Radial Oscillations in Neutron Stars from Unified Hadronic and Quarkyonic Equation of States
Abstract
:1. Introduction
2. Theoretical Formalism
2.1. Hydrostatic Equilibrium Equations
2.2. Radial Oscillation Equations
2.2.1. Numerical Method
3. Equation of State
- NL3: The famous NL3 is based on a non-linear interaction, where only the -meson self-coupling term is included, while the cross-coupling terms are not considered [45].
- IOPB: Interaction with higher-order couplings, including self-coupling of -mesons and – cross-coupling terms [46].
- DD2: A density-dependent interaction with experimental values of proton and neutron mass— and . This model can provide an accurate description of the composition and the thermodynamic quantities over a large range of densities [47].
- DDME2: Another effective mean-field interaction with density-dependent meson–nucleon couplings [48].
- SLy4: Based on the Skyrme-Lyon model, this interaction is suitable for calculating the properties of neutron-rich matter. This model can describe both the NS crust as well as the liquid core [49].
- Q1–3: A quark-to-hadron crossover transition model with leptons and nucleons that coexist in quarkyonic phase and degenerate in momentum space. The chosen sets of parameters are as follows [34]:
- Q1: L = 30 MeV, = 1400 MeV, = 0.3 fm−3.
- Q2: L = 30 MeV, = 800 MeV, = 0.3 fm−3.
- Q3: L = 50 MeV, = 1400 MeV, = 0.4 fm−3.
Here, L is the slope parameter, is the baryonic shell thickness parameter, and is the transition density between the nucleonic and quarkyonic phases.
4. Results and Discussion
4.1. M–R Relation
4.2. Radial Oscillation Modes
4.3. Detectability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SGRB | Short Gamma Ray Burst |
NICER | Neutron star Interior Composition Explorer |
XMM | X-ray Multi-Mirror |
References
- Baade, W.; Zwicky, F. Remarks on Super-Novae and Cosmic Rays. Phys. Rev. 1934, 46, 76–77. [Google Scholar] [CrossRef]
- Migdal, A. Stability of vacuum and limiting fields. Sov. Phys. JETP 1972, 34, 1184. [Google Scholar] [CrossRef]
- Migdal, A.B. Vacuum Stability and Limiting Fields. Sov. Phys. Uspekhi 1972, 14, 813. [Google Scholar] [CrossRef]
- Mannarelli, M. Meson condensation. Particles 2019, 2, 411–443. [Google Scholar] [CrossRef]
- Rajagopal, K.; Wilczek, F. The condensed matter physics of QCD. In At The Frontier of Particle Physics: Handbook of QCD; World Scientific: Singapore, 2001; Volume 3, pp. 2061–2151. [Google Scholar]
- Alford, M.G.; Schmitt, A.; Rajagopal, K.; Schäfer, T. Color superconductivity in dense quark matter. Rev. Mod. Phys. 2008, 80, 1455. [Google Scholar] [CrossRef]
- Anglani, R.; Casalbuoni, R.; Ciminale, M.; Ippolito, N.; Gatto, R.; Mannarelli, M.; Ruggieri, M. Crystalline color superconductors. Rev. Mod. Phys. 2014, 86, 509. [Google Scholar] [CrossRef]
- Chirenti, C.; Gold, R.; Miller, M.C. Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries. Astrophys. J. 2017, 837, 67. [Google Scholar] [CrossRef]
- Hinderer, T.; Taracchini, A.; Foucart, F.; Buonanno, A.; Steinhoff, J.; Duez, M.; Kidder, L.E.; Pfeiffer, H.P.; Scheel, M.A.; Szilagyi, B.; et al. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. Phys. Rev. Lett. 2016, 116, 181101. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.M.; Link, B.; Epstein, R.I. Quaking Neutron Stars. Astrophys. J. 2000, 543, 987–994. [Google Scholar] [CrossRef]
- Tsang, D.; Read, J.S.; Hinderer, T.; Piro, A.L.; Bondarescu, R. Resonant Shattering of Neutron Star Crusts. Phys. Rev. Lett. 2012, 108, 011102. [Google Scholar] [CrossRef] [PubMed]
- Brillante, A.; Mishustin, I.N. Radial oscillations of neutral and charged hybrid stars. EPL Europhys. Lett. 2014, 105, 39001. [Google Scholar] [CrossRef]
- Kokkotas, K.; Ruoff, J. Radial oscillations of relativistic stars. Astron. Astrophys. 2001, 366, 565–572. [Google Scholar] [CrossRef]
- Miniutti, G.; Pons, J.; Berti, E.; Gualtieri, L.; Ferrari, V. Non-radial oscillation modes as a probe of density discontinuities in neutron stars. Mon. Not. R. Astron. Soc. 2003, 338, 389–400. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Lopes, I. Radial oscillations of strange quark stars admixed with condensed dark matter. Phys. Rev. D 2017, 96, 083013. [Google Scholar] [CrossRef]
- Passamonti, A.; Bruni, M.; Gualtieri, L.; Sopuerta, C.F. Coupling of radial and nonradial oscillations of relativistic stars: Gauge-invariant formalism. Phys. Rev. D 2005, 71, 024022. [Google Scholar] [CrossRef]
- Passamonti, A.; Bruni, M.; Gualtieri, L.; Nagar, A.; Sopuerta, C.F. Coupling of radial and axial nonradial oscillations of compact stars: Gravitational waves from first-order differential rotation. Phys. Rev. D 2006, 73, 084010. [Google Scholar] [CrossRef]
- Savonije, G.J. Non-radial oscillations of the rapidly rotating Be star HD 163868. Astron. Astrophys. 2007, 469, 1057–1062. [Google Scholar] [CrossRef]
- Flores, C.V.; Hall, Z.B.; Jaikumar, P. Nonradial oscillation modes of compact stars with a crust. Phys. Rev. C 2017, 96, 065803. [Google Scholar] [CrossRef]
- Flores, C.V.; Lugones, G. Radial oscillations of color superconducting self-bound quark stars. Phys. Rev. D 2010, 82, 063006. [Google Scholar] [CrossRef]
- Väth, H.M.; Chanmugam, G. Radial oscillations of neutron stars and strange stars. Astrophys. Astron. J. 1992, 260, 250–254. [Google Scholar]
- Passamonti, A.; Stergioulas, N.; Nagar, A. Gravitational waves from nonlinear couplings of radial and polar nonradial modes in relativistic stars. Phys. Rev. D 2007, 75, 084038. [Google Scholar] [CrossRef]
- Chirenti, C.; Miller, M.C.; Strohmayer, T.; Camp, J. Searching for Hypermassive Neutron Stars with Short Gamma-Ray Bursts. Astrophys. J. 2019, 884, L16. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. Astrophys. J. 1964, 140, 417. [Google Scholar] [CrossRef]
- Harrison, B.K.; Thorne, K.S.; Wakano, M.; Wheeler, J.A. Gravitation Theory and Gravitational Collapse, 1st ed.; University of Chicago Press: Chicago, IL, USA, 1965; ISBN 978-02-2631-802-8. [Google Scholar]
- Chanmugam, G. Radial oscillations of zero-temperature white dwarfs and neutron stars below nuclear densities. Astrophys. J. 1977, 217, 799–808. [Google Scholar] [CrossRef]
- Gondek, D.; Haensel, P.; Zdunik, J. Radial pulsations and stability of protoneutron stars. arXiv 1997, arXiv:astro-ph/9705157. [Google Scholar]
- Benvenuto, O.G.; Horvath, J.E. The Evolution of Proto-Strange Stars. arXiv 2013, arXiv:1309.1532. [Google Scholar]
- Gondek, D.; Zdunik, J.L. Avoided crossings in radial pulsations of neutron and strange stars. Astrophys. Astron. J. 1999, 344, 117–122. [Google Scholar]
- Glass, E.N.; Lindblom, L. The Radial Oscillations of Neutron Stars. Astrophys. J. Suppl. 1983, 53, 93. [Google Scholar] [CrossRef]
- Gourgoulhon, E.; Haensel, P.; Gondek, D. Maximum mass instability of neutron stars and weak interaction processes in dense matter. Astron. Astrophys. 1995, 294, 747–756. [Google Scholar]
- Fortin, M.; Providência, C.; Raduta, A.R.; Gulminelli, F.; Zdunik, J.L.; Haensel, P.; Bejger, M. Neutron star radii and crusts: Uncertainties and unified equations of state. Phys. Rev. C 2016, 94, 035804. [Google Scholar] [CrossRef]
- Parmar, V.; Das, H.C.; Kumar, A.; Sharma, M.K.; Patra, S.K. Crustal properties of a neutron star within an effective relativistic mean-field model. Phys. Rev. D 2022, 105, 043017. [Google Scholar] [CrossRef]
- Zhao, T.; Lattimer, J.M. Quarkyonic matter equation of state in beta-equilibrium. Phys. Rev. D 2020, 102, 023021. [Google Scholar] [CrossRef]
- Ince, E. Ordinary Differential Equations; Dover Publications: New York, NY, USA, 1956. [Google Scholar]
- Byron, F.W.; Fuller, R.W. Mathematics of Classical and Quantum Physics; Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Cox, J.P. Theory of Stellar Pulsation, 1st ed.; Princeton University Press: Princeton, NJ, USA, 1980; pp. 63–148. ISBN 978-06-9162-996-4. [Google Scholar]
- Bardeen, J.M.; Thorne, K.S.; Meltzer, D.W. A Catalogue of Methods for Studying the Normal Modes of Radial Pulsation of General-Relativistic Stellar Models. Astrophys. J. 1966, 145, 505. [Google Scholar] [CrossRef]
- Haensel, P.; Zdunik, J.L.; Schaeffer, R. Phase transitions in dense matter and radial pulsations of neutron stars. Astrophys. Astron. J. 1989, 217, 137–144. [Google Scholar]
- Schwarzschild, K. On the Gravitational Field of a Mass Point According to Einstein’s Theory. Abh. Konigl. Preuss. Akad. Wiss. Jahre 1916, 1916, 189–196. [Google Scholar]
- Landau, L.; Lifshitz, E. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1980; pp. 258–272. ISBN 978-07-5062-768-9. [Google Scholar]
- Oppenheimer, J.R.; Volkoff, G.M. On massive neutron cores. Phys. Rev. 1939, 55, 374. [Google Scholar] [CrossRef]
- Tolman, R.C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 1939, 55, 364. [Google Scholar] [CrossRef]
- McLerran, L.; Reddy, S. Quarkyonic Matter and Neutron Stars. Phys. Rev. Lett. 2019, 122, 122701. [Google Scholar] [CrossRef]
- Lalazissis, G.A.; König, J.; Ring, P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 1997, 55, 540–543. [Google Scholar] [CrossRef]
- Kumar, B.; Patra, S.; Agrawal, B. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars. Phys. Rev. C 2018, 97, 045806. [Google Scholar] [CrossRef]
- Typel, S.; Röpke, G.; Klähn, T.; Blaschke, D.; Wolter, H. Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 2010, 81, 015803. [Google Scholar] [CrossRef]
- Lalazissis, G.A.; Nikšić, T.; Vretenar, D.; Ring, P. New relativistic mean-field interaction with density-dependent meson-nucleon couplings. Phys. Rev. C 2005, 71, 024312. [Google Scholar] [CrossRef]
- Douchin, F.; Haensel, P. A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 2001, 380, 151–167. [Google Scholar] [CrossRef]
- Bejger, M.; Blaschke, D.; Haensel, P.; Zdunik, J.; Fortin, M. Consequences of a strong phase transition in the dense matter equation of state for the rotational evolution of neutron stars. Astron. Astrophys. 2017, 600, A39. [Google Scholar] [CrossRef]
- Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rept. Prog. Phys. 2018, 81, 056902. [Google Scholar] [CrossRef]
- Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron–quark crossover and massive hybrid stars. PTEP 2013, 2013, 073D01. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. 2019, 887, L24. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A <i>NICER</i> View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. 2019, 887, L21. [Google Scholar] [CrossRef]
- Miller, M.; Lamb, F.; Dittmann, A.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.; Guillot, S.; Ho, W.; Lattimer, J.; Loewenstein, M.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. Astrophys. J. Lett. 2021, 918, L28. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett. 2020, 896, L44. [Google Scholar] [CrossRef]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2020, 4, 72–76. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 1233232. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett. 2021, 915, L12. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett. 2021, 918, L27. [Google Scholar] [CrossRef]
- Di Clemente, F.; Mannarelli, M.; Tonelli, F. Reliable description of the radial oscillations of compact stars. Phys. Rev. D 2020, 101, 103003. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1983; pp. 241–266. ISBN 978-35-2761-766-1. [Google Scholar]
- Arnett, W.D.; Bowers, R.L. A Microscopic Interpretation of Neutron Star Structure. Astrophys. J. Suppl. 1977, 33, 415. [Google Scholar] [CrossRef]
- Li, H.B.; Gao, Y.; Shao, L.; Xu, R.X.; Xu, R. Oscillation Modes and Gravitational Waves from Strangeon Stars. arXiv 2022, arXiv:2206.09407. [Google Scholar] [CrossRef]
- Sun, T.T.; Zheng, Z.Y.; Chen, H.; Burgio, G.F.; Schulze, H.J. Equation of state and radial oscillations of neutron stars. Phys. Rev. D 2021, 103, 103003. [Google Scholar] [CrossRef]
- Sagun, V.; Panotopoulos, G.; Lopes, I. Asteroseismology: Radial oscillations of neutron stars with realistic equation of state. Phys. Rev. D 2020, 101, 063025. [Google Scholar] [CrossRef]
- Kondratyev, V.N. Magnetoemission of Magnetars. Phys. Part. Nucl. 2019, 50, 613–615. [Google Scholar] [CrossRef]
- Martynov, D.; Miao, H.; Yang, H.; Vivanco, F.H.; Thrane, E.; Smith, R.; Lasky, P.; East, W.E.; Adhikari, R.; Bauswein, A.; et al. Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 2019, 99, 102004. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.; Affeldt, C.; Agathos, M.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 2020, 23, 1–69. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 2017, 34, 044001. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quantum Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Danilishin, S.L.; Khalili, F.Y.; Miao, H. Advanced quantum techniques for future gravitational-wave detectors. Living Rev. Relativ. 2019, 22, 2. [Google Scholar] [CrossRef]
- Bora, J.; Dev Goswami, U. Radial oscillations and gravitational wave echoes of strange stars for various equations of state. Mon. Not. R. Astron. Soc. 2021, 502, 1557–1568. [Google Scholar] [CrossRef]
- Panda, N.; Mohanta, K.; Sahu, P. Radial modes of slowly rotating compact stars in the presence of magnetic field. Eur. Phys. J. A 2016, 52, 1–10. [Google Scholar] [CrossRef]
Order | Hadronic EoSs | Quarkyonic EoSs | ||||||
---|---|---|---|---|---|---|---|---|
n | DD2 | DDME2 | IOPB | NL3 | SLy4 | Q1 | Q2 | Q3 |
0 | 3.11 | 3.25 | 2.87 | 2.59 | 3.01 | 5.61 | 4.95 | 3.45 |
1 | 6.43 | 6.52 | 6.15 | 5.56 | 6.96 | 8.03 | 8.11 | 7.45 |
2 | 8.65 | 8.56 | 8.28 | 7.28 | 9.60 | 9.63 | 10.21 | 9.18 |
3 | 9.36 | 9.31 | 8.99 | 8.30 | 10.81 | 11.75 | 11.97 | 10.71 |
4 | 11.48 | 11.47 | 11.30 | 10.57 | 12.33 | 14.35 | 14.21 | 12.64 |
5 | 13.18 | 13.13 | 12.74 | 11.17 | 14.59 | 15.88 | 15.95 | 14.38 |
6 | 14.43 | 14.42 | 13.95 | 13.15 | 16.54 | 17.51 | 17.86 | 15.79 |
7 | 16.18 | 16.14 | 15.78 | 14.35 | 17.89 | 19.98 | 20.51 | 18.03 |
8 | 18.14 | 18.13 | 17.51 | 15.77 | 19.97 | 21.95 | 22.15 | 19.77 |
9 | 19.28 | 19.22 | 18.72 | 16.97 | 22.08 | 24.39 | 23.99 | 21.46 |
10 | 21.12 | 21.15 | 20.64 | 18.83 | 23.61 | 25.88 | 26.47 | 23.59 |
11 | 23.17 | 23.14 | 22.17 | 19.93 | 25.4 | 27.71 | 28.49 | 25.50 |
12 | 24.40 | 24.31 | 23.62 | 21.48 | 27.59 | 30.25 | 30.23 | 27.19 |
13 | 26.03 | 26.06 | 25.22 | 23.38 | 29.41 | 32.53 | 32.52 | 29.03 |
14 | 28.15 | 28.24 | 27.27 | 24.38 | 30.97 | 34.18 | 34.66 | 30.79 |
15 | 29.65 | 29.53 | 28.30 | 26.02 | 32.99 | 35.99 | 36.69 | 32.67 |
16 | 31.07 | 31.09 | 30.38 | 27.46 | 35.15 | 38.34 | 38.67 | 34.53 |
17 | 33.08 | 33.13 | 31.89 | 28.93 | 36.72 | 40.75 | 40.84 | 36.36 |
18 | 34.69 | 34.54 | 33.44 | 30.29 | 38.55 | 42.44 | 42.93 | 38.32 |
19 | 36.15 | 36.24 | 34.98 | 31.92 | 40.63 | 44.34 | 44.88 | 40.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sen, S.; Kumar, S.; Kunjipurayil, A.; Routaray, P.; Ghosh, S.; Kalita, P.J.; Zhao, T.; Kumar, B. Radial Oscillations in Neutron Stars from Unified Hadronic and Quarkyonic Equation of States. Galaxies 2023, 11, 60. https://doi.org/10.3390/galaxies11020060
Sen S, Kumar S, Kunjipurayil A, Routaray P, Ghosh S, Kalita PJ, Zhao T, Kumar B. Radial Oscillations in Neutron Stars from Unified Hadronic and Quarkyonic Equation of States. Galaxies. 2023; 11(2):60. https://doi.org/10.3390/galaxies11020060
Chicago/Turabian StyleSen, Souhardya, Shubham Kumar, Athul Kunjipurayil, Pinku Routaray, Sayantan Ghosh, Probit J. Kalita, Tianqi Zhao, and Bharat Kumar. 2023. "Radial Oscillations in Neutron Stars from Unified Hadronic and Quarkyonic Equation of States" Galaxies 11, no. 2: 60. https://doi.org/10.3390/galaxies11020060
APA StyleSen, S., Kumar, S., Kunjipurayil, A., Routaray, P., Ghosh, S., Kalita, P. J., Zhao, T., & Kumar, B. (2023). Radial Oscillations in Neutron Stars from Unified Hadronic and Quarkyonic Equation of States. Galaxies, 11(2), 60. https://doi.org/10.3390/galaxies11020060