The Role of Pro-Inflammatory Chemokines CCL-1, 2, 4, and 5 in the Etiopathogenesis of Type 2 Diabetes Mellitus in Subjects from the Asir Region of Saudi Arabia: Correlation with Different Degrees of Obesity
Abstract
:1. Introduction
2. Methods
2.1. Ethical Statement
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Results
3.1. Chemokine Concentrations in Male T2DM Subjects and Controls
3.2. CCL5 (RANTES)
3.3. Chemokine Concentrations in Female T2DM Subjects and Controls
3.4. CCL5 (RANTES)
4. Discussion
5. Limitations
6. Conclusions
- We observed that the mean serum concentrations of pro-inflammatory chemokines CCL 1, 2, 4, and 5 did not significantly differ between male and female control subjects.
- The concentrations of chemokines CCL1, CCL2, and CCL4 in the serum of T2DM subjects who had a normal body weight and those who were overweight were shown to be considerably elevated compared to the control group, regardless of gender. The observed increase demonstrated the greatest level of statistical significance among T2DM subjects with both obesity and severe obesity.
- The observation of a progressive rise in the blood concentrations of three pro-inflammatory chemokines (CCL1, 2, and 4) among T2DM subjects in relation to increasing BMI reinforces the notion that dyslipidemia and obesity play a substantial role in the pathogenesis of chronic inflammation, ultimately leading to insulin resistance.
- The levels of serum CCL5 exhibited a substantial and statistically significant increase across all groups of subjects with T2DM. However, this elevation was particularly prominent in individuals with a normal body weight.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wu, T.; Zhang, M.; Li, C.; Liu, Q.; Li, F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health 2022, 22, 1382. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Wani, J.I.; Sabah, Z.U.; Jeelani, M.; Marakala, V.; Sohail, S.K.; O’haj, M.; Alharthi, M.H.; et al. Differential Association of Selected Adipocytokines, Adiponectin, Leptin, Resistin, Visfatin and Chemerin, with the Pathogenesis and Progression of Type 2 Diabetes Mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study. J. Pers. Med. 2022, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Wani, J.I.; Elfaki, I.; Sabah, Z.U.; Alhujaily, M.; Jeelani, M.; Marakala, V.; Alharthi, M.H.; et al. Potential impact of GCK, MIR-196A-2 and MIR-423 gene abnormalities on the development and progression of type 2 diabetes mellitus in Asir and Tabuk regions of Saudi Arabia. Mol. Med. Rep. 2022, 25, 162. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.I.; Ahmed, Z. lep Expression and Its Role in Obesity and Type-2 Diabetes. Crit. Rev. Eukaryot. Gene Expr. 2017, 27, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Zhou, X.; Guan, H.; Zheng, L.; Li, Z.; Guo, X.; Yang, H.; Yu, S.; Sun, G.; Li, W.; Hu, W.; et al. Prevalence and awareness of diabetes mellitus among a rural population in China: Results from Liaoning Province. Diabet. Med. 2015, 32, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Moin, A.S.M.; Butler, A.E. Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Curr. Diabetes Rep. 2019, 19, 83. [Google Scholar] [CrossRef]
- Yin, J.; Yeung, R.; Luk, A.; Tutino, G.; Zhang, Y.; Kong, A.; Chung, H.; Wong, R.; Ozaki, R.; Ma, R.; et al. Gender, diabetes education, and psychosocial factors are associated with persistent poor glycemic control in subjects with type 2 diabetes in the Joint Asia Diabetes Evaluation (JADE) program. J. Diabetes 2016, 8, 109–119. [Google Scholar] [CrossRef]
- Liu, M.; Lv, X.; Li, Y.; Li, J.; He, Y. Prevalence and Control Status of Diabetes and Related Risk Factors among 4196 Chinese Male Older Elderly Aged ≥80 Years. Int. J. Gerontol. 2018, 12, 122–126. [Google Scholar] [CrossRef]
- Wang, H.; Yao, J.; Yin, X.; Guo, X.; Yin, J.; Qu, H.; Sun, Q. Organisational and individual characteristics associated with glycaemic control among subjects with type 2 diabetes: Cross-sectional study in China. BMJ Open 2020, 10, e036331. [Google Scholar] [CrossRef] [PubMed]
- Irazola, V.; Rubinstein, A.; Bazzano, L.; Calandrelli, M.; Chung-Shiuan, C.; Elorriaga, N.; Gutierrez, L.; Lanas, F.; Manfredi, J.A.; Mores, N.; et al. Prevalence, awareness, treatment and control of diabetes and impaired fasting glucose in the Southern Cone of Latin America. PLoS ONE 2017, 12, e0183953. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.; Narayan, K.M.V.; Chan, J.C.N.; Jha, P.; Shah, B.R. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat. Rev. Endocrinol. 2022, 18, 413–432. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.A.; Jayyousi, A.; DeFronzo, R.A.; Asaad, N.; Al-Suwaidi, J. Insulin Resistance the Link between T2DM and CVD: Basic Mechanisms and Clinical Implications. Curr. Vasc. Pharmacol. 2019, 17, 153–163. [Google Scholar] [CrossRef]
- Yang, T.; Qi, F.; Guo, F.; Shao, M.; Song, Y.; Ren, G.; Linlin, Z.; Qin, G.; Zhao, Y. An update on chronic complications of diabetes mellitus: From molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol. Med. 2024, 30, 71. [Google Scholar] [CrossRef]
- Niu, G.; Li, J.; Wang, H.; Ren, Y.; Bai, J. Associations of A-FABP with Anthropometric and Metabolic Indices and Inflammatory Cytokines in Obese Subjects with Newly Diagnosed Type 2 Diabetes. BioMed Res. Int. 2016, 2016, 9382092. [Google Scholar] [CrossRef]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Park, S.-Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef]
- Szukiewicz, D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int. J. Mol. Sci. 2023, 24, 9818. [Google Scholar] [CrossRef]
- Lee, Y.S.; Olefsky, J. Chronic tissue inflammation and metabolic disease. Genes Dev. 2021, 35, 307–328. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Chemokines in Prediabetes and Type 2 Diabetes: A Meta-Analysis. Front. Immunol. 2021, 12, 622438. [Google Scholar] [CrossRef]
- Liang, W.; Qi, Y.; Yi, H.; Mao, C.; Meng, Q.; Wang, H.; Zheng, C. The Roles of Adipose Tissue Macrophages in Human Disease. Front. Immunol. 2022, 13, 908749. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Kitade, H.; Ni, Y.; Ota, T. Roles of Chemokines and Chemokine Receptors in Obesity-Associated Insulin Resistance and Nonalcoholic Fatty Liver Disease. Biomolecules 2015, 5, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A. Levels of proinflammatory chemokines and advanced glycation end products in patients with type-2 diabetes mellitus undergoing fixed orthodontic treatment. Angle Orthod. 2021, 91, 105–110. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Chen, H.J.; Li, Y.Z.; Liu, Y.Q.; Chen, X.L.; Yu, T.J.; Lyu, H.; Jiang, H.; Li, D.Z. Association between serum levels of interleukin-12, Chemokine cytokines ligand 1 and occurrence of Type 2 diabetes mellitus complicated with pulmonary tuberculosis. Chin. J. Antituberc. 2017, 39, 1278. [Google Scholar]
- Ooms, M.; Strom, A.; Strassburger, K.; Menart, B.; Leslie, R.D.; Schloot, N.C. Increased spontaneous CCL2 (MCP-1) and CCL5 (RANTES) secretion in vitro in LADA compared to type 1 diabetes and type 2 diabetes: Action LADA 14. Diabetes Metab. Res. Rev. 2021, 37, e3431. [Google Scholar] [CrossRef]
- Dommel, S.; Blüher, M. Does C-C Motif Chemokine Ligand 2 (CCL2) Link Obesity to a Pro-Inflammatory State? Int. J. Mol. Sci. 2021, 22, 1500. [Google Scholar] [CrossRef]
- Chang, T.-T.; Chen, J.-W. The Role of Chemokines and Chemokine Receptors in Diabetic Nephropathy. Int. J. Mol. Sci. 2020, 21, 3172. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-T.; Lin, L.-Y.; Chen, J.-W. A Novel Resolution of Diabetes: C-C Chemokine Motif Ligand 4 Is a Common Target in Different Types of Diabetes by Protecting Pancreatic Islet Cell and Modulating Inflammation. Front. Immunol. 2021, 12, 650626. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Lan, T.; Wei, Y.; Wei, X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 2022, 9, 12–27. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Dai, P.; Liu, L.; Yang, Y.; Liu, X.; Li, Y.; Liao, Z. The effect of short-term intensive insulin therapy on inflammatory cytokines in subjects with newly diagnosed type 2 diabetes. J. Diabetes 2022, 14, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, W.; Yin, H.; Ma, L.; Li, S.; Li, H. Investigation of the Correlation Between the Polymorphism/Expression Level of RANTES and Its Receptor CCR5 Gene Promoter and Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2023, 16, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Mira, E.; León, B.; Barber, D.F.; Jiménez-Baranda, S.; Goya, I.; Almonacid, L.; Márquez, G.; Zaballos, A.; Martínez, A.C.; Stein, J.V.; et al. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. J. Immunol. 2008, 181, 3524–3534. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meng, Y.; He, S.; Tan, X.; Zhang, Y.; Zhang, X.; Wang, L.; Zheng, W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022, 11, 3001. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A.U. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Harakeh, S.; Kalamegam, G.; Pushparaj, P.N.; Al-Hejin, A.; Alfadul, S.M.; Al Amri, T.; Barnawi, S.; Al Sadoun, H.; Mirza, A.A.; Azhar, E. Chemokines and their association with body mass index among healthy Saudis. Saudi J. Biol. Sci. 2020, 27, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci. 1997, 2, d12–d26. [Google Scholar] [CrossRef] [PubMed]
- Purohit, S.; Sharma, A.; Hopkins, D.; Steed, L.; Bode, B.; Anderson, S.W.; Reed, J.C.; Steed, R.D.; Yang, T.; She, J.-X. Large-Scale Discovery and Validation Studies Demonstrate Significant Reductions in Circulating Levels of IL8, IL-1Ra, MCP-1, and MIP-1β in Subjects with Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2015, 100, E1179–E1187. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Chung, K.; Choi, C.; Beloor, J.; Ullah, I.; Kim, N.; Lee, K.Y.; Lee, S.-K.; Kumar, P. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice. Mol. Ther. Nucleic Acids 2016, 5, e280. [Google Scholar] [CrossRef]
- Kim, H.M.; Kwon, M.-H.; Lee, E.S.; Ha, K.B.; Chung, C.H. DA-6034 ameliorates hepatic steatosis and inflammation in high fat diet-induced obese mice. J. Yeungnam Med. Sci. 2024, 41, 103–112. [Google Scholar] [CrossRef]
- Pham, M.N.; Hawa, M.I.; Roden, M.; Schernthaner, G.; Pozzilli, P.; Buzzetti, R.; Scherbaum, W.A.; Seissler, J.; Hunter, S.; Leslie, R.D.G.; et al. Increased serum concentrations of adhesion molecules but not of chemokines in subjects with Type 2 diabetes compared with subjects with Type 1 diabetes and latent autoimmune diabetes in adult age: Action LADA 5. Diabet. Med. 2012, 29, 470–478. [Google Scholar] [CrossRef]
Controls | Group A | Group B | Group C | Group D | |
---|---|---|---|---|---|
Anthropometric and biochemical indices | N = 96 | ||||
N = 44 | 25 | 23 | 24 | 24 | |
Age | 46 (28–62) | 43 (27–51) | 47 (29–55) | 49 (30–66) | 47 (32–67) |
WHR | 0.86 (0.84–0.95) | 0.92 (0.84–0.1.05) | 0.94 (0.83–1.06) | 1.07 **T (0.97–1.11) | 1.14 *S (1.02–1.19) |
BMI (kg/m2) | 21.78 ± 1.78 | 21.80 ± 2.14 | 27.44 ± 2.29 | 34.94 ± 3.18 *T | 47.22 ± 5.70 *WX |
Fasting Glucose (mg/dL) | 92 (78–116) | 115 (88–130) | 114 (92–138) | 116 (92–144) | 124 (103–152) |
HbA1c (g/dL) | 4.9 ± 0.88 | 7.4 ±1.02 * | 8.1 ± 1.2 * | 8.7 ± 1.48 *S | 7.6 ± 0.78 * |
Cholesterol-T (mg/dL) | 186 (135–224) | 204 ** (154–230) | 214 * (148–232) | 215 * (142–240) | 226 * (158–258) |
HDL-C (mg/dL) | 53 (38–63) | 46 (36–60) | 48 (38–56) | 45 (33–58) | 44 (28–54) |
LDL-C (mg/dL) | 94 ± 32.20 | 98 (62–131) | 118 ** (80–136) | 120 ** (80–152) | 136 *w (95–162) |
TG (mg/dL) | 116 (86–132) | 122 (96–136) | 146 (98–178) | 232 * (162–256) | 242 *w (162–286) |
Controls | Group A | Group B | Group C | Group D | |
---|---|---|---|---|---|
Anthropometric and biochemical indices | N = 74 | ||||
N = 41 | 18 | 19 | 20 | 17 | |
Age | 48 (27–64) | 44 (26–55) | 47 (27–57) | 46 (28–62) | 48 (30–69) |
WHR | 0.85 (0.78–0.96) | 0.91 (0.82–1.04) | 0.92 (0.84–1.05) | 1.06 **T (0.97–1.13) | 1.10 *S (1.02–1.22) |
BMI (kg/m2) | 21.2 ± 1.66 | 21.41 ± 2.14 | 28.22 ± 2.26 | 33.88 ± 3.20 *T | 46.48 ± 5.20 *WX |
Fasting Glucose (mg/dL) | 96 (82–114) | 118 ** (90–141) | 114 ** (92–138) | 116 ** (92–144) | 124 * (103–152) |
HbA1c (g/dL) | 4.5 ± 0.43 | 7.8 ± 1.02 * | 8.1 ± 1.2 * | 8.5 ± 1.48 *S | 8.4 ± 0.98 * |
Cholesterol-T (mg/dL) | 168 (132–224) | 196 ** (145–227) | 204 ** (144–238) | 215 ** (155–235) | 228 ** (162–262) |
HDL-C (mg/dL) | 56 (41–66) | 54 (39—62) | 52 (40–63) | 46 (35–64) | 44 (35–62) |
LDL-C (mg/dL) | 96 ± 28.22 | 92 ± 28.28 | 111 ** ± 33.08 | 108 ** ± 30.30 | 132 * ± 32.12 |
TG (mg/dL) | 96 (88–124) | 126 ** (94–168) | 142 ** (88–222) | 152 ** (99–223) | 195 *WX (98–245) |
Control: Female (N = 41) | Control: Male (N = 44) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Mean | SD | Median | Min | Max | SE | Mean | SD | Median | Min | Max | SE |
Group | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 |
Age | 47.73 | 11.55 | 50.00 | 27.00 | 64.00 | 1.80 | 45.34 | 9.99 | 45.50 | 25.00 | 62.00 | 1.51 |
Sex | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 0.00 |
WHR | 0.87 | 0.06 | 0.86 | 0.78 | 0.98 | 0.01 | 0.90 | 0.03 | 0.91 | 0.86 | 0.96 | 0.00 |
BMI | 20.93 | 1.21 | 20.55 | 19.23 | 22.92 | 0.19 | 21.98 | 1.26 | 22.26 | 19.89 | 23.54 | 0.19 |
Glu-F | 96.88 | 9.09 | 98.00 | 82.00 | 114.00 | 1.42 | 96.25 | 10.27 | 96.00 | 78.00 | 115.00 | 1.55 |
HbA1c | 4.49 | 0.31 | 4.39 | 4.10 | 4.94 | 0.05 | 5.03 | 0.47 | 5.02 | 4.12 | 5.66 | 0.07 |
Chol-T | 182.37 | 23.89 | 180.00 | 136.00 | 224.00 | 3.73 | 177.75 | 25.57 | 178.00 | 135.00 | 216.00 | 3.85 |
HDL | 49.41 | 9.59 | 48.00 | 35.00 | 66.00 | 1.50 | 49.95 | 6.24 | 51.50 | 35.00 | 62.00 | 0.94 |
LDL | 96.20 | 14.84 | 97.00 | 68.00 | 125.00 | 2.32 | 101.23 | 14.68 | 98.50 | 78.00 | 126.00 | 2.21 |
TG | 106.73 | 14.16 | 102.00 | 87.00 | 156.00 | 2.21 | 105.89 | 14.77 | 104.00 | 86.00 | 132.00 | 2.23 |
CCL1 | 154.51 | 12.70 | 156.00 | 130.00 | 174.00 | 1.98 | 157.73 | 13.64 | 156.50 | 135.00 | 178.00 | 2.06 |
CCL2 | 277.39 | 32.76 | 288.00 | 165.00 | 312.00 | 5.12 | 286.82 | 19.43 | 286.50 | 245.00 | 322.00 | 2.93 |
CCL4 | 196.76 | 11.60 | 199.00 | 172.00 | 216.00 | 1.81 | 187.30 | 15.63 | 188.50 | 148.00 | 210.00 | 2.36 |
CCL5 | 4804.98 | 185.02 | 4768.00 | 4414.00 | 5098.00 | 28.89 | 4914.45 | 218.42 | 4890.00 | 4530.00 | 5240.00 | 32.93 |
T2DM Group: Female (N = 74) | T2DM: Male (N = 96) | |||||||||||
Name | Mean | SD | Median | Min | Max | SE | Mean | SD | Median | Min | Max | SE |
Group | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 0.00 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 0.00 |
Age | 44.50 | 9.90 | 43.00 | 25.00 | 66.00 | 1.15 | 45.26 | 9.86 | 45.00 | 28.00 | 67.00 | 1.01 |
Sex | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 0.00 |
WHR | 1.00 | 0.11 | 0.98 | 0.82 | 1.22 | 0.01 | 1.03 | 0.09 | 1.02 | 0.84 | 1.19 | 0.01 |
BMI | 31.74 | 9.36 | 29.54 | 19.56 | 51.70 | 1.09 | 36.54 | 10.79 | 38.25 | 21.80 | 52.90 | 1.10 |
Glu.F | 121.57 | 20.97 | 126.00 | 86.00 | 156.00 | 2.44 | 124.26 | 22.04 | 129.00 | 45.00 | 156.00 | 2.25 |
HbA1c | 7.79 | 0.90 | 7.56 | 6.68 | 9.42 | 0.10 | 8.15 | 1.18 | 7.92 | 6.08 | 10.22 | 0.12 |
Chol.T | 205.57 | 37.87 | 202.00 | 134.00 | 294.00 | 4.40 | 218.20 | 32.22 | 226.50 | 154.00 | 258.00 | 3.29 |
HDL | 47.32 | 9.01 | 48.00 | 6.00 | 64.00 | 1.05 | 44.64 | 6.13 | 45.00 | 34.00 | 56.00 | 0.63 |
LDL | 121.99 | 27.13 | 125.50 | 70.00 | 164.00 | 3.15 | 125.16 | 26.93 | 134.00 | 62.00 | 162.00 | 2.75 |
TG | 157.81 | 55.60 | 156.00 | 87.00 | 254.00 | 6.46 | 196.64 | 55.59 | 207.00 | 96.00 | 288.00 | 5.67 |
CCL1 | 309.72 | 62.47 | 288.50 | 230.00 | 424.00 | 7.26 | 338.50 | 72.10 | 367.00 | 216.00 | 426.00 | 7.36 |
CCL2 | 365.59 | 53.18 | 357.50 | 288.00 | 462.00 | 6.18 | 393.90 | 50.30 | 398.00 | 232.00 | 467.00 | 5.13 |
CCL4 | 281.12 | 41.45 | 272.00 | 218.00 | 358.00 | 4.82 | 292.08 | 57.09 | 294.00 | 202.00 | 552.00 | 5.83 |
CCL5 | 7678.62 | 1194.52 | 7126.50 | 6480.00 | 10,068.00 | 138.86 | 7546.95 | 1008.62 | 7250.00 | 6312.00 | 9200.00 | 102.94 |
Subject Groups | CCL1 (pg/mL) | CCL2 (pg/mL) | CCL4 (pg/mL) | CCL5 (pg/mL) |
---|---|---|---|---|
Controls (N = 44) | 158 ± 21.02 | 288 ± 33.12 | 186 ± 22.56 | 4880 ± 348.98 |
A (N = 25) | 245 ± 27.46 ** | 332 ± 35.76 *** | 232 ± 25.44 *** | 9620 ± 523.22 * |
B (N = 23) | 274 ± 23.12 ** | 344 ± 35.87 *** | 245 ± 25.72 *** | 7266 ± 387.55 **N |
C (N = 24) | 326 ± 35.44 *N | 376 ± 36.92 *N | 290 ± 24.14 *O | 7056 ± 382.34 **N |
D (N = 24) | 388 ± 37.12 *LM | 422 ± 44.25 *LM | 332 ± 29.90 *LM | 6892 ± 377.16 ***NQ |
Subject Groups | CCL1 (pg/mL) | CCL2 (pg/mL) | CCL4 (pg/mL) | CCL5 (pg/mL) |
---|---|---|---|---|
Controls (N = 41) | 152 ± 20.88 | 275 ± 32.14 | 194 ± 22.54 | 4756 ± 342.56 |
A (N = 18) | 262 ± 27.52 ** | 328 ± 35.66 *** | 244 ± 25.38 *** | 9546 ± 522.44 * |
B (N = 19) | 311 ± 25.10 ** | 348 ± 35.58 *** | 248 ± 25.24 *** | 7168 ± 388.24 **N |
C (N = 20) | 318 ± 35.08 *N | 382 ± 36.82 *N | 296 ± 26.08 *O | 6978 ± 384.74 **N |
D (N = 17) | 374 ± 37.04 *LM | 418 ± 44.16 *LM | 328 ± 29.88 *LM | 6866 ± 376.12 ***NQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, M.M.; Alfaifi, J.; Sohail, S.K.; Rizvi, S.F.; Akhtar, M.T.; Alghamdi, M.A.A.; Mir, R.; Wani, J.I.; Sabah, Z.U.; Alhumaydhi, F.A.; et al. The Role of Pro-Inflammatory Chemokines CCL-1, 2, 4, and 5 in the Etiopathogenesis of Type 2 Diabetes Mellitus in Subjects from the Asir Region of Saudi Arabia: Correlation with Different Degrees of Obesity. J. Pers. Med. 2024, 14, 743. https://doi.org/10.3390/jpm14070743
Mir MM, Alfaifi J, Sohail SK, Rizvi SF, Akhtar MT, Alghamdi MAA, Mir R, Wani JI, Sabah ZU, Alhumaydhi FA, et al. The Role of Pro-Inflammatory Chemokines CCL-1, 2, 4, and 5 in the Etiopathogenesis of Type 2 Diabetes Mellitus in Subjects from the Asir Region of Saudi Arabia: Correlation with Different Degrees of Obesity. Journal of Personalized Medicine. 2024; 14(7):743. https://doi.org/10.3390/jpm14070743
Chicago/Turabian StyleMir, Mohammad Muzaffar, Jaber Alfaifi, Shahzada Khalid Sohail, Syeda Fatima Rizvi, Md Tanwir Akhtar, Mushabab Ayed Abdullah Alghamdi, Rashid Mir, Javed Iqbal Wani, Zia Ul Sabah, Fahad A. Alhumaydhi, and et al. 2024. "The Role of Pro-Inflammatory Chemokines CCL-1, 2, 4, and 5 in the Etiopathogenesis of Type 2 Diabetes Mellitus in Subjects from the Asir Region of Saudi Arabia: Correlation with Different Degrees of Obesity" Journal of Personalized Medicine 14, no. 7: 743. https://doi.org/10.3390/jpm14070743
APA StyleMir, M. M., Alfaifi, J., Sohail, S. K., Rizvi, S. F., Akhtar, M. T., Alghamdi, M. A. A., Mir, R., Wani, J. I., Sabah, Z. U., Alhumaydhi, F. A., Alremthi, F., AlQahtani, A. A. J., Alharthi, M. H., Adam, M. I. E., Elfaki, I., & Sonpol, H. M. A. (2024). The Role of Pro-Inflammatory Chemokines CCL-1, 2, 4, and 5 in the Etiopathogenesis of Type 2 Diabetes Mellitus in Subjects from the Asir Region of Saudi Arabia: Correlation with Different Degrees of Obesity. Journal of Personalized Medicine, 14(7), 743. https://doi.org/10.3390/jpm14070743