Society. Alert update May 2023. Periprocedural Diabetic Ketoacidosis (DKA) with SGLT2 Inhibitor Use in Patients with Diabetes; [Internet]. 2023. Available online: https://www.diabetessociety.com.au/wp-content/uploads/2023/05/ADS-ADEA-ANZCA-NZSSD_DKA_SGLT2i_Alert_Ver-May-2023.pdf (accessed on 1 May 2024).
- Mehta, P.B.; Robinson, A.; Burkhardt, D.; Rushakoff, R.J. Inpatient Perioperative Euglycemic Diabetic Ketoacidosis Due to Sodium-Glucose Cotransporter-2 Inhibitors—Lessons From a Case Series and Strategies to Decrease Incidence. Endocr. Pract. 2022, 28, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Sugasawa, G.; Suzuki, F.; Sunada, M.; Iwamuro, K.; Nakano, T.; Saito, M.; Maeba, S. Insulin and glucose infusion could prevent euglycemic diabetic ketoacidosis associated with sodium-glucose cotransporter 2 inhibitors. Indian J. Thorac. Cardiovasc. Surg. 2022, 38, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Kapila, V.; Topf, J. Sodium-Glucose Co-transporter 2 Inhibitor-Associated Euglycemic Diabetic Ketoacidosis After Bariatric Surgery: A Case and Literature Review. Cureus 2021, 13, e17093. [Google Scholar] [CrossRef] [PubMed]
- Pfützner, A.; Klonoff, D.; Heinemann, L.; Ejskjaer, N.; Pickup, J. Euglycemic ketosis in patients with type 2 diabetes on SGLT2-inhibitor therapy-an emerging problem and solutions offered by diabetes technology. Endocrine 2017, 56, 212–216. [Google Scholar] [CrossRef]
- Jaromy, M.; Miller, J.D. Potential Clinical Applications for Continuous Ketone Monitoring in the Hospitalized Patient with Diabetes. Curr. Diabetes Rep. 2022, 22, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yeung, A.M.; Bergenstal, R.M.; Castorino, K.; Cengiz, E.; Dhatariya, K.; Niu, I.; Sherr, J.L.; Umpierrez, G.E.; Klonoff, D.C. Update on Measuring Ketones. J. Diabetes Sci. Technol. 2024, 18, 714–726. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koceva, A.; Kravos Tramšek, N.A. From Sweet to Sour: SGLT-2-Inhibitor-Induced Euglycemic Diabetic Ketoacidosis. J. Pers. Med. 2024, 14, 665. https://doi.org/10.3390/jpm14070665
Koceva A, Kravos Tramšek NA. From Sweet to Sour: SGLT-2-Inhibitor-Induced Euglycemic Diabetic Ketoacidosis. Journal of Personalized Medicine. 2024; 14(7):665. https://doi.org/10.3390/jpm14070665
Chicago/Turabian StyleKoceva, Andrijana, and Nika Aleksandra Kravos Tramšek. 2024. "From Sweet to Sour: SGLT-2-Inhibitor-Induced Euglycemic Diabetic Ketoacidosis" Journal of Personalized Medicine 14, no. 7: 665. https://doi.org/10.3390/jpm14070665
APA StyleKoceva, A., & Kravos Tramšek, N. A. (2024). From Sweet to Sour: SGLT-2-Inhibitor-Induced Euglycemic Diabetic Ketoacidosis. Journal of Personalized Medicine, 14(7), 665. https://doi.org/10.3390/jpm14070665