AGN Feedback Signatures in UV Emission
Abstract
:1. Introduction
2. Galaxy Merger and Feedback
Galaxy Merger System: MRK 212
3. AGN Feedback in Radio-Quiet AGN
3.1. Episodic AGN activity and feedback: NGC 2639
3.2. Radio Loud Galaxies
4. Summary and Future Scope with UV Telescopes
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Cattaneo, A.; Faber, S.M.; Binney, J.; Dekel, A.; Kormendy, J.; Mushotzky, R.; Babul, A.; Best, P.N.; Brüggen, M.; Fabian, A.C.; et al. The role of black holes in galaxy formation and evolution. Nature 2009, 460, 213–219. [Google Scholar] [CrossRef]
- Alexander, D.M.; Hickox, R.C. What drives the growth of black holes? New Astron. Rev. 2012, 56, 93–121. [Google Scholar] [CrossRef]
- King, A.; Pounds, K. Powerful Outflows and Feedback from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 115–154. [Google Scholar] [CrossRef]
- Morganti, R. The many routes to AGN feedback. Front. Astron. Space Sci. 2017, 4, 42. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Baldry, I.K.; Balogh, M.L.; Bower, R.G.; Glazebrook, K.; Nichol, R.C.; Bamford, S.P.; Budavari, T. Galaxy bimodality versus stellar mass and environment. Mon. Not. R. Astron. Soc. 2006, 373, 469–483. [Google Scholar] [CrossRef]
- Dubois, Y.; Devriendt, J.; Slyz, A.; Teyssier, R. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: Methods, tests and implications for cosmological simulations. Mon. Not. R. Astron. Soc. 2012, 420, 2662–2683. [Google Scholar] [CrossRef]
- Silk, J.; Mamon, G.A. The current status of galaxy formation. Res. Astron. Astrophys. 2012, 12, 917–946. [Google Scholar] [CrossRef]
- Choi, E.; Somerville, R.S.; Ostriker, J.P.; Naab, T.; Hirschmann, M. The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies. Astrophys. J. 2018, 866, 91. [Google Scholar] [CrossRef]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Heating Hot Atmospheres with Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef]
- Nulsen, P.E.J.; Jones, C.; Forman, W.R.; David, L.P.; McNamara, B.R.; Rafferty, D.A.; Bîrzan, L.; Wise, M.W. AGN Heating Through Cavities and Shocks. In Heating versus Cooling in Galaxies and Clusters of Galaxies; Böhringer, H., Pratt, G.W., Finoguenov, A., Schuecker, P., Eds.; Eso Astrophysics Symposia; Springer: Berlin/Heidelberg, Germany, 2007; p. 210. [Google Scholar] [CrossRef]
- Cavagnolo, K.W.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Jones, C.; Bîrzan, L. A Relationship Between AGN Jet Power and Radio Power. Astrophys. J. 2010, 720, 1066–1072. [Google Scholar] [CrossRef]
- Faucher-Giguère, C.A.; Quataert, E. The physics of galactic winds driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 2012, 425, 605–622. [Google Scholar] [CrossRef]
- Costa, T.; Sijacki, D.; Trenti, M.; Haehnelt, M.G. The environment of bright QSOs at z ∼ 6: Star-forming galaxies and X-ray emission. Mon. Not. R. Astron. Soc. 2014, 439, 2146–2174. [Google Scholar] [CrossRef]
- Mahony, E.K.; Morganti, R.; Emonts, B.H.C.; Oosterloo, T.A.; Tadhunter, C. The location and impact of jet-driven outflows of cold gas: The case of 3C 293. Mon. Not. R. Astron. Soc. 2013, 435, L58–L62. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Ishibashi, W.; Fabian, A.C. Active galactic nucleus feedback and triggering of star formation in galaxies. Mon. Not. R. Astron. Soc. 2012, 427, 2998–3005. [Google Scholar] [CrossRef]
- Zubovas, K.; Nayakshin, S.; Sazonov, S.; Sunyaev, R. Outflows of stars due to quasar feedback. Mon. Not. R. Astron. Soc. 2013, 431, 793–798. [Google Scholar] [CrossRef]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies1. Astrophys. J. 2005, 632, 751–780. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Veilleux, S. The Multiphase Structure and Power Sources of Galactic Winds in Major Mergers. Astrophys. J. 2013, 768, 75. [Google Scholar] [CrossRef]
- Liu, G.; Zakamska, N.L.; Greene, J.E.; Nesvadba, N.P.H.; Liu, X. Observations of feedback from radio-quiet quasars—II. Kinematics of ionized gas nebulae. Mon. Not. R. Astron. Soc. 2013, 436, 2576–2597. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Sturm, E.; Graciá-Carpio, J.; Feruglio, C.; Neri, R.; Aalto, S.; Davies, R.; Fiore, F.; Fischer, J.; et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 2014, 562, A21. [Google Scholar] [CrossRef]
- Harrison, C.M.; Costa, T.; Tadhunter, C.N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G. AGN outflows and feedback twenty years on. Nat. Astron. 2018, 2, 198–205. [Google Scholar] [CrossRef]
- Roy, N.; Bundy, K.; Rubin, K.H.R.; Rowlands, K.; Westfall, K.; Riffel, R.; Bizyaev, D.; Stark, D.V.; Riffel, R.A.; Lacerna, I.; et al. Signatures of Inflowing Gas in Red Geyser Galaxies Hosting Radio Active Galactic Nuclei. Astrophys. J. 2021, 919, 145. [Google Scholar] [CrossRef]
- Venturi, G.; Cresci, G.; Marconi, A.; Mingozzi, M.; Nardini, E.; Carniani, S.; Mannucci, F.; Marasco, A.; Maiolino, R.; Perna, M.; et al. MAGNUM survey: Compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. Astron. Astrophys. 2021, 648, A17. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Bischetti, M.; García-Burillo, S.; Alonso-Herrero, A.; Audibert, A.; Cicone, C.; Feruglio, C.; Tadhunter, C.N.; Pierce, J.C.S.; Pereira-Santaella, M.; et al. The diverse cold molecular gas contents, morphologies, and kinematics of type-2 quasars as seen by ALMA. Astron. Astrophys. 2022, 658, A155. [Google Scholar] [CrossRef]
- Fischer, J.; Sturm, E.; González-Alfonso, E.; Graciá-Carpio, J.; Hailey-Dunsheath, S.; Poglitsch, A.; Contursi, A.; Lutz, D.; Genzel, R.; Sternberg, A.; et al. Herschel-PACS spectroscopic diagnostics of local ULIRGs: Conditions and kinematics in Markarian 231. Astron. Astrophys. 2010, 518, L41. [Google Scholar] [CrossRef]
- Oosterloo, T.A.; Morganti, R.; Tzioumis, A.; Reynolds, J.; King, E.; McCulloch, P.; Tsvetanov, Z. A Strong Jet-Cloud Interaction in the Seyfert Galaxy IC 5063: VLBI Observations. Astron. J. 2000, 119, 2085–2091. [Google Scholar] [CrossRef]
- Cicone, C.; Feruglio, C.; Maiolino, R.; Fiore, F.; Piconcelli, E.; Menci, N.; Aussel, H.; Sturm, E. The physics and the structure of the quasar-driven outflow in Mrk 231. Astron. Astrophys. 2012, 543, A99. [Google Scholar] [CrossRef]
- Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; et al. The multi-phase winds of Markarian 231: From the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 2015, 583, A99. [Google Scholar] [CrossRef]
- Morganti, R.; Veilleux, S.; Oosterloo, T.; Teng, S.H.; Rupke, D. Another piece of the puzzle: The fast H I outflow in Mrk 231. Astron. Astrophys. 2016, 593, A30. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Combes, F.; Oosterloo, T.; Oonk, J.B.R.; Morganti, R.; Salomé, P.; Vlahakis, N. ALMA reveals optically thin, highly excited CO gas in the jet-driven winds of the galaxy IC 5063. Astron. Astrophys. 2016, 595, L7. [Google Scholar] [CrossRef]
- Tadhunter, C.; Morganti, R.; Rose, M.; Oonk, J.B.R.; Oosterloo, T. Jet acceleration of the fast molecular outflows in the Seyfert galaxy IC 5063. Nature 2014, 511, 440–443. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.; Oonk, J.B.R.; Frieswijk, W.; Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 2015, 580, A1. [Google Scholar] [CrossRef]
- Maiolino, R.; Russell, H.R.; Fabian, A.C.; Carniani, S.; Gallagher, R.; Cazzoli, S.; Arribas, S.; Belfiore, F.; Bellocchi, E.; Colina, L.; et al. Star formation inside a galactic outflow. Nature 2017, 544, 202–206. [Google Scholar] [CrossRef]
- Gallagher, R.; Maiolino, R.; Belfiore, F.; Drory, N.; Riffel, R.; Riffel, R.A. Widespread star formation inside galactic outflows. Mon. Not. R. Astron. Soc. 2019, 485, 3409–3429. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback—III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Tamhane, P.D.; McNamara, B.R.; Russell, H.R.; Combes, F.; Qiu, Y.; Edge, A.C.; Maiolino, R.; Fabian, A.C.; Nulsen, P.E.J.; Johnstone, R.; et al. Radio jet-ISM interaction and positive radio-mechanical feedback in Abell 1795. Mon. Not. R. Astron. Soc. 2023, 519, 3338–3356. [Google Scholar] [CrossRef]
- Zirm, A.W.; Overzier, R.A.; Miley, G.K.; Blakeslee, J.P.; Clampin, M.; De Breuck, C.; Demarco, R.; Ford, H.C.; Hartig, G.F.; Homeier, N.; et al. Feedback and Brightest Cluster Galaxy Formation: ACS Observations of the Radio Galaxy TN J1338-1942 at z = 4.1. Astrophys. J. 2005, 630, 68–81. [Google Scholar] [CrossRef]
- Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4. Astron. Astrophys. 2016, 593, A109. [Google Scholar] [CrossRef]
- Kennicutt, R.C. Star Formation in Galaxies Along the Hubble Sequence. Annu. Rev. Astron. Astrophys. 1998, 36, 189–232. [Google Scholar] [CrossRef]
- Calzetti, D. Star Formation Rate Indicators. In Secular Evolution of Galaxies; Falcón-Barroso, J., Knapen, J.H., Eds.; Proceedings of the XXIII Canary Islands Winter School of Astrophysics: ‘Secular Evolution of Galaxies’; Cambridge University Press: Cambridge, UK, 2013; p. 419. [Google Scholar]
- Duggal, C.; O’Dea, C.P.; Baum, S.A.; Labiano, A.; Tadhunter, C.; Worrall, D.M.; Morganti, R.; Tremblay, G.R.; Dicken, D. Optical- & UV-Continuum Morphologies of Compact Radio Source Hosts. arXiv 2023, arXiv:2309.00110. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, S.K.; Hutchings, J.; Kamath, P.U.; Kathiravan, S.; Mahesh, P.K.; Murthy, J.; Nagbhushana, S.; Pati, A.K.; Rao, M.N. Ultra Violet Imaging Telescope (UVIT) on ASTROSAT. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray: Bellingham, WA, USA, 2012; Volume 8443. [Google Scholar] [CrossRef]
- Martin, D.C.; Fanson, J.; Schiminovich, D.; Morrissey, P.; Friedman, P.G.; Barlow, T.A.; Conrow, T.; Grange, R.; Jelinsky, P.N.; Milliard, B.; et al. The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission. Astrophys. J. 2005, 619, L1–L6. [Google Scholar] [CrossRef]
- Daddi, E.; Dickinson, M.; Morrison, G.; Chary, R.; Cimatti, A.; Elbaz, D.; Frayer, D.; Renzini, A.; Pope, A.; Alexander, D.M.; et al. Multiwavelength Study of Massive Galaxies at z∼2. I. Star Formation and Galaxy Growth. Astrophys. J. 2007, 670, 156–172. [Google Scholar] [CrossRef]
- Salim, S.; Rich, R.M.; Charlot, S.; Brinchmann, J.; Johnson, B.D.; Schiminovich, D.; Seibert, M.; Mallery, R.; Heckman, T.M.; Forster, K.; et al. UV Star Formation Rates in the Local Universe. Astrophys. J. Suppl. Ser. 2007, 173, 267–292. [Google Scholar] [CrossRef]
- Tomczak, A.R.; Quadri, R.F.; Tran, K.V.H.; Labbé, I.; Straatman, C.M.S.; Papovich, C.; Glazebrook, K.; Allen, R.; Brammer, G.B.; Cowley, M.; et al. The SFR-M* Relation and Empirical Star-Formation Histories from ZFOURGE* at 0.5 < z < 4. Astrophys. J. 2016, 817, 118. [Google Scholar] [CrossRef]
- Elbaz, D.; Leiton, R.; Nagar, N.; Okumura, K.; Franco, M.; Schreiber, C.; Pannella, M.; Wang, T.; Dickinson, M.; Díaz-Santos, T.; et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 2018, 616, A110. [Google Scholar] [CrossRef]
- Schawinski, K.; Khochfar, S.; Kaviraj, S.; Yi, S.K.; Boselli, A.; Barlow, T.; Conrow, T.; Forster, K.; Friedman, P.G.; Martin, D.C.; et al. Suppression of star formation in early-type galaxies by feedback from supermassive black holes. Nature 2006, 442, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Hickox, R.C.; Jones, C.; Forman, W.R.; Murray, S.S.; Kochanek, C.S.; Eisenstein, D.; Jannuzi, B.T.; Dey, A.; Brown, M.J.I.; Stern, D.; et al. Host Galaxies, Clustering, Eddington Ratios, and Evolution of Radio, X-Ray, and Infrared-Selected AGNs. Astrophys. J. 2009, 696, 891–919. [Google Scholar] [CrossRef]
- Kaviraj, S.; Laigle, C.; Kimm, T.; Devriendt, J.E.G.; Dubois, Y.; Pichon, C.; Slyz, A.; Chisari, E.; Peirani, S. The Horizon-AGN simulation: Evolution of galaxy properties over cosmic time. Mon. Not. R. Astron. Soc. 2017, 467, 4739–4752. [Google Scholar] [CrossRef]
- Volonteri, M.; Haardt, F.; Madau, P. The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. Astrophys. J. 2003, 582, 559–573. [Google Scholar] [CrossRef]
- Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 2005, 364, 1105–1134. [Google Scholar] [CrossRef]
- Faisst, A.L.; Carollo, C.M.; Capak, P.L.; Tacchella, S.; Renzini, A.; Ilbert, O.; McCracken, H.J.; Scoville, N.Z. Constraints on Quenching of Z ≲ 2 Massive Galaxies from the Evolution of the Average Sizes of Star-forming and Quenched Populations in COSMOS. Astrophys. J. 2017, 839, 71. [Google Scholar] [CrossRef]
- Gunn, J.E.; Gott, J. Richard, I. On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution. Astrophys. J. 1972, 176, 1. [Google Scholar] [CrossRef]
- Barnes, J.E.; Hernquist, L. Dynamics of interacting galaxies. Annu. Rev. Astron. Astrophys. 1992, 30, 705–742. [Google Scholar] [CrossRef]
- Bournaud, F. Star Formation and Structure Formation in Galaxy Interactions and Mergers. In Proceedings of the Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies ASP Conference Series, Johnson City, TN, USA, 19–22 July 2009; 2010; Volume 423, p. 177. [Google Scholar]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Robertson, B.; Springel, V. A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. Ser. 2006, 163, 1–49. [Google Scholar] [CrossRef]
- Ellison, S.L.; Patton, D.R.; Mendel, J.T.; Scudder, J.M. Galaxy pairs in the Sloan Digital Sky Survey—IV. Interactions trigger active galactic nuclei. Mon. Not. R. Astron. Soc. 2011, 418, 2043–2053. [Google Scholar] [CrossRef]
- Satyapal, S.; Ellison, S.L.; McAlpine, W.; Hickox, R.C.; Patton, D.R.; Mendel, J.T. Galaxy pairs in the Sloan Digital Sky Survey—IX. Merger-induced AGN activity as traced by the Wide-field Infrared Survey Explorer. Mon. Not. R. Astron. Soc. 2014, 441, 1297–1304. [Google Scholar] [CrossRef]
- Kaviraj, S.; Martin, G.; Silk, J. AGN in dwarf galaxies: Frequency, triggering processes and the plausibility of AGN feedback. Mon. Not. R. Astron. Soc. 2019, 489, L12–L16. [Google Scholar] [CrossRef]
- Cazzoli, S. Negative and positive outflow-feedback in nearby (U)LIRGs. Front. Astron. Space Sci. 2017, 4, 62. [Google Scholar] [CrossRef]
- Springel, V.; Di Matteo, T.; Hernquist, L. Black Holes in Galaxy Mergers: The Formation of Red Elliptical Galaxies. Astrophys. J. 2005, 620, L79–L82. [Google Scholar] [CrossRef]
- Sparre, M.; Springel, V. The unorthodox evolution of major merger remnants into star-forming spiral galaxies. Mon. Not. R. Astron. Soc. 2017, 470, 3946–3958. [Google Scholar] [CrossRef]
- Rubinur, K.; Kharb, P.; Das, M.; Rahna, P.T.; Honey, M.; Paswan, A.; Vaddi, S.; Murthy, J. A multiwavelength study of the dual nuclei in Mrk 212. Mon. Not. R. Astron. Soc. 2021, 500, 3908–3919. [Google Scholar] [CrossRef]
- Rubinur, K.; Das, M.; Kharb, P.; Yadav, J.; Mondal, C.; Rahna, P.T. Study of star formation in dual nuclei galaxies using UVIT observations. Mon. Not. R. Astron. Soc. 2024, 528, 4432–4450. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Phillips, M.M.; Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 1981, 93, 5–19. [Google Scholar] [CrossRef]
- Satyapal, S.; Secrest, N.J.; Ricci, C.; Ellison, S.L.; Rothberg, B.; Blecha, L.; Constantin, A.; Gliozzi, M.; McNulty, P.; Ferguson, J. Buried AGNs in Advanced Mergers: Mid-infrared Color Selection as a Dual AGN Candidate Finder. Astrophys. J. 2017, 848, 126. [Google Scholar] [CrossRef]
- Agostino, C.J.; Salim, S. Crossing the Line: Active Galactic Nuclei in the Star-forming Region of the BPT Diagram. Astrophys. J. 2019, 876, 12. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Komossa, S.; Burwitz, V.; Hasinger, G.; Predehl, P.; Kaastra, J.S.; Ikebe, Y. Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra. Astrophys. J. 2003, 582, L15–L19. [Google Scholar] [CrossRef]
- Comerford, J.M.; Gerke, B.F.; Stern, D.; Cooper, M.C.; Weiner, B.J.; Newman, J.A.; Madsen, K.; Barrows, R.S. Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates. Astrophys. J. 2012, 753, 42. [Google Scholar] [CrossRef]
- Müller-Sánchez, F.; Comerford, J.M.; Nevin, R.; Barrows, R.S.; Cooper, M.C.; Greene, J.E. The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. I. Very Large Array Detections of Dual AGNs and AGN Outflows. Astrophys. J. 2015, 813, 103. [Google Scholar] [CrossRef]
- Rubinur, K.; Das, M.; Kharb, P. Searching for dual AGN in galaxies with double-peaked emission line spectra using radio observations. Mon. Not. R. Astron. Soc. 2019, 484, 4933–4950. [Google Scholar] [CrossRef]
- De Rosa, A.; Vignali, C.; Bogdanović, T.; Capelo, P.R.; Charisi, M.; Dotti, M.; Husemann, B.; Lusso, E.; Mayer, L.; Paragi, Z.; et al. The quest for dual and binary supermassive black holes: A multi-messenger view. New Astron. Rev. 2019, 86, 101525. [Google Scholar] [CrossRef]
- Thorne, K.S.; Braginskii, V.B. Gravitational-wave bursts from the nuclei of distant galaxies and quasars: Proposal for detection using Doppler tracking of interplanetary spacecraft. Astrophys. J. 1976, 204, L1–L6. [Google Scholar] [CrossRef]
- Wang, J.M.; Chen, Y.M.; Hu, C.; Mao, W.M.; Zhang, S.; Bian, W.H. Active Galactic Nuclei with Double-Peaked Narrow Lines: Are they Dual Active Galactic Nuclei? Astrophys. J. 2009, 705, L76–L80. [Google Scholar] [CrossRef]
- Smith, K.L.; Shields, G.A.; Bonning, E.W.; McMullen, C.C.; Rosario, D.J.; Salviander, S. A Search for Binary Active Galactic Nuclei: Double-peaked [O III] AGNs in the Sloan Digital Sky Survey. Astrophys. J. 2010, 716, 866–877. [Google Scholar] [CrossRef]
- Teng, S.H.; Schawinski, K.; Urry, C.M.; Darg, D.W.; Kaviraj, S.; Oh, K.; Bonning, E.W.; Cardamone, C.N.; Keel, W.C.; Lintott, C.J.; et al. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers. Astrophys. J. 2012, 753, 165. [Google Scholar] [CrossRef]
- Liu, X.; Shen, Y.; Strauss, M.A. Active Galactic Nucleus Pairs from the Sloan Digital Sky Survey. II. Evidence for Tidally Enhanced Star Formation and Black Hole Accretion. Astrophys. J. 2012, 745, 94. [Google Scholar] [CrossRef]
- Prabhu, T.P. Indian Astronomical Observatory, Leh-Hanle. Proc. Indian Natl. Sci. Acad. Part A 2014, 80, 887–912. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M. Physical Parameters in the Hot Spots and Jets of Compact Symmetric Objects. Astrophys. J. 2002, 568, 639–650. [Google Scholar] [CrossRef]
- Bondi, M.; Pérez-Torres, M.A.; Dallacasa, D.; Muxlow, T.W.B. A supernova factory in Mrk 273? Mon. Not. R. Astron. Soc. 2005, 361, 748–752. [Google Scholar] [CrossRef]
- Hernández-Ibarra, F.J.; Krongold, Y.; Dultzin, D.; del Olmo, A.; Perea, J.; González, J.; Mendoza-Castrejón, S.; Bitsakis, T. The incidence of nuclear activity in galaxy pairs with different morphologies (E + E), (E + S) and (S + S). Mon. Not. R. Astron. Soc. 2016, 459, 291–309. [Google Scholar] [CrossRef]
- de Bruyn, A.G.; Wilson, A.S. A 1415 MHz Survey of Seyfert and Related Galaxies. Astron. Astrophys. 1976, 53, 93. [Google Scholar]
- Ulvestad, J.S.; Wilson, A.S. Radio structures of Seyfert galaxies. VI. VLA observations of a nearby sample. Astrophys. J. 1984, 285, 439–452. [Google Scholar] [CrossRef]
- Roy, A.L.; Norris, R.P.; Kesteven, M.J.; Troup, E.R.; Reynolds, J.E. Compact Radio Cores in Seyfert Galaxies. Astrophys. J. 1994, 432, 496. [Google Scholar] [CrossRef]
- Thean, A.; Pedlar, A.; Kukula, M.J.; Baum, S.A.; O’Dea, C.P. High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample—II. The properties of compact radio components. Mon. Not. R. Astron. Soc. 2001, 325, 737–760. [Google Scholar] [CrossRef]
- Gallimore, J.F.; Axon, D.J.; O’Dea, C.P.; Baum, S.A.; Pedlar, A. A Survey of Kiloparsec-Scale Radio Outflows in Radio-Quiet Active Galactic Nuclei. Astron. J. 2006, 132, 546–569. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Thomson, A.P.; Circosta, C.; Mainieri, V.; Alexander, D.M.; Edge, A.C.; Lansbury, G.B.; Molyneux, S.J.; Mullaney, J.R. Prevalence of radio jets associated with galactic outflows and feedback from quasars. Mon. Not. R. Astron. Soc. 2019, 485, 2710–2730. [Google Scholar] [CrossRef]
- Silpa, S.; Kharb, P.; Ho, L.C.; Ishwara-Chandra, C.H.; Jarvis, M.E.; Harrison, C. Probing the origin of low-frequency radio emission in PG quasars with the uGMRT—I. Mon. Not. R. Astron. Soc. 2020, 499, 5826–5839. [Google Scholar] [CrossRef]
- Kharb, P.; O’Dea, C.P.; Baum, S.A.; Colbert, E.J.M.; Xu, C. A Radio Study of the Seyfert Galaxy Markarian 6: Implications for Seyfert Life Cycles. Astrophys. J. 2006, 652, 177–188. [Google Scholar] [CrossRef]
- Irwin, J.A.; Schmidt, P.; Damas-Segovia, A.; Beck, R.; English, J.; Heald, G.; Henriksen, R.N.; Krause, M.; Li, J.T.; Rand, R.J.; et al. CHANG-ES—VIII. Uncovering hidden AGN activity in radio polarization. Mon. Not. R. Astron. Soc. 2017, 464, 1333–1346. [Google Scholar] [CrossRef]
- Rao, V.V.; Kharb, P.; Rubinur, K.; Silpa, S.; Roy, N.; Sebastian, B.; Singh, V.; Baghel, J.; Manna, S.; Ishwara-Chandra, C.H. AGN feedback through multiple jet cycles in the Seyfert galaxy NGC 2639. Mon. Not. R. Astron. Soc. 2023, 524, 1615–1624. [Google Scholar] [CrossRef]
- Lacerda, E.A.D.; Sánchez, S.F.; Cid Fernandes, R.; López-Cobá, C.; Espinosa-Ponce, C.; Galbany, L. Galaxies hosting an active galactic nucleus: A view from the CALIFA survey. Mon. Not. R. Astron. Soc. 2020, 492, 3073–3090. [Google Scholar] [CrossRef]
- Berrier, J.C.; Davis, B.L.; Kennefick, D.; Kennefick, J.D.; Seigar, M.S.; Barrows, R.S.; Hartley, M.; Shields, D.; Bentz, M.C.; Lacy, C.H.S. Further Evidence for a Supermassive Black Hole Mass-Pitch Angle Relation. Astrophys. J. 2013, 769, 132. [Google Scholar] [CrossRef]
- Sebastian, B.; Kharb, P.; O’Dea, C.P.; Gallimore, J.F.; Baum, S.A. The discovery of secondary lobes in the Seyfert galaxy NGC 2639. Mon. Not. R. Astron. Soc. 2019, 490, L26–L31. [Google Scholar] [CrossRef]
- Sanders, R.H. Seyfert nuclei as short-lived stochastic accretion events. Astron. Astrophys. 1984, 140, 52–54. [Google Scholar]
- Ellison, S.L.; Wong, T.; Sánchez, S.F.; Colombo, D.; Bolatto, A.; Barrera-Ballesteros, J.; García-Benito, R.; Kalinova, V.; Luo, Y.; Rubio, M.; et al. The EDGE-CALIFA survey: Central molecular gas depletion in AGN host galaxies—A smoking gun for quenching? Mon. Not. R. Astron. Soc. 2021, 505, L46–L51. [Google Scholar] [CrossRef]
- George, K.; Joseph, P.; Mondal, C.; Devaraj, A.; Subramaniam, A.; Stalin, C.S.; Côté, P.; Ghosh, S.K.; Hutchings, J.B.; Mohan, R.; et al. UVIT observations of the star-forming ring in NGC 7252: Evidence of possible AGN feedback suppressing central star formation. Astron. Astrophys. 2018, 613, L9. [Google Scholar] [CrossRef]
- George, K.; Poggianti, B.M.; Bellhouse, C.; Radovich, M.; Fritz, J.; Paladino, R.; Bettoni, D.; Jaffé, Y.; Moretti, A.; Gullieuszik, M.; et al. GASP XVIII: Star formation quenching due to AGN feedback in the central region of a jellyfish galaxy. Mon. Not. R. Astron. Soc. 2019, 487, 3102–3111. [Google Scholar] [CrossRef]
- Shin, J.; Woo, J.H.; Chung, A.; Baek, J.; Cho, K.; Kang, D.; Bae, H.J. Positive and Negative Feedback of AGN Outflows in NGC 5728. Astrophys. J. 2019, 881, 147. [Google Scholar] [CrossRef]
- Joseph, P.; George, K.; Paul, K.T. Active galactic nucleus feedback in NGC 3982. Astron. Astrophys. 2022, 667, A88. [Google Scholar] [CrossRef]
- Giroletti, M.; Panessa, F. The Faintest Seyfert Radio Cores Revealed by VLBI. Astrophys. J. 2009, 706, L260–L264. [Google Scholar] [CrossRef]
- Jones, S.; McHardy, I.; Moss, D.; Seymour, N.; Breedt, E.; Uttley, P.; Körding, E.; Tudose, V. Radio and X-ray variability in the Seyfert galaxy NGC 4051. Mon. Not. R. Astron. Soc. 2011, 412, 2641–2652. [Google Scholar] [CrossRef]
- Riffel, R.A.; Storchi-Bergmann, T.; Winge, C.; McGregor, P.J.; Beck, T.; Schmitt, H. Mapping of molecular gas inflow towards the Seyfert nucleus of NGC4051 using Gemini NIFS. Mon. Not. R. Astron. Soc. 2008, 385, 1129–1142. [Google Scholar] [CrossRef]
- Lammers, C.; Iyer, K.G.; Ibarra-Medel, H.; Pacifici, C.; Sánchez, S.F.; Tacchella, S.; Woo, J. Active Galactic Nuclei Feedback in SDSS-IV MaNGA: AGNs Have Suppressed Central Star Formation Rates. Astrophys. J. 2023, 953, 26. [Google Scholar] [CrossRef]
- Laing, R.A.; Riley, J.M.; Longair, M.S. Bright radio sources at 178 MHz: Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon. Not. R. Astron. Soc. 1983, 204, 151–187. [Google Scholar] [CrossRef]
- Salomé, Q.; Salomé, P.; Combes, F. Jet-induced star formation in 3C 285 and Minkowski’s Object. Astron. Astrophys. 2015, 574, A34. [Google Scholar] [CrossRef]
- Spinrad, H.; Djorgovski, S.; Marr, J.; Aguilar, L. A third update of the status of the 3 CR sources: Further new redshifts and new identifications of distant galaxies. Publ. Astron. Soc. Pac. 1985, 97, 932–961. [Google Scholar] [CrossRef]
- McCarthy, P.J.; Spinrad, H.; van Breugel, W. Emission-Line Imaging of 3CR Radio Galaxies. I. Imaging Data. Astrophys. J. Suppl. Ser. 1995, 99, 27. [Google Scholar] [CrossRef]
- Best, P.N.; Longair, M.S.; Rottgering, H.J.A. A jet-cloud interaction in 3C 34 at redshift z = 0.69. Mon. Not. R. Astron. Soc. 1997, 286, 785–794. [Google Scholar] [CrossRef]
- van Breugel, W.J.M.; Dey, A. Induced Star Formation in a Radio Lobe of 3C 285? Astrophys. J. 1993, 414, 563. [Google Scholar] [CrossRef]
- Croft, S.; van Breugel, W.; de Vries, W.; Dopita, M.; Martin, C.; Morganti, R.; Neff, S.; Oosterloo, T.; Schiminovich, D.; Stanford, S.A.; et al. Minkowski’s Object: A Starburst Triggered by a Radio Jet, Revisited. Astrophys. J. 2006, 647, 1040–1055. [Google Scholar] [CrossRef]
- Lacy, M.; Croft, S.; Fragile, C.; Wood, S.; Nyland, K. ALMA Observations of the Interaction of a Radio Jet with Molecular Gas in Minkowski’s Object. Astrophys. J. 2017, 838, 146. [Google Scholar] [CrossRef]
- Bolton, J.G.; Stanley, G.J.; Slee, O.B. Positions of Three Discrete Sources of Galactic Radio-Frequency Radiation. Nature 1949, 164, 101–102. [Google Scholar] [CrossRef]
- Israel, F.P. Centaurus A—NGC 5128. A&A Rev. 1998, 8, 237–278. [Google Scholar] [CrossRef]
- Charmandaris, V.; Combes, F.; van der Hulst, J.M. First detection of molecular gas in the shells of CenA. Astron. Astrophys. 2000, 356, L1–L4. [Google Scholar] [CrossRef]
- Harris, G.L.H.; Rejkuba, M.; Harris, W.E. The Distance to NGC 5128 (Centaurus A); Cambridge University Press: Cambridge, UK, 2010; Volume 27, pp. 457–462. [Google Scholar] [CrossRef]
- Wang, J.; Hammer, F.; Rejkuba, M.; Crnojević, D.; Yang, Y. A recent major merger tale for the closest giant elliptical galaxy Centaurus A. Mon. Not. R. Astron. Soc. 2020, 498, 2766–2777. [Google Scholar] [CrossRef]
- Junkes, N.; Haynes, R.F.; Harnett, J.I.; Jauncey, D.L. Radio polarization surveys of Centaurus A (NGC 5128). I. The complete radio source at lambda 6.3 cm. Astron. Astrophys. 1993, 269, 29–38. [Google Scholar]
- Wykes, S.; Intema, H.T.; Hardcastle, M.J.; Achterberg, A.; Jones, T.W.; Jerjen, H.; Orrú, E.; Lazarian, A.; Shimwell, T.W.; Wise, M.W.; et al. Filaments in the southern giant lobe of Centaurus A: Constraints on nature and origin from modelling and GMRT observations. Mon. Not. R. Astron. Soc. 2014, 442, 2867–2882. [Google Scholar] [CrossRef]
- McKinley, B.; Tingay, S.J.; Carretti, E.; Ellis, S.; Bland-Hawthorn, J.; Morganti, R.; Line, J.; McDonald, M.; Veilleux, S.; Wahl Olsen, R.; et al. The jet/wind outflow in Centaurus A: A local laboratory for AGN feedback. Mon. Not. R. Astron. Soc. 2018, 474, 4056–4072. [Google Scholar] [CrossRef]
- McKinley, B.; Tingay, S.J.; Gaspari, M.; Kraft, R.P.; Matherne, C.; Offringa, A.R.; McDonald, M.; Calzadilla, M.S.; Veilleux, S.; Shabala, S.S.; et al. Multi-scale feedback and feeding in the closest radio galaxy Centaurus A. Nat. Astron. 2022, 6, 109–120. [Google Scholar] [CrossRef]
- Neff, S.G.; Eilek, J.A.; Owen, F.N. The Complex North Transition Region of Centaurus A: Radio Structure. Astrophys. J. 2015, 802, 87. [Google Scholar] [CrossRef]
- Morganti, R.; Killeen, N.E.B.; Ekers, R.D.; Oosterloo, T.A. Centaurus A: Multiple outbursts or bursting bubble? Mon. Not. R. Astron. Soc. 1999, 307, 750–760. [Google Scholar] [CrossRef]
- Kraft, R.P.; Forman, W.R.; Hardcastle, M.J.; Birkinshaw, M.; Croston, J.H.; Jones, C.; Nulsen, P.E.J.; Worrall, D.M.; Murray, S.S. The Jet Heated X-Ray Filament in the Centaurus A Northern Middle Radio Lobe. Astrophys. J. 2009, 698, 2036–2047. [Google Scholar] [CrossRef]
- Neff, S.G.; Eilek, J.A.; Owen, F.N. The Complex North Transition Region of Centaurus A: A Galactic Wind. Astrophys. J. 2015, 802, 88. [Google Scholar] [CrossRef]
- Rejkuba, M.; Minniti, D.; Silva, D.R.; Bedding, T.R. Stellar populations in NGC 5128 with the VLT: Evidence for recent star formation. Astron. Astrophys. 2001, 379, 781–797. [Google Scholar] [CrossRef]
- Rejkuba, M.; Minniti, D.; Courbin, F.; Silva, D.R. Radio-Optical Alignment and Recent Star Formation Associated with Ionized Filaments in the Halo of NGC 5128 (Centaurus A). Astrophys. J. 2002, 564, 688–695. [Google Scholar] [CrossRef]
- Eilek, J.A. The dynamic age of Centaurus A. New J. Phys. 2014, 16, 045001. [Google Scholar] [CrossRef]
- Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.; Heywood, I. Star formation efficiency along the radio jet in Centaurus A. Astron. Astrophys. 2016, 586, A45. [Google Scholar] [CrossRef]
- Oosterloo, T.A.; Morganti, R. Anomalous HI kinematics in Centaurus A: Evidence for jet-induced star formation. Astron. Astrophys. 2005, 429, 469–475. [Google Scholar] [CrossRef]
- Joseph, P.; Sreekumar, P.; Stalin, C.S.; Paul, K.T.; Mondal, C.; George, K.; Mathew, B. UVIT view of Centaurus A: A detailed study on positive AGN feedback. Mon. Not. R. Astron. Soc. 2022, 516, 2300–2313. [Google Scholar] [CrossRef]
- Leitherer, C.; Schaerer, D.; Goldader, J.D.; Delgado, R.M.G.; Robert, C.; Kune, D.F.; de Mello, D.F.; Devost, D.; Heckman, T.M. Starburst99: Synthesis Models for Galaxies with Active Star Formation. Astrophys. J. Suppl. Ser. 1999, 123, 3–40. [Google Scholar] [CrossRef]
- Chambers, K.C.; Miley, G.K.; van Breugel, W.J.M. 4C 41.17: A Radio Galaxy at a Redshift of 3.8. Astrophys. J. 1990, 363, 21. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y. Gas, dust, and star formation in the positive AGN feedback candidate 4C 41.17 at z = 3.8. Astron. Astrophys. 2020, 639, L13. [Google Scholar] [CrossRef]
- Ignesti, A.; Brienza, M.; Vulcani, B.; Poggianti, B.M.; Marasco, A.; Smith, R.; Hardcastle, M.J.; Botteon, A.; Roberts, I.D.; Fritz, J.; et al. On the Encounter between the GASP Galaxy JO36 and the Radio Plume of GIN 049. Astrophys. J. 2023, 956, 122. [Google Scholar] [CrossRef]
- Subramaniam, A. An overview of the proposed Indian spectroscopic and imaging space telescope. J. Astrophys. Astron. 2022, 43, 80. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Harrison, F.A.; Grefenstette, B.W.; Earnshaw, H.P.; Andreoni, I.; Berg, D.A.; Bloom, J.S.; Cenko, S.B.; Chornock, R.; Christiansen, J.L.; et al. Science with the Ultraviolet Explorer (UVEX). arXiv 2021, arXiv:2111.15608. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubinur, K. AGN Feedback Signatures in UV Emission. Galaxies 2024, 12, 15. https://doi.org/10.3390/galaxies12020015
Rubinur K. AGN Feedback Signatures in UV Emission. Galaxies. 2024; 12(2):15. https://doi.org/10.3390/galaxies12020015
Chicago/Turabian StyleRubinur, K. 2024. "AGN Feedback Signatures in UV Emission" Galaxies 12, no. 2: 15. https://doi.org/10.3390/galaxies12020015
APA StyleRubinur, K. (2024). AGN Feedback Signatures in UV Emission. Galaxies, 12(2), 15. https://doi.org/10.3390/galaxies12020015