Long COVID Is Not a Functional Neurologic Disorder
Abstract
:1. Introduction
2. Pathobiological Disease Characterization: From Neurasthenia to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
3. Psychosomatic/Sociogenic Illness Construction: From Neurasthenia to Functional Neurologic Disorder
- One or more symptoms of altered voluntary motor behavior or sensory function
- Clinical findings provide evidence of incompatibility between the symptom and recognized neurological or medical conditions
- The symptom or deficit is not better explained by another medical or mental disorder
- The symptom or deficit causes clinically significant distress or impairment in social, occupational, or other important areas of functioning, or warrants medical evaluation
4. Evidence Refutes That Long COVID Should Be Considered a Functional Neurologic Disorder
- Autonomic conditions, such as neurocardiogenic syncope, postural orthostatic tachycardia syndrome, orthostatic intolerance, and autonomic and small fiber neuropathy
- Chronic pain conditions, such as fibromyalgia, myofascial pain syndrome, and complex regional pain syndrome
- Systemic immune conditions, such as mast cell activation syndrome and mastocytosis
- Autoimmune conditions, such as Sjögren’s syndrome, systemic lupus erythematosus, and anti-phospholipid syndrome
- Genetic conditions, such as hypermobile Ehlers-Danlos syndrome and other hypermobility spectrum disorders, Fabry’s disease and others
- Mitochondrial and metabolic conditions
- Infection-associated chronic conditions, such as myalgic encephalomyelitis, Long COVID/Post-COVID condition, and post-treatment Lyme disease
4.1. Refutative Evidence from Pathophysiology
4.2. Refutative Evidence from Clinical Presentation
4.2.1. Motor Examination
Findings | Long COVID | Functional Neurological Disorder |
---|---|---|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
4.2.2. Sensory Examination
4.2.3. Tremor
4.2.4. Spells and Seizures
4.2.5. Gait Examination
4.2.6. Urinary Functioning
4.2.7. Cognition
4.2.8. Summary
4.3. Refutative Evidence from Neuroimaging
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beard, G. Neurasthenia, or nervous exhaustion. Boston Med. Surg. J. 1869, 3, 217–221. [Google Scholar] [CrossRef]
- Goetz, C.G. Poor Beard!! Charcot’s internationalization of neurasthenia, the “American disease”. Neurology 2001, 57, 510–514. [Google Scholar] [CrossRef]
- Hickie, I.; Davenport, T.; Wakefield, D.; Vollmer-Conna, U.; Cameron, B.; Vernon, S.D.; Reeves, W.C.; Lloyd, A.; Dubbo Infection Outcomes Study Group. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ 2006, 333, 575. [Google Scholar] [CrossRef]
- Holmes, G.P.; Kaplan, J.E.; Gantz, N.M.; Komaroff, A.L.; Schonberger, L.B.; Straus, S.E.; Jones, J.F.; Dubois, R.E.; Cunningham-Rundles, C.; Pahwa, S.; et al. Chronic fatigue syndrome: A working case definition. Ann. Intern. Med. 1988, 108, 387–389. [Google Scholar] [CrossRef]
- Ikuta, K.; Yamada, T.; Shimomura, T.; Kuratsune, H.; Kawahara, R.; Ikawa, S.; Ohnishi, E.; Sokawa, Y.; Fukushi, H.; Hirai, K.; et al. Diagnostic evaluation of 2′, 5′-oligoadenylate synthetase activities and antibodies against Epstein-Barr virus and Coxiella burnetii in patients with chronic fatigue syndrome in Japan. Microbes Infect. 2003, 5, 1096–1102. [Google Scholar] [CrossRef]
- Klimas, N.G.; Salvato, F.R.; Morgan, R.; Fletcher, M.A. Immunologic abnormalities in chronic fatigue syndrome. J. Clin. Microbiol. 1990, 28, 1403–1410. [Google Scholar] [CrossRef]
- Kogelnik, A.M.; Loomis, K.; Hoegh-Petersen, M.; Rosso, F.; Hischier, C.; Montoya, J.G. Use of valganciclovir in patients with elevated antibody titers against Human Herpesvirus-6 (HHV-6) and Epstein-Barr Virus (EBV) who were experiencing central nervous system dysfunction including long-standing fatigue. J. Clin. Virol. 2006, 37 (Suppl. S1), S33–S38. [Google Scholar] [CrossRef]
- Lerner, A.M.; Beqaj, S.H.; Deeter, R.G.; Fitzgerald, J.T. IgM serum antibodies to Epstein-Barr virus are uniquely present in a subset of patients with the chronic fatigue syndrome. In Vivo 2004, 18, 101–106. [Google Scholar]
- Shikova, E.; Reshkova, V.; Kumanova, A.; Raleva, S.; Alexandrova, D.; Capo, N.; Murovska, M.; On Behalf of the European Network on Me/Cfs Euromene. Cytomegalovirus, Epstein-Barr virus, and human herpesvirus-6 infections in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J. Med. Virol. 2020, 92, 3682–3688. [Google Scholar] [CrossRef]
- Kasimir, F.; Toomey, D.; Liu, Z.; Kaiping, A.C.; Ariza, M.E.; Prusty, B.K. Tissue specific signature of HHV-6 infection in ME/CFS. Front. Mol. Biosci. 2022, 9, 1044964. [Google Scholar] [CrossRef]
- Sejvar, J.J.; Curns, A.T.; Welburg, L.; Jones, J.F.; Lundgren, L.M.; Capuron, L.; Pape, J.; Reeves, W.C.; Campbel, G.L. Neurocognitive and functional outcomes in persons recovering from West Nile virus illness. J. Neuropsychol. 2008, 2, 477–499. [Google Scholar] [CrossRef]
- Prevail III Study Group; Sneller, M.C.; Reilly, C.; Badio, M.; Bishop, R.J.; Eghrari, A.O.; Moses, S.J.; Johnson, K.L.; Gayedyu-Dennis, D.; Hensley, L.E.; et al. A longitudinal study of Ebola sequelae in Liberia. N. Engl. J. Med. 2019, 380, 924–934. [Google Scholar] [CrossRef]
- Kelly, J.D.; Van Ryn, C.; Badio, M.; Fayiah, T.; Johnson, K.; Gayedyu-Dennis, D.; Weiser, S.D.; Porco, T.C.; Martin, J.N.; Sneller, M.C.; et al. Clinical sequelae among individuals with pauci-symptomatic or asymptomatic Ebola virus infection and unrecognised Ebola virus disease in Liberia: A longitudinal cohort study. Lancet Infect. Dis. 2022, 22, 1163–1171. [Google Scholar] [CrossRef]
- Chia, J.K. The role of enterovirus in chronic fatigue syndrome. J. Clin. Pathol. 2005, 58, 1126–1132. [Google Scholar] [CrossRef]
- Chia, J.K.; Chia, A.Y. Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach. J. Clin. Pathol. 2008, 61, 43–48. [Google Scholar] [CrossRef]
- Ledina, D.; Bradaric, N.; Milas, I.; Ivic, I.; Brncic, N.; Kuzmicic, N. Chronic fatigue syndrome after Q fever. Med. Sci. Monit. 2007, 13, CS88–CS92. [Google Scholar]
- Treib, J.; Grauer, M.T.; Haass, A.; Langenbach, J.; Holzer, G.; Woessner, R. Chronic fatigue syndrome in patients with Lyme borreliosis. Eur. Neurol. 2000, 43, 107–109. [Google Scholar] [CrossRef]
- Fares-Medina, S.; Diaz-Caro, I.; Garcia-Montes, R.; Corral-Liria, I.; Garcia-Gomez-Heras, S. Multiple Chemical Sensitivity Syndrome: First symptoms and evolution of the clinical picture: Case-control study/epidemiological case-control study. Int. J. Environ. Res. Public Health 2022, 19, 15891. [Google Scholar] [CrossRef]
- Katerndahl, D.A.; Bell, I.R.; Palmer, R.F.; Miller, C.S. Chemical intolerance in primary care settings: Prevalence, comorbidity, and outcomes. Ann. Fam. Med. 2012, 10, 357–365. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. A Long COVID Definition: A Chronic, Systemic Disease State with Profound Consequences; The National Academies Press: Washington, DC, USA, 2024. [Google Scholar]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post COVID-19 Condition or long COVID: A meta-analysis and systematic review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Bowe, B.; Xie, Y.; Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 2023, 29, 2347–2357. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Xie, Y.; Topol, E.J.; Al-Aly, Z. Three-year outcomes of post-acute sequelae of COVID-19. Nat. Med. 2024, 30, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.A.; Richardson, C.S. Posttreatment Lyme disease syndrome and myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review and comparison of pathogenesis. Chronic Dis. Transl. Med. 2023, 9, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pablos, M.; Paiva, B.; Montero-Mateo, R.; Garcia, N.; Zabaleta, A. Epstein-Barr Virus and the origin of myalgic encephalomyelitis or chronic fatigue syndrome. Front. Immunol. 2021, 12, 656797. [Google Scholar] [CrossRef] [PubMed]
- Jason, L.A.; Katz, B.Z.; Shiraishi, Y.; Mears, C.J.; Im, Y.; Taylor, R. Predictors of post-infectious chronic fatigue syndrome in adolescents. Health Psychol. Behav. Med. 2014, 2, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Jason, L.A.; Dorri, J.A. ME/CFS and post-exertional malaise among patients with long COVID. Neurol. Int. 2022, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Twomey, R.; DeMars, J.; Franklin, K.; Culos-Reed, S.N.; Weatherald, J.; Wrightson, J.G. Chronic fatigue and postexertional malaise in people living with long COVID: An observational study. Phys. Ther. 2022, 102, pzac005. [Google Scholar] [CrossRef] [PubMed]
- Vernon, S.D.; Hartle, M.; Sullivan, K.; Bell, J.; Abbaszadeh, S.; Unutmaz, D.; Bateman, L. Post-exertional malaise among people with long COVID compared to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Work 2023, 74, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Jason, L.A.; Islam, M.; Conroy, K.; Cotler, J.; Torres, C.; Johnson, M.; Mabie, B. COVID-19 symptoms over time: Comparing long-haulers to ME/CFS. Fatigue 2021, 9, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Tokumasu, K.; Honda, H.; Sunada, N.; Sakurada, Y.; Matsuda, Y.; Yamamoto, K.; Nakano, Y.; Hasegawa, T.; Yamamoto, Y.; Otsuka, Y.; et al. Clinical characteristics of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) diagnosed in patients with long COVID. Medicina 2022, 58, 850. [Google Scholar] [CrossRef] [PubMed]
- Little, J.; Higgins, M.; Palepu, R. Long COVID—Can we deny a diagnosis without denying a person’s reality? Australas. Psychiatry 2024, 32, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Leitch, A.G. Neurasthenia, myalgic encephalitis or cryptogenic chronic fatigue syndrome? QJM 1995, 88, 447–450. [Google Scholar]
- Gilliam, A.G. Epidemiological Study on an Epidemic, Diagnosed as Poliomyelitis, Occurring among the Personnel of Los Angeles County General Hospital during the Summer of 1934; United States Government Printing Office: Washington, DC, USA, 1934. [Google Scholar]
- Sigurdsson, B.; Sigurjonsson, J.; Sigurdsson, J.H.; Thorkelsson, J.; Gudmundsson, K.R. A disease epidemic in Iceland simulating poliomyelitis. Am. J. Hyg. 1950, 52, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, A.M. Myalgic encephalomyelitis: A baffling syndrome with a tragic aftermath. ME Assoc. J. 1981, 153, 40–41. [Google Scholar]
- Ramsay, A.M. Myalgic Encephalomyelitis and Postviral Fatigue States: The Saga of Royal Free Disease; Gower Medical Publishing: London, UK, 1986. [Google Scholar]
- Epidemic myalgic encephalomyelitis. Br. Med. J. 1978, 1, 1436–1437. [CrossRef]
- Evengard, B.; Schacterle, R.S.; Komaroff, A.L. Chronic fatigue syndrome: New insights and old ignorance. J. Intern. Med. 1999, 246, 455–469. [Google Scholar] [CrossRef]
- Jason, L.A.; Eisele, H.; Taylor, R.R. Assessing attitudes toward new names for chronic fatigue syndrome. Eval. Health Prof. 2001, 24, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; Jain, A.K.; DeMeirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Flor-Henry, P.; Joshi, P.; Powles, A.C.; Sherkey, J.A.; et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 2003, 1, 7–115. [Google Scholar] [CrossRef]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Valencia, I.J.; Garvert, D.W.; Montoya, J.G. Deconstructing post-exertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome: A patient-centered, cross-sectional survey. PLoS ONE 2018, 13, e0197811. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Valencia, I.J.; Garvert, D.W.; Montoya, J.G. Onset patterns and course of myalgic encephalomyelitis/chronic fatigue syndrome. Front. Pediatr. 2019, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Jason, L.A.; Torres-Harding, S.R.; Carrico, A.W.; Taylor, R.R. Symptom occurrence in persons with chronic fatigue syndrome. Biol. Psychol. 2002, 59, 15–27. [Google Scholar] [CrossRef]
- Stussman, B.; Williams, A.; Snow, J.; Gavin, A.; Scott, R.; Nath, A.; Walitt, B. Characterization of post-exertional malaise in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Neurol. 2020, 11, 1025. [Google Scholar] [CrossRef]
- Van Ness, J.M.; Stevens, S.R.; Bateman, L.; Stiles, T.L.; Snell, C.R. Postexertional malaise in women with chronic fatigue syndrome. J. Womens Health 2010, 19, 239–244. [Google Scholar] [CrossRef]
- O’Brien, K.K.; Brown, D.A.; Bergin, C.; Erlandson, K.M.; Vera, J.H.; Avery, L.; Carusone, S.C.; Cheung, A.M.; Goulding, S.; Harding, R.; et al. Long COVID and episodic disability: Advancing the conceptualisation, measurement and knowledge of episodic disability among people living with Long COVID—Protocol for a mixed-methods study. BMJ Open 2022, 12, e060826. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.K.; Brown, D.A.; McDuff, K.; St Clair-Sullivan, N.; Solomon, P.; Chan Carusone, S.; McCorkell, L.; Wei, H.; Goulding, S.; O’Hara, M.; et al. Conceptualising the episodic nature of disability among adults living with Long COVID: A qualitative study. BMJ Glob. Health 2023, 8, e011276. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, M.C.; Archard, L.C.; Banatvala, J.E.; Borysiewicz, L.K.; Clare, A.W.; David, A.; Edwards, R.H.; Hawton, K.E.; Lambert, H.P.; Lane, R.J.; et al. A report–chronic fatigue syndrome: Guidelines for research. J. R. Soc. Med. 1991, 84, 118–121. [Google Scholar] [CrossRef]
- Reeves, W.C.; Wagner, D.; Nisenbaum, R.; Jones, J.F.; Gurbaxani, B.; Solomon, L.; Papanicolaou, D.A.; Unger, E.R.; Vernon, S.D.; Heim, C. Chronic fatigue syndrome—A clinically empirical approach to its definition and study. BMC Med. 2005, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- United States National Academy of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. The National Academies Collection: Reports Funded by National Institutes of Health; NAM: Washington, DC, USA, 2015. [Google Scholar]
- National Institute for Health and Care Excellence. Myalgic Encephalomyelitis (or Encephalopathy)/Chronic Fatigue Syndrome: Diagnosis and Management—NICE Guideline, No. 206; National Institute for Health and Care Excellence: Guidelines; National Institute for Health and Care Excellence: London, UK, 2021. [Google Scholar]
- A new clinical entity? Lancet 1956, 270, 789–790.
- World Health Organization. Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death Based on the Recommendations of the Eighth Revision Conference, 8th ed.; World Health Organization: Geneva, Switzerland, 1969. [Google Scholar]
- World Health Organization. ICD-11: International Classification of Diseases, 11th revision; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- American Psychiatric Association. Committee on Nomenclature and Statistics. In Mental Disorders; Diagnostic and Statistical Manual; American Psychiatric Association: Washington, DC, USA, 1952. [Google Scholar]
- American Psychiatric Association. Committee on Nomenclature and Statistics. In Diagnostic and Statistical Manual of Mental Disorders, 2nd ed.; American Psychiatric Association: Washington, DC, USA, 1968. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.; American Psychiatric Association: Washington, DC, USA, 1980. [Google Scholar]
- Owens, C.; Dein, S. Conversion disorder: The modern hysteria. Adv. Psychiatr. Treat. 2006, 12, 152–157. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR, 5th ed., text revision ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2022. [Google Scholar]
- Mayo Clinic. Dissociative Disorders. Available online: https://www.mayoclinic.org/diseases-conditions/dissociative-disorders/symptoms-causes/syc-20355215 (accessed on 12 October 2023).
- Diez, I.; Williams, B.; Kubicki, M.R.; Makris, N.; Perez, D.L. Reduced limbic microstructural integrity in functional neurological disorder. Psychol. Med. 2021, 51, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Hassa, T.; Spiteri, S.; Schmidt, R.; Merkel, C.; Schoenfeld, M.A. Increased amygdala activity associated with cognitive reappraisal strategy in functional neurologic disorder. Front. Psychiatry 2021, 12, 613156. [Google Scholar] [CrossRef] [PubMed]
- Ospina, J.P.; Jalilianhasanpour, R.; Perez, D.L. The role of the anterior and midcingulate cortex in the neurobiology of functional neurologic disorder. Handb. Clin. Neurol. 2019, 166, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.L.; Matin, N.; Williams, B.; Tanev, K.; Makris, N.; LaFrance, W.C., Jr.; Dickerson, B.C. Cortical thickness alterations linked to somatoform and psychological dissociation in functional neurological disorders. Hum. Brain Mapp. 2018, 39, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.L.; Williams, B.; Matin, N.; LaFrance, W.C., Jr.; Costumero-Ramos, V.; Fricchione, G.L.; Sepulcre, J.; Keshavan, M.S.; Dickerson, B.C. Corticolimbic structural alterations linked to health status and trait anxiety in functional neurological disorder. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Jalilianhasanpour, R.; Matin, N.; Fricchione, G.L.; Sepulcre, J.; Keshavan, M.S.; LaFrance, W.C., Jr.; Dickerson, B.C.; Perez, D.L. Individual differences in corticolimbic structural profiles linked to insecure attachment and coping styles in motor functional neurological disorders. J. Psychiatr. Res. 2018, 102, 230–237. [Google Scholar] [CrossRef]
- Gutkin, M.; McLean, L.; Brown, R.; Kanaan, R.A. Systematic review of psychotherapy for adults with functional neurological disorder. J. Neurol. Neurosurg. Psychiatry 2020. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.; LaFrance, W.C., Jr.; Levenson, J.L.; Sharpe, M. Issues for DSM-5: Conversion disorder. Am. J. Psychiatry 2010, 167, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.; Hoeritzauer, I.; McWhirter, L.; Carson, A. Functional neurological disorder: Defying dualism. World Psychiatry 2024, 23, 53–54. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, C.; Hoeritzauer, I.; Cabreira, V.; Aybek, S.; Adams, C.; Alty, J.; Ball, H.A.; Baker, J.; Bullock, K.; Burness, C.; et al. Functional neurological disorder is a feminist issue. J. Neurol. Neurosurg. Psychiatry 2023, 94, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.; Carson, A.; Sharpe, M. Functional symptoms and signs in neurology: Assessment and diagnosis. J. Neurol. Neurosurg. Psychiatry 2005, 76 (Suppl. S1), i2–i12. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Suspected Neurological Conditions: Recognition and Referral|NICE Guideline [NG127]. Available online: https://www.nice.org.uk/guidance/ng127 (accessed on 12 October 2023).
- ME Association. ME Association Petition: M.E. is Not a Functional Disorder. 27 September 2017. Available online: https://meassociation.org.uk/2017/09/me-association-petition-m-e-is-not-a-functional-disorder-27-september-2017/ (accessed on 12 October 2023).
- Anonymous. The On-Call Doctor Rejected Line’s Desperate Call Just Days before Her Husband’s Death: ‘He Was Let Down by the System’. Available online: https://www-bt-dk.translate.goog/samfund/vagtlaegen-afviste-lines-desperate-opkald-faa-dage-foer-sin-mands-doed-han-blev?_x_tr_sl=da&_x_tr_tl=en&_x_tr_hl=en-US&_x_tr_pto=wapp (accessed on 12 October 2023).
- ME Action. Advocacy Update from Finland. Available online: https://www.meaction.net/2020/12/07/advocacy-update-from-finland/ (accessed on 12 October 2023).
- American Psychiatric Association. Desk Reference to the Diagnostic Criteria from DSM-5-TR; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Mishra, A.; Pandey, S. Functional neurological disorders: Clinical spectrum, diagnosis, and treatment. Neurologist 2022, 27, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Hira, R.; Karalasingham, K.; Baker, J.R.; Raj, S.R. Autonomic manifestations of long-COVID syndrome. Curr. Neurol. Neurosci. Rep. 2023, 23, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [CrossRef]
- Boccatonda, A.; Campello, E.; Simion, C.; Simioni, P. Long-term hypercoagulability, endotheliopathy and inflammation following acute SARS-CoV-2 infection. Expert Rev. Hematol. 2023, 16, 1035–1048. [Google Scholar] [CrossRef]
- Smadja, D.M.; Mentzer, S.J.; Fontenay, M.; Laffan, M.A.; Ackermann, M.; Helms, J.; Jonigk, D.; Chocron, R.; Pier, G.B.; Gendron, N.; et al. COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis 2021, 24, 755–788. [Google Scholar] [CrossRef] [PubMed]
- Proal, A.D.; VanElzakker, M.B.; Aleman, S.; Bach, K.; Boribong, B.P.; Buggert, M.; Cherry, S.; Chertow, D.S.; Davies, H.E.; Dupont, C.L.; et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat. Immunol. 2023, 24, 1616–1627. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Peluso, M.J.; Luo, X.; Thomas, R.; Shin, M.G.; Neidleman, J.; Andrew, A.; Young, K.C.; Ma, T.; Hoh, R.; et al. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat. Immunol. 2024, 25, 218–225. [Google Scholar] [CrossRef]
- Roe, K. A role for T-cell exhaustion in Long COVID-19 and severe outcomes for several categories of COVID-19 patients. J. Neurosci. Res. 2021, 99, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Durstenfeld, M.S.; Peluso, M.J.; Kaveti, P.; Hill, C.; Li, D.; Sander, E.; Swaminathan, S.; Arechiga, V.M.; Lu, S.; Goldberg, S.A.; et al. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype long coronavirus disease 2019. J. Infect. Dis. 2023, 228, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Durstenfeld, M.S.; Sun, K.; Tahir, P.; Peluso, M.J.; Deeks, S.G.; Aras, M.A.; Grandis, D.J.; Long, C.S.; Beatty, A.; Hsue, P.Y. Use of cardiopulmonary exercise testing to evaluate long COVID-19 symptoms in adults: A systematic review and meta-analysis. JAMA Netw. Open 2022, 5, e2236057. [Google Scholar] [CrossRef] [PubMed]
- Ortona, E.; Buonsenso, D.; Carfi, A.; Malorni, W.; Long COVID Kids study group. Long COVID: An estrogen-associated autoimmune disease? Cell Death Discov. 2021, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Amiral, J.; Seghatchian, J. Autoimmune complications of COVID-19 and potential consequences for long-lasting disease syndromes. Transfus. Apher. Sci. 2023, 62, 103625. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, A.; Vojdani, E.; Saidara, E.; Maes, M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and other factors may contribute to inflammation and autoimmunity in long COVID. Viruses 2023, 15, 400. [Google Scholar] [CrossRef] [PubMed]
- Kahn, P.A.; Joseph, P.; Heerdt, P.M.; Singh, I. Differential cardiopulmonary haemodynamic phenotypes in PASC-related exercise intolerance. ERJ Open Res. 2024, 10, 00714-2023. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Joseph, P.; Heerdt, P.M.; Cullinan, M.; Lutchmansingh, D.D.; Gulati, M.; Possick, J.D.; Systrom, D.M.; Waxman, A.B. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest 2022, 161, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Appelman, B.; Charlton, B.T.; Goulding, R.P.; Kerkhoff, T.J.; Breedveld, E.A.; Noort, W.; Offringa, C.; Bloemers, F.W.; van Weeghel, M.; Schomakers, B.V.; et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat. Commun. 2024, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, L.; Zubair, A.S.; Joseph, P.; Spudich, S. Case-control study of individuals with small fiber neuropathy after COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 2024, 11, e200244. [Google Scholar] [CrossRef] [PubMed]
- Nagata, N.; Takeuchi, T.; Masuoka, H.; Aoki, R.; Ishikane, M.; Iwamoto, N.; Sugiyama, M.; Suda, W.; Nakanishi, Y.; Terada-Hirashima, J.; et al. Human gut microbiota and its metabolites impact immune responses in COVID-19 and its complications. Gastroenterology 2023, 164, 272–288. [Google Scholar] [CrossRef] [PubMed]
- United States Centers for Disease Control and Prevention. New ICD-10-CM Code for Post-COVID Conditions, Following the 2019 Novel Coronavirus (COVID-19). Available online: https://www.cdc.gov/nchs/data/icd/announcement-new-icd-code-for-post-covid-condition-april-2022-final.pdf (accessed on 10 July 2023).
- Novakova, L.; Anyz, J.; Forejtova, Z.; Rosikova, T.; Vechetova, G.; Sojka, P.; Ruzicka, E.; Serranova, T. Increased frequency of self-reported obsessive-compulsive symptoms in patients with functional movement disorders. Mov. Disord. Clin. Pract. 2023, 10, 1341–1348. [Google Scholar] [CrossRef]
- Roivainen, E.; Peura, M.; Patsi, J. Cognitive profile in functional disorders. Cogn. Neuropsychiatry 2023, 28, 424–436. [Google Scholar] [CrossRef]
- Hamilton, J.; Campos, R.; Creed, F. Anxiety, depression and management of medically unexplained symptoms in medical clinics. J. R. Coll. Physicians Lond. 1996, 30, 18–20. [Google Scholar] [PubMed]
- Afari, N.; Ahumada, S.M.; Wright, L.J.; Mostoufi, S.; Golnari, G.; Reis, V.; Cuneo, J.G. Psychological trauma and functional somatic syndromes: A systematic review and meta-analysis. Psychosom. Med. 2014, 76, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, T.; Chen, J.; Gelauff, J.; Edwards, M.J. Functional neurological disorder in people with long COVID: A systematic review. Eur. J. Neurol. 2023, 30, 1505–1514. [Google Scholar] [CrossRef]
- Bennett, K.; Diamond, C.; Hoeritzauer, I.; Gardiner, P.; McWhirter, L.; Carson, A.; Stone, J. A practical review of functional neurological disorder (FND) for the general physician. Clin. Med. 2021, 21, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Oaklander, A.L.; Mills, A.J.; Kelley, M.; Toran, L.S.; Smith, B.; Dalakas, M.C.; Nath, A. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1146. [Google Scholar] [CrossRef] [PubMed]
- Gemignani, F.; Bellanova, M.F.; Saccani, E.; Pavesi, G. Non-length-dependent small fiber neuropathy: Not a matter of stockings and gloves. Muscle Nerve 2022, 65, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.W.; Stiles, L.E.; Shaik, R.; Schneider, L.; Muppidi, S.; Tsui, C.T.; Geng, L.N.; Bonilla, H.; Miglis, M.G. Characterization of autonomic symptom burden in long COVID: A global survey of 2314 adults. Front. Neurol. 2022, 13, 1012668. [Google Scholar] [CrossRef] [PubMed]
- Thijs, R.D.; Brignole, M.; Falup-Pecurariu, C.; Fanciulli, A.; Freeman, R.; Guaraldi, P.; Jordan, J.; Habek, M.; Hilz, M.; Traon, A.P.; et al. Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness: Consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin. Auton. Res. 2021, 31, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Panicker, J.N.; Selai, C.; Herve, F.; Rademakers, K.; Dmochowski, R.; Tarcan, T.; von Gontard, A.; Vrijens, D. Psychological comorbidities and functional neurological disorders in women with idiopathic urinary retention: International Consultation on Incontinence Research Society (ICI-RS) 2019. Neurourol. Urodyn. 2020, 39 (Suppl. S3), S60–S69. [Google Scholar] [CrossRef] [PubMed]
- Shouman, K.; Vanichkachorn, G.; Cheshire, W.P.; Suarez, M.D.; Shelly, S.; Lamotte, G.J.; Sandroni, P.; Benarroch, E.E.; Berini, S.E.; Cutsforth-Gregory, J.K.; et al. Autonomic dysfunction following COVID-19 infection: An early experience. Clin. Auton. Res. 2021, 31, 385–394. [Google Scholar] [CrossRef] [PubMed]
- McWhirter, L.; Ritchie, C.; Stone, J.; Carson, A. Functional cognitive disorders: A systematic review. Lancet Psychiatry 2020, 7, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Monje, M.; Iwasaki, A. The neurobiology of long COVID. Neuron 2022, 110, 3484–3496. [Google Scholar] [CrossRef] [PubMed]
- Soung, A.L.; Vanderheiden, A.; Nordvig, A.S.; Sissoko, C.A.; Canoll, P.; Mariani, M.B.; Jiang, X.; Bricker, T.; Rosoklija, G.B.; Arango, V.; et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 2022, 145, 4193–4201. [Google Scholar] [CrossRef]
- Voruz, P.; Allali, G.; Benzakour, L.; Nuber-Champier, A.; Thomasson, M.; Jacot de Alcântara, I.; Pierce, J.; Lalive, P.H.; Lövblad, K.-O.; Braillard, O.; et al. Long COVID neuropsychological deficits after severe, moderate, or mild infection. Clin. Transl. Neurosci. 2022, 6, 9. [Google Scholar] [CrossRef]
- Blackmon, K.; Day, G.S.; Powers, H.R.; Bosch, W.; Prabhakaran, D.; Woolston, D.; Pedraza, O. Neurocognitive screening in patients following SARS-CoV-2 infection: Tools for triage. BMC Neurol. 2022, 22, 285. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Ferrando, S.J.; Dornbush, R.; Shahar, S.; Smiley, A.; Klepacz, L. Screening for brain fog: Is the montreal cognitive assessment an effective screening tool for neurocognitive complaints post-COVID-19? Gen. Hosp. Psychiatry 2022, 78, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Wood, J.; Jaycox, J.R.; Dhodapkar, R.M.; Lu, P.; Gehlhausen, J.R.; Tabachnikova, A.; Greene, K.; Tabacof, L.; Malik, A.A.; et al. Distinguishing features of long COVID identified through immune profiling. Nature 2023, 623, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Altmann, D.M.; Whettlock, E.M.; Liu, S.; Arachchillage, D.J.; Boyton, R.J. The immunology of long COVID. Nat. Rev. Immunol. 2023, 23, 618–634. [Google Scholar] [CrossRef] [PubMed]
- Ruffieux, H.; Hanson, A.L.; Lodge, S.; Lawler, N.G.; Whiley, L.; Gray, N.; Nolan, T.H.; Bergamaschi, L.; Mescia, F.; Turner, L.; et al. A patient-centric modeling framework captures recovery from SARS-CoV-2 infection. Nat. Immunol. 2023, 24, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Mina, Y.; Enose-Akahata, Y.; Hammoud, D.A.; Videckis, A.J.; Narpala, S.R.; O’Connell, S.E.; Carroll, R.; Lin, B.C.; McMahan, C.C.; Nair, G.; et al. Deep phenotyping of neurologic postacute sequelae of SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200097. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Hosp, J.A.; Reisert, M.; Dressing, A.; Gotz, V.; Kellner, E.; Mast, H.; Arndt, S.; Waller, C.F.; Wagner, D.; Rieg, S.; et al. Cerebral microstructural alterations in Post-COVID-condition are related to cognitive impairment, olfactory dysfunction and fatigue. Nat. Commun. 2024, 15, 4256. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Z.; Liang, X.; Wang, Y.; Cao, Y.; Li, M.; Zhou, F. Glymphatic system dysfunction in recovered patients with mild COVID-19: A DTI-ALPS study. iScience 2024, 27, 108647. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.; Connolly, R.; Brennan, D.; Laffan, A.; O’Keeffe, E.; Zaporojan, L.; O’Callaghan, J.; Thomson, B.; Connolly, E.; Argue, R.; et al. Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat. Neurosci. 2024, 27, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Chaganti, J.; Poudel, G.; Cysique, L.A.; Dore, G.J.; Kelleher, A.; Matthews, G.; Darley, D.; Byrne, A.; Jakabek, D.; Zhang, X.; et al. Blood brain barrier disruption and glutamatergic excitotoxicity in post-acute sequelae of SARS COV-2 infection cognitive impairment: Potential biomarkers and a window into pathogenesis. Front. Neurol. 2024, 15, 1350848. [Google Scholar] [CrossRef] [PubMed]
- VanElzakker, M.B.; Bues, H.F.; Brusaferri, L.; Kim, M.; Saadi, D.; Ratai, E.M.; Dougherty, D.D.; Loggia, M.L. Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [(11)C]PBR28 PET correlates with vascular disease measures. Brain Behav. Immun. 2024, 119, 713–723. [Google Scholar] [CrossRef]
- Peluso, M.J.; Ryder, D.; Flavell, R.R.; Wang, Y.; Levi, J.; LaFranchi, B.H.; Deveau, T.M.; Buck, A.M.; Munter, S.E.; Asare, K.A.; et al. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci. Transl. Med. 2024, 16, eadk3295. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.L.; Nicholson, T.R.; Asadi-Pooya, A.A.; Begue, I.; Butler, M.; Carson, A.J.; David, A.S.; Deeley, Q.; Diez, I.; Edwards, M.J.; et al. Neuroimaging in functional neurological disorder: State of the field and research agenda. Neuroimage Clin. 2021, 30, 102623. [Google Scholar] [CrossRef] [PubMed]
- Mavroudis, I.; Kazis, D.; Kamal, F.Z.; Gurzu, I.L.; Ciobica, A.; Padurariu, M.; Novac, B.; Iordache, A. Understanding Functional Neurological Disorder: Recent insights and diagnostic challenges. Int. J. Mol. Sci. 2024, 25, 4470. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Weber, S.; Wyss, A.; Loukas, S.; Aybek, S. BOLD signal variability as potential new biomarker of functional neurological disorders. Neuroimage Clin. 2024, 43, 103625. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.W.; LaFaver, K.; Limachia, G.S.; Capitan, G.; Ameli, R.; Sinclair, S.; Epstein, S.A.; Hallett, M.; Horovitz, S.G. Gray matter differences in patients with functional movement disorders. Neurology 2018, 91, e1870–e1879. [Google Scholar] [CrossRef] [PubMed]
- Begue, I.; Adams, C.; Stone, J.; Perez, D.L. Structural alterations in functional neurological disorder and related conditions: A software and hardware problem? Neuroimage Clin. 2019, 22, 101798. [Google Scholar] [CrossRef] [PubMed]
- van Campen, C.; Rowe, P.C.; Verheugt, F.W.A.; Visser, F.C. Cognitive function declines following orthostatic stress in adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Front. Neurosci. 2020, 14, 688. [Google Scholar] [CrossRef] [PubMed]
- van Campen, C.; Rowe, P.C.; Verheugt, F.W.A.; Visser, F.C. Numeric rating scales show prolonged post-exertional symptoms after orthostatic testing of adults with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Med. 2020, 7, 602894. [Google Scholar] [CrossRef] [PubMed]
- van Campen, C.; Rowe, P.C.; Visser, F.C. Cerebral blood flow is reduced in severe myalgic encephalomyelitis/chronic fatigue syndrome patients during mild orthostatic stress testing: An exploratory study at 20 degrees of head-up tilt testing. Healthcare 2020, 8, 169. [Google Scholar] [CrossRef] [PubMed]
- van Campen, C.; Rowe, P.C.; Visser, F.C. Cerebral blood flow remains reduced after tilt testing in myalgic encephalomyelitis/chronic fatigue syndrome patients. Clin. Neurophysiol. Pract. 2021, 6, 245–255. [Google Scholar] [CrossRef] [PubMed]
- van Campen, C.M.C.; Rowe, P.C.; Visser, F.C. Worsening symptoms is associated with larger cerebral blood flow abnormalities during tilt-testing in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Medicina 2023, 59, 2153. [Google Scholar] [CrossRef] [PubMed]
- Blitshteyn, S.; Verduzco-Gutierrez, M. Long COVID: A major public health issue. Am. J. Phys. Med. Rehabil. 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
Clinical Feature | ME/CFS | Long COVID | FND |
---|---|---|---|
Post-exertional malaise/ Post-exertional neuroimmune exhaustion | Yes | Yes, some types | No |
Pain | Yes | Yes, some types | Sometimes |
Dizziness | Yes | Yes | No |
Neuropathic features | Yes | Yes | No |
Recurrent flu-like symptoms | Yes | Common | No |
Dysautonomia | Yes | Common | No |
Abnormal sleep study | Yes | Yes | No |
Fatigue | Yes | Yes | Yes |
Impaired sleep | Yes | Yes | Yes |
Functional leg weakness | No | No | Yes |
Functional seizures | No | No | Yes |
Functional tremor | No | No | Yes |
Functional dystonia | No | No | Yes |
Functional gait disorder | No | No | Yes |
Functional facial spasm | No | No | Yes |
Functional tics | No | No | Yes |
Functional drop attacks | No | No | Yes |
Functional sensory symptoms | No | No | Yes |
Functional cognitive symptoms | No | No | Yes |
Functional speech and swallowing | No | No | Yes |
Functional visual symptoms | No | No | Yes |
Dissociative symptoms | No | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davenport, T.E.; Blitshteyn, S.; Clague-Baker, N.; Davies-Payne, D.; Treisman, G.J.; Tyson, S.F. Long COVID Is Not a Functional Neurologic Disorder. J. Pers. Med. 2024, 14, 799. https://doi.org/10.3390/jpm14080799
Davenport TE, Blitshteyn S, Clague-Baker N, Davies-Payne D, Treisman GJ, Tyson SF. Long COVID Is Not a Functional Neurologic Disorder. Journal of Personalized Medicine. 2024; 14(8):799. https://doi.org/10.3390/jpm14080799
Chicago/Turabian StyleDavenport, Todd E., Svetlana Blitshteyn, Nicola Clague-Baker, David Davies-Payne, Glenn J. Treisman, and Sarah F. Tyson. 2024. "Long COVID Is Not a Functional Neurologic Disorder" Journal of Personalized Medicine 14, no. 8: 799. https://doi.org/10.3390/jpm14080799
APA StyleDavenport, T. E., Blitshteyn, S., Clague-Baker, N., Davies-Payne, D., Treisman, G. J., & Tyson, S. F. (2024). Long COVID Is Not a Functional Neurologic Disorder. Journal of Personalized Medicine, 14(8), 799. https://doi.org/10.3390/jpm14080799