Impact of Active Galactic Nuclei Feedback on the Dynamics of Gas: A Review across Diverse Environments
Abstract
:1. Introduction
2. Perspectives from Cosmological Simulations
2.1. Age Dating Galaxy Groups
2.2. Black Hole Activity and Formation History
3. Perspectives from Observational Surveys
3.1. Radio Emissions of BGGs
3.2. Stellar Population of BGGs
3.3. The Kinematics of BGG
4. Gas Misalignment in AGN-Dominated Galaxies: Insights from Hydrodynamic Simulations
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | While group-group mergers can potentially lead to increased merging in the overall galaxy population over time, they do not necessarily guarantee that mergers involving the dominant galaxy will occur. |
2 | |
3 | The stable gravitational potential within fossil groups reduces the accretion rate onto the central supermassive black hole compared to more dynamically non-fossil environments. |
4 | In our analysis, we took into account a one-sigma uncertainty in the catalog, which corresponds to a maximum error of 30 degrees for the PAs. The PAs were measured in an anticlockwise direction, with 0 degrees representing North (y = 0) in the sky. It is important to note that PAs with uncertainty values close to 30 degrees indicate less reliable fits. However, we found that such cases occurred in less than 5% of all the SAMI samples, indicating that the majority of the fits were relatively robust. Therefore, we considered misalignment PAs greater than 30 degrees. |
5 | NGC 1068, discussed in this paper, is a spiral galaxy with a Seyfert nucleus. It is important to acknowledge that NGC 1068 is most representative of AGN activity in BGGs of relatively low-mass groups. The well-studied X-ray luminous groups, for which our knowledge is most complete, typically exhibit early-type BGGs with FR-I radio galaxies that are considerably more radio luminous than Seyferts. We also acknowledge the multifaceted nature of AGN activity and its various manifestations. However, we focus on the investigation of mechanical AGN feedback and its impact on the dynamics of gas within an idealized disk surrounding a supermassive black hole, using hydrodynamic simulations. |
6 |
References
- Silk, J.; Rees, M.J. Quasars and galaxy formation. arXiv 1998, arXiv:astro-ph/9801013. [Google Scholar]
- Binney, J.; Tabor, G. Evolving cooling flows. Mon. Not. R. Astron. Soc. 1995, 276, 663–678. [Google Scholar] [CrossRef]
- Kondapally, R.; Best, P.N.; Raouf, M.; Thomas, N.L.; Davé, R.; Shabala, S.S.; Röttgering, H.J.A.; Hardcastle, M.J.; Bonato, M.; Cochrane, R.K.; et al. Cosmic evolution of radio-AGN feedback: Confronting models with data. Mon. Not. R. Astron. Soc. 2023, 523, 5292–5305. [Google Scholar] [CrossRef]
- Silk, J. Ultraluminous starbursts from supermassive black hole-induced outflows. Mon. Not. R. Astron. Soc. 2005, 364, 1337–1342. [Google Scholar] [CrossRef]
- Silk, J.; Begelman, M.C.; Norman, C.; Nusser, A.; Wyse, R.F.G. Which Came First: Supermassive Black Holes or Galaxies? Insights from JWST. Astrophys. J. Lett. 2024, 961, L39. [Google Scholar] [CrossRef]
- Gaibler, V.; Khochfar, S.; Krause, M.; Silk, J. Jet-induced star formation in gas-rich galaxies. Mon. Not. R. Astron. Soc. 2012, 425, 438–449. [Google Scholar] [CrossRef]
- Santini, P.; Rosario, D.; Shao, L.; Lutz, D.; Maiolino, R.; Alexander, D.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F.; et al. Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations. Astron. Astrophys. 2012, 540, A109. [Google Scholar] [CrossRef]
- Bieri, R.; Dubois, Y.; Silk, J.; Mamon, G.A. Playing with positive feedback: External pressure-triggering of a star-forming disk galaxy. Astrophys. J. Lett. 2015, 812, L36. [Google Scholar] [CrossRef]
- Benson, A.; Hoyle, F.; Torres, F.; Vogeley, M.S. Galaxy voids in cold dark matter universes. Mon. Not. R. Astron. Soc. 2003, 340, 160–174. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Bower, R.G.; Benson, A.; Malbon, R.; Helly, J.; Frenk, C.; Baugh, C.; Cole, S.; Lacey, C.G. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Sijacki, D.; Springel, V.; Di Matteo, T.; Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 2007, 380, 877–900. [Google Scholar] [CrossRef]
- Cattaneo, A.; Faber, S.; Binney, J.; Dekel, A.; Kormendy, J.; Mushotzky, R.; Babul, A.; Best, P.; Brüggen, M.; Fabian, A.; et al. The role of black holes in galaxy formation and evolution. Nature 2009, 460, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Fabian, A.C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Einasto, M.; Einasto, J.; Tenjes, P.; Korhonen, S.; Kipper, R.; Tempel, E.; Liivamägi, L.J.; Heinämäki, P. Galaxy groups and clusters and their brightest galaxies within the cosmic web. Astron. Astrophys. 2024, 681, A91. [Google Scholar] [CrossRef]
- Raouf, M.; Smith, R.; Khosroshahi, H.G.; Sande, J.v.d.; Bryant, J.J.; Cortese, L.; Brough, S.; Croom, S.M.; Hwang, H.S.; Driver, S.; et al. The SAMI Galaxy Survey: Kinematics of Stars and Gas in Brightest Group Galaxies—The Role of Group Dynamics. Astrophys. J. 2021, 908, 123. [Google Scholar] [CrossRef]
- Haynes, M.P.; Giovanelli, R.; Chincarini, G.L. The influence of environment on the HI content of galaxies. Annu. Rev. Astron. Astrophys. 1984, 22, 445–470. [Google Scholar] [CrossRef]
- Bertola, F. Gaseous Disks in Elliptical Galaxies. In Proceedings of the Morphological and Physical Classification of Galaxies: Proceedings of the Fifth International Workshop of the Osservatorio Astronomico di Capodimonte, Sant’Agata Sui Due Golfi, Italy, 3–7 September 1990; Springer: Dordrecht, The Netherlands, 1992; pp. 115–126. [Google Scholar]
- Sancisi, R.; Fraternali, F.; Oosterloo, T.; Van Der Hulst, T. Cold gas accretion in galaxies. Astron. Astrophys. Rev. 2008, 15, 189–223. [Google Scholar] [CrossRef]
- Kannappan, S.; Fabricant, D. A broad search for counterrotating gas and stars: Evidence for mergers and accretion. Astron. J. 2001, 121, 140. [Google Scholar] [CrossRef]
- Bertola, F.; Bettoni, D.; Rusconi, L.; Sedmak, G. Stellar versus gaseous kinematics in E and SO galaxies. Astron. J. 1984, 89, 356–364. [Google Scholar] [CrossRef]
- Davis, T.A.; Bureau, M. On the depletion and accretion time-scales of cold gas in local early-type galaxies. Mon. Not. R. Astron. Soc. 2016, 457, 272–280. [Google Scholar] [CrossRef]
- Raimundo, S.I.; Malkan, M.; Vestergaard, M. An increase in black hole activity in galaxies with kinematically misaligned gas. Nat. Astron. 2023, 7, 463–472. [Google Scholar] [CrossRef]
- Ponman, T.; Allan, D.; Jones, L.; Merrifield, M.; McHardy, I.; Lehto, H.; Luppino, G. A possible fossil galaxy group. Nature 1994, 369, 462–464. [Google Scholar] [CrossRef]
- Jones, L.; Ponman, T.; Horton, A.; Babul, A.; Ebeling, H.; Burke, D. The nature and space density of fossil groups of galaxies. Mon. Not. R. Astron. Soc. 2003, 343, 627–638. [Google Scholar] [CrossRef]
- Raouf, M.; Khosroshahi, H.G.; Ponman, T.J.; Dariush, A.A.; Molaeinezhad, A.; Tavasoli, S. Ultimate age-dating method for galaxy groups; clues from the Millennium Simulations. Mon. Not. R. Astron. Soc. 2014, 442, 1578–1585. [Google Scholar] [CrossRef]
- Khosroshahi, H.G.; Raouf, M.; Miraghaei, H.; Brough, S.; Croton, D.J.; Driver, S.; Graham, A.; Baldry, I.; Brown, M.; Prescott, M.; et al. Galaxy And Mass Assembly (GAMA): A “No Smoking” Zone for Giant Elliptical Galaxies? Astrophys. J. 2017, 842, 81. [Google Scholar] [CrossRef]
- Shlosman, I.; Begelman, M.C.; Frank, J. The fuelling of active galactic nuclei. Nature 1990, 345, 679–686. [Google Scholar] [CrossRef]
- Ristea, A.; Cortese, L.; Fraser-McKelvie, A.; Brough, S.; Bryant, J.J.; Catinella, B.; Croom, S.M.; Groves, B.; Richards, S.N.; van de Sande, J.; et al. The SAMI Galaxy Survey: Physical drivers of stellar-gas kinematic misalignments in the nearby Universe. Mon. Not. R. Astron. Soc. 2022, 517, 2677–2696. [Google Scholar] [CrossRef]
- Bryant, J.J.; Croom, S.M.; van de Sande, J.; Scott, N.; Fogarty, L.M.R.; Bland-Hawthorn, J.; Bloom, J.V.; Taylor, E.N.; Brough, S.; Robotham, A.; et al. The SAMI Galaxy Survey: Stellar and gas misalignments and the origin of gas in nearby galaxies. Mon. Not. R. Astron. Soc. 2019, 483, 458–479. [Google Scholar] [CrossRef]
- Thakar, A.R.; Ryden, B.S. Smoothed particle hydrodynamics simulations of counterrotating disk formation in spiral galaxies. Astrophys. J. 1998, 506, 93. [Google Scholar] [CrossRef]
- van de Voort, F.; Davis, T.A.; Kereš, D.; Quataert, E.; Faucher-Giguère, C.A.; Hopkins, P.F. The creation and persistence of a misaligned gas disc in a simulated early-type galaxy. Mon. Not. R. Astron. Soc. 2015, 451, 3269–3277. [Google Scholar] [CrossRef]
- Negri, A. Hydrodynamical Simulations of Early-Type Galaxies: Effects of Galaxy Shape and Stellar Dynamics on Hot Coronae. Ph.D. Thesis, Università di Bologna, Bologna, Italy, 2014. [Google Scholar]
- Capelo, P.R.; Dotti, M.; Volonteri, M.; Mayer, L.; Bellovary, J.M.; Shen, S. A survey of dual active galactic nuclei in simulations of galaxy mergers: Frequency and properties. Mon. Not. R. Astron. Soc. 2017, 469, 4437–4454. [Google Scholar] [CrossRef]
- Taylor, P.; Federrath, C.; Kobayashi, C. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations. Mon. Not. R. Astron. Soc. 2018, 479, 141–152. [Google Scholar] [CrossRef]
- Raouf, M.; Viti, S.; García-Burillo, S.; Richings, A.J.; Schaye, J.; Bemis, A.; Nobels, F.S.J.; Guainazzi, M.; Huang, K.Y.; Schaller, M.; et al. Hydrodynamic simulations of the disc of gas around supermassive black holes (HDGAS)—I. Molecular gas dynamics. Mon. Not. R. Astron. Soc. 2023, 524, 786–800. [Google Scholar] [CrossRef]
- Khosroshahi, H.G.; Maughan, B.J.; Ponman, T.J.; Jones, L.R. A fossil galaxy cluster: An X-ray and optical study of RX J1416.4+2315. Mon. Not. R. Astron. Soc. 2006, 369, 1211–1220. [Google Scholar] [CrossRef]
- Khosroshahi, H.G.; Jones, L.R.; Ponman, T.J. An old galaxy group: Chandra X-ray observations of the nearby fossil group NGC 6482. Mon. Not. R. Astron. Soc. 2004, 349, 1240–1250. [Google Scholar] [CrossRef]
- Aguerri, J.A.L.; Zarattini, S. Properties of Fossil Groups of Galaxies. Universe 2021, 7, 132. [Google Scholar] [CrossRef]
- Raouf, M.; Smith, R.; Khosroshahi, H.G.; Dariush, A.A.; Driver, S.; Ko, J.; Hwang, H.S. The Impact of the Dynamical State of Galaxy Groups on the Stellar Populations of Central Galaxies. Astrophys. J. 2019, 887, 264. [Google Scholar] [CrossRef]
- Raouf, M.; Khosroshahi, H.G.; Mamon, G.A.; Croton, D.J.; Hashemizadeh, A.; Dariush, A.A. Merger History of Central Galaxies in Semi-analytic Models of Galaxy Formation. Astrophys. J. 2018, 863, 40. [Google Scholar] [CrossRef]
- Parekh, V.; van der Heyden, K.; Ferrari, C.; Angus, G.; Holwerda, B. Morphology parameters: Substructure identification in X-ray galaxy clusters. Astron. Astrophys. 2015, 575, A127. [Google Scholar] [CrossRef]
- Zhoolideh Haghighi, M.H.; Raouf, M.; Khosroshahi, H.G.; Farhang, A.; Gozaliasl, G. On the Reliability of Photometric and Spectroscopic Tracers of Halo Relaxation. Astrophys. J. 2020, 904, 36. [Google Scholar] [CrossRef]
- Khosroshahi, H.G.; Miraghaei, H.; Raouf, M. Fossil Systems; a Multi-wavelength Approach towards Understanding Galaxy Formation. Galaxies 2016, 4, 5. [Google Scholar] [CrossRef]
- Farhang, A.; Khosroshahi, H.G.; Mamon, G.A.; Dariush, A.A.; Raouf, M. Evolution of Compact and Fossil Groups of Galaxies from Semi-analytical Models of Galaxy Formation. Astrophys. J. 2017, 840, 58. [Google Scholar] [CrossRef]
- Raouf, M.; Khosroshahi, H.G.; Dariush, A. Evolution of Galaxy Groups in the Illustris Simulation. Astrophys. J. 2016, 824, 140. [Google Scholar] [CrossRef]
- Raouf, M.; Shabala, S.S.; Croton, D.J.; Khosroshahi, H.G.; Bernyk, M. The many lives of active galactic nuclei-II: The formation and evolution of radio jets and their impact on galaxy evolution. Mon. Not. R. Astron. Soc. 2017, 471, 658–670. [Google Scholar] [CrossRef]
- Raouf, M.; Silk, J.; Shabala, S.S.; Mamon, G.A.; Croton, D.J.; Khosroshahi, H.G.; Beckmann, R.S. Feedback by supermassive black holes in galaxy evolution: Impacts of accretion and outflows on the star formation rate. Mon. Not. R. Astron. Soc. 2019, 486, 1509–1522. [Google Scholar] [CrossRef]
- Alonso, M.S.; Lambas, D.G.; Tissera, P.; Coldwell, G. Active galactic nuclei and galaxy interactions. Mon. Not. R. Astron. Soc. 2007, 375, 1017–1024. [Google Scholar] [CrossRef]
- Weston, M.E.; McIntosh, D.H.; Brodwin, M.; Mann, J.; Cooper, A.; McConnell, A.; Nielsen, J.L. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS. Mon. Not. R. Astron. Soc. 2017, 464, 3882–3906. [Google Scholar] [CrossRef]
- Pasini, T.; Finoguenov, A.; Brüggen, M.; Gaspari, M.; de Gasperin, F.; Gozaliasl, G. Radio galaxies in galaxy groups: Kinematics, scaling relations, and AGN feedback. Mon. Not. R. Astron. Soc. 2021, 505, 2628–2637. [Google Scholar] [CrossRef]
- Miraghaei, H.; Khosroshahi, H.G.; Klöckner, H.R.; Ponman, T.J.; Jetha, N.N.; Raychaudhury, S. IGM Heating and AGN activity in Fossil Galaxy Groups. Proc. Int. Astron. Union Stud. 2014, 304, 349–350. [Google Scholar] [CrossRef]
- Aalto, S.; Garcia-Burillo, S.; Muller, S.; Winters, J.M.; van der Werf, P.; Henkel, C.; Costagliola, F.; Neri, R. Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow. Dense molecular gas in the AGN wind. Astron. Astrophys. 2012, 537, A44. [Google Scholar] [CrossRef]
- Martin, C.L.; HIGGS Team. HIGGS: The Herschel Inner Galaxy Gas Survey, First Results. Am. Astron. Soc. Meet. Abstr. 2011, 217, 255.06. [Google Scholar]
- Aladro, R.; Viti, S.; Bayet, E.; Riquelme, D.; Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Requena-Torres, M.A.; Kramer, C.; Weiß, A. A λ = 3 mm molecular line survey of NGC 1068. Chemical signatures of an AGN environment. Astron. Astrophys. 2013, 549, A39. [Google Scholar] [CrossRef]
- Watanabe, Y.; Sakai, N.; Sorai, K.; Yamamoto, S. Spectral Line Survey toward the Spiral Arm of M51 in the 3 and 2 mm Bands. Astrophys. J. 2014, 788, 4. [Google Scholar] [CrossRef]
- Knapen, J.H.; Comerón, S.; Seidel, M.K. MUSE-AO view of the starburst-AGN connection: NGC 7130. Astron. Astrophys. 2019, 621, L5. [Google Scholar] [CrossRef]
- Winkel, N.; Husemann, B.; Davis, T.A.; Smirnova-Pinchukova, I.; Bennert, V.N.; Combes, F.; Gaspari, M.; Jahnke, K.; Neumann, J.; O’Dea, C.P.; et al. The Close AGN Reference Survey (CARS). Tracing the circumnuclear star formation in the super-Eddington NLS1 Mrk 1044. Astron. Astrophys. 2022, 663, A104. [Google Scholar] [CrossRef]
- Imanishi, M.; Nakanishi, K.; Izumi, T.; Wada, K. ALMA Reveals an Inhomogeneous Compact Rotating Dense Molecular Torus at the NGC 1068 Nucleus. Astrophys. J. Lett. 2018, 853, L25. [Google Scholar] [CrossRef]
- Hopkins, P.F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 2015, 450, 53–110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raouf, M.; Purabbas, M.H.; Fazel Hesar, F. Impact of Active Galactic Nuclei Feedback on the Dynamics of Gas: A Review across Diverse Environments. Galaxies 2024, 12, 16. https://doi.org/10.3390/galaxies12020016
Raouf M, Purabbas MH, Fazel Hesar F. Impact of Active Galactic Nuclei Feedback on the Dynamics of Gas: A Review across Diverse Environments. Galaxies. 2024; 12(2):16. https://doi.org/10.3390/galaxies12020016
Chicago/Turabian StyleRaouf, Mojtaba, Mohammad Hossein Purabbas, and Fatemeh Fazel Hesar. 2024. "Impact of Active Galactic Nuclei Feedback on the Dynamics of Gas: A Review across Diverse Environments" Galaxies 12, no. 2: 16. https://doi.org/10.3390/galaxies12020016
APA StyleRaouf, M., Purabbas, M. H., & Fazel Hesar, F. (2024). Impact of Active Galactic Nuclei Feedback on the Dynamics of Gas: A Review across Diverse Environments. Galaxies, 12(2), 16. https://doi.org/10.3390/galaxies12020016