Gamma Ray Pulsars and Opportunities for the MACE Telescope
Abstract
:1. Introduction
2. Pulsar Characteristics
3. Gamma Ray Pulsars
3.1. Fermi-LAT Pulsars
3.2. Gamma Ray Emission
- Polar Cap: Historically, this is the first model considered for the acceleration of charge particles in the pulsar field by considering the case of an anti-aligned rotator (magnetic dipole vector and rotation vector are directly opposite each other) wherein the charge density and electric potential corresponding to the magnetic field lines are flipped. This causes the positively charged particles to move outward along the open field lines. A charge density depletion in the conical regions near the magnetic poles of the neutron star provides a large electric potential for acceleration of charge particles [62]. Particles are accelerated along the open field lines to altitudes where they attain high enough Lorentz factors to emit gamma ray photons. However, the strong magnetic field near the poles causes the absorption of high-energy gamma ray photons via magnetic pair-production. This leads to a gamma ray spectra of the form given by Equation (20) with a cut-off energy in the range 1–10 GeV. Therefore, this model is not able to explain gamma ray emission above 10 GeV from many pulsars detected by the Fermi-LAT [55].
- Outer Gap: This model is based on the case of an aligned rotator wherein positively charged particles move along the open field lines outside the light cylinder. This results in the creation of a gap, extending along the last closed field line up to the light cylinder. A charge density depletion leads to a large electric field component parallel to the magnetic field for accelerating the particles to relativistic energies required to emit high-energy gamma rays by the curvature emission [63]. These models require no polar cap pair-production and are invoked to explain the gamma ray spectra of most of the Fermi-LAT pulsars [55].
- Slot Gap: This scenario is assumed to lie between the polar cap and outer gap. The slot gap is considered as a narrow set of magnetic field lines near the boundary between open and closed field lines [64]. In this model, charged particles, originating from the neutron star surface, are accelerated from the polar cap along the last open field lines up to high altitudes (of the order of the radius of light cylinder). However, later works show that this model is not able to explain the observed gamma ray spectra of pulsars [65].
4. MACE Telescope
5. Pulsars with MACE
5.1. Crab Pulsar
5.2. Vela
5.3. Geminga
5.4. Pulsar Catalog for MACE
6. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | https://www.atnf.csiro.au/research/pulsar/psrcat/ (accessed on 20 January 2023) |
References
- Janka, H.-T.; Langanke, K.; Marek, A.; Martínez-Pinedo, G.; Müller, B. Theory of core-collapse supernovae. Phys. Rep. 2007, 442, 38–74. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Miller, M.C.; Miller, J.M. The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 2015, 548, 1–34. [Google Scholar] [CrossRef]
- Singh, K.K.; Meintjes, P.J.; Yadav, K.K. Properties of white dwarf in the binary system AR Scorpii and its observed features. Mod. Phys. Lett. A 2021, 36, 2150096. [Google Scholar] [CrossRef]
- Woosley, S.E.; Heger, A.; Weaver, T.A. The evolution and explosion of massive stars. Rev. Mod. Phys. 2002, 74, 1015–1071. [Google Scholar] [CrossRef]
- Müller, B. Hydrodynamics of core-collapse supernovae and their progenitors. Living Rev. Comput. Astrophys. 2020, 6, 3. [Google Scholar] [CrossRef]
- Spruit, H.; Phinney, E.S. Birth kicks as the origin of pulsar rotation. Nature 1998, 393, 139–141. [Google Scholar] [CrossRef]
- Janka, H.-T.; Wongwathanarat, A.; Kramer, M. Supernova Fallback as Origin of Neutron Star Spins and Spin-kick Alignment. Astrophys. J. 2022, 926, 9. [Google Scholar] [CrossRef]
- Coleman, M.S.B.; Burrows, A. Kicks and induced spins of neutron stars at birth. Mon. Not. R. Astron. Soc. 2022, 517, 3938–3961. [Google Scholar] [CrossRef]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a rapidly pulsating radio source. Nature 1968, 217, 709. [Google Scholar] [CrossRef]
- Gold, T. Rotating neutron stars as the origin of the pulsating radio sources. Nature 1968, 218, 731. [Google Scholar] [CrossRef]
- Spitkovsky, A. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators. Astrophys. J. Lett. 2006, 648, L51–L54. [Google Scholar] [CrossRef]
- Goldreich, P.; Julian, W.H. Pulsar Electrodynamics. Astron. J. 1969, 157, 869. [Google Scholar] [CrossRef]
- Arons, J.; Tavani, M. Relativistic Particle Acceleration in Plerions. Astrophys. J. Suppl. Ser. 1994, 90, 797. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Manchester, R.N. Detection of a Change of State in the Pulsar PSR 0833-45. Nature 1969, 222, 228. [Google Scholar] [CrossRef]
- Reichley, P.E.; Downs, G.S. Observed Decrease in the Periods of Pulsar PSR 0833-45. Nature 1969, 222, 229. [Google Scholar] [CrossRef]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Backer, D.C.; Kulkarni, S.R.; Heiles, C.; Davis, M.M.; Goss, W.M. A millisecond pulsar. Nature 1982, 300, 615–618. [Google Scholar] [CrossRef]
- Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, R.N.; Lyne, A.G.; Joshi, B.C.; McLaughlin, M.A.; Kramer, M.; Sarkissian, J.M.; Camilo, F.; et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003, 426, 531–533. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005, 129, 1993–2006. [Google Scholar] [CrossRef]
- Terzić, T.; Kerszberg, D.; Strišković, J. Probing Quantum Gravity with Imaging Atmospheric Cherenkov Telescopes. Universe 2021, 7, 345. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Van den Heuvel, E.P.J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 1991, 203, 1–124. [Google Scholar] [CrossRef]
- Poutanen, J. Accretion-powered millisecond pulsars. Adv. Spac. Res. 2006, 38, 2697–2703. [Google Scholar] [CrossRef]
- Wijnands, R.; van der Klis, M. A millisecond pulsar in an X-ray binary system. Nature 1998, 394, 344–346. [Google Scholar] [CrossRef]
- Archibald, A.M.; Stairs, I.H.; Ransom, S.M.; Kaspi, V.M.; Kondratiev, V.I.; Lorimer, D.R.; McLaughlin, M.A.; Boyles, J.; Hessels, J.W.; Lynch, R.; et al. A Radio Pulsar/X-ray Binary Link. Science 2009, 324, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Konar, S.; Bagchi, M.; Bandyopadhya, D.; Banik, S.; Bhattacharya, D.; Bhattacharyya, S.; Gangadhara, R.T.; Gopakumar, A.; Gupta, Y.; Joshi, B.C.; et al. Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective. J. Astrophy. Astron. 2016, 37, 36. [Google Scholar] [CrossRef]
- Tauris, T.M. Five and a Half Roads to Form a Millisecond Pulsar. Astron. Soc. Pac. Conf. Ser. 2011, 447, 285. [Google Scholar]
- Bhattacharyya, S. Measurement of neutron star parameters: A review of methods for low-mass X-ray binaries. Adv. Spac. Res. 2010, 45, 949–978. [Google Scholar] [CrossRef]
- Caballero, I.; Wilms, J. X-ray pulsars: A review. Mem. Soc. Astron. Ital. 2012, 83, 230. [Google Scholar]
- Kaspi, V.M. Grand unification of neutron stars. Proc. Natl. Acad. Sci. USA 2010, 107, 7147–7152. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Duncan, R.C. The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-ray, and Alfven Wave Emission. Astrophys. J. 1996, 473, 322. [Google Scholar] [CrossRef]
- Lorimer, D.R. Binary and Millisecond Pulsars. Living Rev. Relativ. 2008, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Baring, M.G. High-energy emission from pulsars: The polar cap scenario. Adv. Spac. Res. 2004, 33, 552–560. [Google Scholar] [CrossRef]
- Harding, A.K.; Stern, J.V.; Dyks, J.; Frackowiak, M. High-Altitude Emission from Pulsar Slot Gaps: The Crab Pulsar. Astrophys. J. 2008, 680, 1378–1393. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Popov, S.B.; Hollerbach, R. Evolution of Neutron Star Magnetic Fields. Universe 2021, 7, 351. [Google Scholar] [CrossRef]
- Tauris, T.M.; Manchester, R.N. On the Evolution of Pulsar Beams. Mon. Not. R. Astron. Soc. 1998, 298, 625–636. [Google Scholar] [CrossRef]
- Haskell, B.; Melatos, A. Models of pulsar glitches. Int. J. Mod. Phys. D 2015, 24, 1530008. [Google Scholar] [CrossRef]
- Manchester, R.N. Pulsar timing and its applications. J. Phys. Conf. Ser. 2017, 932, 012002. [Google Scholar] [CrossRef]
- Damour, T.; Taylor, J.H. Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D 1992, 45, 1840–1868. [Google Scholar] [CrossRef]
- Hobbs, G. Developing a Pulsar-Based Time Standard. Highlights Astron. 2015, 16, 207–208. [Google Scholar] [CrossRef]
- Pétri, J. Pulsar gamma-ray emission in the radiation reaction regime. Mon. Not. R. Astron. Soc. 2019, 484, 5669–5691. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Popov, S.B. Braking indices of young radio pulsars: Theoretical perspective. Mon. Not. R. Astron. Soc. 2020, 499, 2826–2835. [Google Scholar] [CrossRef]
- Lyne, A.G.; Jordan, C.; Graham-Smith, F.; Espinoza, C.; Stappers, B.; Weltrvrede, P. 45 years of rotation of the Crab pulsar. Mon. Not. R. Astron. Soc. 2015, 446, 857–864. [Google Scholar] [CrossRef]
- Mitra, A.; Singh, K.K. Thermal Radiation from Compact Objects in Curved Space-Time. Universe 2022, 8, 504. [Google Scholar] [CrossRef]
- Browning, R.; Ramsden, D.; Wright, P.J. Detection of Pulsed Gamma Radiation from the Crab Nebula. Nat. Phys. Sci. 1971, 232, 99–101. [Google Scholar] [CrossRef]
- Kniffen, D.A.; Hartman, R.C.; Thompson, D.J.; Bignami, G.F.; Fichtel, C.E. Gamma radiation from the Crab Nebula above 35 MeV. Nature 1974, 251, 397–399. [Google Scholar] [CrossRef]
- Thompson, D.J.; Fichtel, C.E.; Kniffen, D.A.; Ogelman, H.B. SAS-2 high-energy gamma-ray observations of the Vela pulsar. Astrophys. J. Lett. 1975, 200, L79–L82. [Google Scholar] [CrossRef]
- Swanenburg, B.N.; Bennett, K.; Bignami, G.F.; Buccheri, R.; Caraveo, P.; Hermsen, W.; Kanbach, G.; Lichti, G.G.; Masnou, J.L.; Mayer-Hasselwander, H.A.; et al. Second COS-B catalogue of high-energy gamma-ray sources. Astrophys. J. Lett. 1981, 243, L69–L73. [Google Scholar] [CrossRef]
- Bertsch, D.L.; Brazier, K.T.S.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; Kniffen, D.A.; Kwok, P.W.; Lin, Y.C.; Mattox, J.R.; et al. Pulsed high-energy γ-radiation from Geminga (1E0630+178). Nature 1992, 357, 306–307. [Google Scholar] [CrossRef]
- Bignami, G.F.; Caraveo, P.A. Geminga: Its Phenomenology, Its Fraternity, and Its Physics. Ann. Rev. Astron. Astrophys. 1996, 34, 331–382. [Google Scholar] [CrossRef]
- Caraveo, P.A. Gamma-Ray Pulsar Revolution. Ann. Rev. Astron. Astrophys. 2014, 52, 221–250. [Google Scholar] [CrossRef]
- Smith, D.A.; Bruel, P.; Clark, C.J.; Guillemot, L.; Kerr, M.T.; Ray, P.; Abdollahi, S.; Ajello, M.; Baldini, L.; Ballet, J.; et al. The Third Fermi Large Area Telescope Catalog of Gamma-ray Pulsars. arXiv 2023, arXiv:2307.11132. [Google Scholar]
- Fermi-LAT Collaboration. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef]
- Fermi-LAT Collaboration. The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars. Astrophys. J. Suppl. Ser. 2010, 187, 460–494. [Google Scholar] [CrossRef]
- Fermi-LAT Collaboration. The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars. Astrophys. J. Suppl. Ser. 2013, 208, 17. [Google Scholar] [CrossRef]
- Limyansky, B. The Third Fermi Pulsar Catalog. Am. Astron. Soc. 2019, 17, 109. [Google Scholar]
- Harding, A.K. The neutron star zoo. Front. Phys. 2013, 8, 679–692. [Google Scholar] [CrossRef]
- Fermi-LAT Collaboration. Incremental Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2022, 260, 53. [Google Scholar] [CrossRef]
- Daugherty, J.K.; Harding, A.K. Electromagnetic cascades in pulsars. Astrophys. J. 1982, 252, 337. [Google Scholar] [CrossRef]
- Sturrock, P.A. A Model of Pulsars. Astrophys. J. 1971, 164, 529. [Google Scholar] [CrossRef]
- Gould, R.J.; Schréder, G. Opacity of the Universe to High-Energy Photons. Phys. Rev. Lett. 1966, 16, 252–254. [Google Scholar] [CrossRef]
- Ruderman, M.A.; Sutherland, P.G. Theory of pulsars: Polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 1975, 196, 51–72. [Google Scholar] [CrossRef]
- Cheng, K.S.; Ho, C.; Ruderman, M. Energetic Radiation from Rapidly Spinning Pulsars. I. Outer Magnetosphere Gaps. Astrophys. J. 1986, 300, 500. [Google Scholar] [CrossRef]
- Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. Astrophys. J. 1983, 266, 215–241. [Google Scholar] [CrossRef]
- Hirotani, K. Outer-Gap versus Slot-Gap Models for Pulsar High-Energy Emissions: The Case of the Crab Pulsar. Astrophys. J. Lett. 2008, 688, L25. [Google Scholar] [CrossRef]
- Dmitri, A.U.; Anatoly, S. Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres. Astrophys. J. 2014, 780, 3. [Google Scholar]
- Philippov, A.; Kramer, M. Pulsar Magnetospheres and Their Radiation. Ann. Rev. Astron. Astrophys. 2022, 60, 495–558. [Google Scholar] [CrossRef]
- Ardavan, H. Radiation by the superluminally moving current sheet in the magnetosphere of a neutron star. Mon. Not. R. Astron. Soc. 2021, 507, 4530–4563. [Google Scholar] [CrossRef]
- Ardavan, H. Congruity of the Crab Pulsar’s γ-ray spectrum with the spectral distribution of tightly focused caustics. Astron. Astrophys. 2023, 672, A154. [Google Scholar] [CrossRef]
- Yadav, K.K.; Chouhan, N.; Thubstan, R.; Norlha, S.; Hariharan, J.; Borwankar, C.; Chandra, P.; Dhar, V.K.; Mankuzhyil, N.; Godambe, S.; et al. Commissioning of the MACE gamma-ray telescope at Hanle, Ladakh, India. Curr. Sci. 2022, 123, 1428–1435. [Google Scholar] [CrossRef]
- Yadav, K.K. MACE detection of very high energy gamma-ray flare from the radio galaxy NGC 1275. Astron. Telegr. 2022, 15823. [Google Scholar]
- Yadav, K.K. Detection of Renewed Gamma-Ray Flare from the Radio Galaxy NGC 1275 with the MACE telescope. Astron. Telegr. 2023, 15856, 1. [Google Scholar]
- Singh, K.K.; Yadav, K.K. 20 Years of Indian Gamma Ray Astronomy Using Imaging Cherenkov Telescopes and Road Ahead. Universe 2021, 7, 96. [Google Scholar] [CrossRef]
- Singh, K.K. Gamma-ray astronomy with the imaging atmospheric Cherenkov telescopes in India. J. Astrophys. Astron. 2022, 43, 3. [Google Scholar] [CrossRef]
- Dhar, V.K.; Singh, K.K.; Venugopal, K.; Yadav, K.K.; Koul, R.; Balasubramaniam, R. Development of a new type of metallic mirrors for 21 meter MACE γ-ray telescope. J. Astrophys. Astron. 2022, 43, 17. [Google Scholar] [CrossRef]
- Tolamatti, A.; Singh, K.K.; Yadav, K.K. Feasibility study of observing γ-ray emission from high redshift blazars using the MACE telescope. J. Astrophys. Astron. 2022, 43, 49. [Google Scholar] [CrossRef]
- MAGIC Collaboration. Observation of Pulsed γ-Rays Above 25 GeV from the Crab Pulsar with MAGIC. Science 2008, 322, 1221–1224. [Google Scholar] [CrossRef]
- VERITAS Collaboration. Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar. Science 2011, 334, 69. [Google Scholar] [CrossRef]
- MAGIC Collaboration. Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC. Astron. Astrophys. 2016, 585, A133. [Google Scholar] [CrossRef]
- H.E.S.S. Collaboration. First ground-based measurement of sub-20 GeV to 100 GeV γ-Rays from the Vela pulsar with H.E.S.S. II. Astron. Astrophys. 2018, 620, A66. [Google Scholar] [CrossRef]
- MAGIC Collaboration. Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV. Astron. Astrophys. 2020, 643, L14. [Google Scholar] [CrossRef]
Sr. No. | Name | P (s) | (GeV) | Significance (10–30 GeV) | |
---|---|---|---|---|---|
1 | J1807.1+2822 | 0.015084 | 3.75 | 6.434 | 2.17 |
2 | J1908.9+2103 | 0.002564 | 1.38 | 2.063 | 4.26 |
3 | J1913.3+1019 | 0.035909 | 3.36 | 37.886 | 7.23 |
4 | J2047.3+1051 | 0.004290 | 2.1 | 2.722 | 3.52 |
5 | J2052.7+1218 | 0.001985 | 6.7 | 3.595 | 3.18 |
6 | J2302.7+4443 | 0.005192 | 1.38 | 2.077 | 12.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathania, A.; Singh, K.K.; Yadav, K.K. Gamma Ray Pulsars and Opportunities for the MACE Telescope. Galaxies 2023, 11, 91. https://doi.org/10.3390/galaxies11040091
Pathania A, Singh KK, Yadav KK. Gamma Ray Pulsars and Opportunities for the MACE Telescope. Galaxies. 2023; 11(4):91. https://doi.org/10.3390/galaxies11040091
Chicago/Turabian StylePathania, Atul, Krishna Kumar Singh, and Kuldeep Kumar Yadav. 2023. "Gamma Ray Pulsars and Opportunities for the MACE Telescope" Galaxies 11, no. 4: 91. https://doi.org/10.3390/galaxies11040091
APA StylePathania, A., Singh, K. K., & Yadav, K. K. (2023). Gamma Ray Pulsars and Opportunities for the MACE Telescope. Galaxies, 11(4), 91. https://doi.org/10.3390/galaxies11040091