A Supermassive Binary Black Hole Candidate in Mrk 501
Abstract
:1. Introduction
2. Data and Light Curves
3. Methods
3.1. Periodograms and Window Functions
3.2. VARTOOLS
3.3. Power Spectrum Density, Detrended Fluctuation Analysis, and the Colors of Noise
3.4. Data Fitting via a Jacobi Elliptical Function
4. Discussion
- The mass of the central (primary) black hole in Mrk 501 is [65], which means that its gravitational radius is .
- The radius of the orbit of the eclipsing (secondary) binary black hole is .Using a full relativistic approach for Schwarzschild’s space–time, Equation (8) can be written as follows [66]:The above equation is cubic for the radius , for which the only real solution is given via the following:By using the same input values as the ones we used for the non-relativistic Kepler formula, we obtain , which is of the same order of magnitude as the that we obtained with the simple Kepler relation.
- The orbital period of the eclipsing binary black hole is ∼.
- The orbital velocity of the eclipsing binary black hole is ∼ of the speed of light, i.e., ∼.
- The brightness magnification of the radiation produced by an eclipse due to the secondary black hole is ≳.
- The coalescence time of the binary system is approximately given via the following [67]:
- The results of (9) imply that the orbit of the secondary black hole is half the value obtained from the Newtonian calculation, and so its orbital frequency is about ∼3 its Newtonian value. Since the frequency, f, of the of the binary’s quadrupolar gravitational waves is about a factor of 2 larger than the orbital frequency (see, e.g., [68]), then
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padovani, P.; Giommi, P.; Polenta, G.; Turriziani, S.; D’Elia, V.; Piranomonte, S. A simplified view of blazars: Why BL Lacertae is actually a quasar in disguise. arXiv 2012, arXiv:1205.0647. Available online: http://arxiv.org/abs/1205.0647 (accessed on 17 November 2023).
- Ulrich, M.H.; Maraschi, L.; Urry, C.M. Variability of active galactic nuclei. Annu. Rev. Astron. Astrophys. 1997, 35, 445–502. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Ann. Rev. Ast. Ast. 2019, 57, 467–509. [Google Scholar] [CrossRef]
- Wagner, S.J.; Witzel, A. Intraday Variability In Quasars and BL Lac Objects. Ann. Rev. Ast. Ast. 1995, 33, 163–198. [Google Scholar] [CrossRef]
- Miller, H.R.; Carini, M.T.; Goodrich, B.D. Detection of microvariability for BL Lacertae objects. Nature 1989, 337, 627–629. [Google Scholar] [CrossRef]
- Gupta, A.C.; Banerjee, D.P.K.; Ashok, N.M.; Joshi, U.C. Near infrared intraday variability of Mrk 421. Astron. Astrophys. 2004, 422, 505–508. [Google Scholar] [CrossRef]
- Marscher, A.P.; Travis, J.P. Variability of nonthermal emission in compact jets. NASA STI/Recon Tech. Rep. A 1991, 93, 52913. [Google Scholar]
- Camenzind, M.; Krockenberger, M. The lighthouse effect of relativistic jets in blazars. A geometric originof intraday variability. Astron. Astrophys. 1992, 255, 59–62. [Google Scholar]
- Mohan, P.; Mangalam, A. Kinematics of and Emission from Helically Orbiting Blobs in a Relativistic Magnetized Jet. Astrophys. J. 2015, 805, 91. [Google Scholar] [CrossRef]
- de la Cruz-Hernández, M.E.; Mendoza, S. Full analytical ultrarelativistic 1D solutions of a planar working surface. Mon. Not. R. Astron. Soc. 2021, 507, 1827–1835. [Google Scholar] [CrossRef]
- McHardy, I.M.; Beard, M.; Breedt, E.; Knapen, J.H.; Vincentelli, F.M.; Veresvarska, M.; Dhillon, V.S.; Marsh, T.R.; Littlefair, S.P.; Horne, K.; et al. First detection of the outer edge of an AGN accretion disc: Very fast multiband optical variability of NGC 4395 with GTC/HiPERCAM and LT/IO:O. Mon. Not. R. Astron. Soc. 2023, 519, 3366–3382. [Google Scholar] [CrossRef]
- Edelson, R.; Turner, T.J.; Pounds, K.; Vaughan, S.; Markowitz, A.; Marshall, H.; Dobbie, P.; Warwick, R. X-Ray Spectral Variability and Rapid Variability of the Soft X-Ray Spectrum Seyfert 1 Galaxies Arakelian 564 and Ton S180. Astrophys. J. 2002, 568, 610–626. [Google Scholar] [CrossRef]
- Uttley, P.; McHardy, I.M.; Vaughan, S. Non-linear X-ray variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 2005, 359, 345–362. [Google Scholar] [CrossRef]
- Stella, L.; Vietri, M. Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-Ray Binaries. Astrophys. J. 1998, 492, L59–L62. [Google Scholar] [CrossRef]
- Lehto, H.J.; Valtonen, M.J. OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J. 1996, 460, 207. [Google Scholar] [CrossRef]
- Sillanpaa, A.; Haarala, S.; Valtonen, M.J.; Sundelius, B.; Byrd, G.G. OJ 287—Binary pair of supermassive black holes. Astrophys. J. 1988, 325, 628–634. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Graham, M.J.; Djorgovski, S.G.; Stern, D.; Glikman, E.; Drake, A.J.; Mahabal, A.A.; Donalek, C.; Larson, S.; Christensen, E. A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 2015, 518, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Tavani, M.; Cavaliere, A.; Munar-Adrover, P.; Argan, A. The Blazar PG 1553+113 as a Binary System of Supermassive Black Holes. Astrophys. J. 2018, 854, 11. [Google Scholar] [CrossRef]
- Li, Y.R.; Wang, J.M.; Ho, L.C.; Lu, K.X.; Qiu, J.; Du, P.; Hu, C.; Huang, Y.K.; Zhang, Z.X.; Wang, K.; et al. Spectroscopic Indication of a Centi-parsec Supermassive Black Hole Binary in the Galactic Center of NGC 5548. Astrophys. J. 2016, 822, 4. [Google Scholar] [CrossRef]
- Bon, E.; Zucker, S.; Netzer, H.; Marziani, P.; Bon, N.; Jovanović, P.; Shapovalova, A.I.; Komossa, S.; Gaskell, C.M.; Popović, L.Č.; et al. Evidence for Periodicity in 43 year-long Monitoring of NGC 5548. Astrophys. J. 2016, 225, 29. [Google Scholar] [CrossRef]
- Li, Y.R.; Wang, J.M.; Zhang, Z.X.; Wang, K.; Huang, Y.K.; Lu, K.X.; Hu, C.; Du, P.; Bon, E.; Ho, L.C.; et al. A Possible ∼20 yr Periodicity in Long-term Optical Photometric and Spectral Variations of the Nearby Radio-quiet Active Galactic Nucleus Ark 120. Astrophys. J. 2019, 241, 33. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Zhai, S.; Liu, J.-R.; Guo, W.-J.; Peng, Y.-C.; Li, Y.-R.; Songsheng, Y.-Y.; Du, P.; Hu, C.; Wang, J.-M. Searching for quasar candidates with periodic variations from the Zwicky Transient Facility: Results and implications. Mon. Not. R. Astron. Soc. 2024, 527, 12154–12177. [Google Scholar] [CrossRef]
- Rieger, F.M.; Mannheim, K. Implications of a possible 23 day periodicity for binary black hole models in Mkn 501. Astron. Astrophys. 2000, 359, 948–952. [Google Scholar]
- Rödig, C.; Burkart, T.; Elbracht, O.; Spanier, F. Multiwavelength periodicity study of Markarian 501. Astron. Astrophys. 2009, 501, 925–932. [Google Scholar] [CrossRef]
- Wang, H.; Yin, C.; Xiang, F. The nearly periodic fluctuations of blazars in long-term X-ray light curves. Astrophys. Space Sci. 2017, 362, 99. [Google Scholar] [CrossRef]
- Bhatta, G. Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc. 2019, 487, 3990–3997. [Google Scholar] [CrossRef]
- Quinn, J.; Akerlof, C.W.; Biller, S.; Buckley, J.; Carter-Lewis, D.A.; Cawley, M.F.; Catanese, M.; Connaughton, V.; Fegan, D.J.; Finley, J.P.; et al. Detection of Gamma Rays with E > 300 GeV from Markarian 501. Astrophys. J. 1996, 456, L83. [Google Scholar] [CrossRef]
- Richards, J.L.; Max-Moerbeck, W.; Pavlidou, V.; King, O.G.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Weintraub, L.C.; et al. Blazars in the Fermi Era: The OVRO 40 m Telescope Monitoring Program. Astrophys. J. 2011, 194, 29. [Google Scholar] [CrossRef]
- Smith, P.S.; Montiel, E.; Rightley, S.; Turner, J.; Schmidt, G.D.; Jannuzi, B.T. Coordinated Fermi/Optical Monitoring of Blazars and the Great 2009 September Gamma-ray Flare of 3C 454.3. arXiv 2009, arXiv:0912.3621. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; et al. Insights into the High-energy γ-ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era. Astrophys. J. 2011, 727, 129. [Google Scholar] [CrossRef]
- Dorner, D.; Adam, J.; Ahnen, L.M.; Baack, D.; Balbo, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K.; Bulinski, M.; et al. FACT-Highlights from more than Five Years of Unbiased Monitoring at TeV Energies. PoS 2017, ICRC2017, 609. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science 2009, 323, 1688. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. The Second Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2011, 743, 171. [Google Scholar] [CrossRef]
- Kinne, R.C.S. An Overview of the AAVSO’s Information Technology Infrastructure From 1967 to 1997. J. Am. Var. Star Obs. 2012, 40, 208. [Google Scholar] [CrossRef]
- Moretti, A.; Campana, S.; Mineo, T.; Romano, P.; Abbey, A.F.; Angelini, L.; Beardmore, A.; Burkert, W.; Burrows, D.N.; Capalbi, M.; et al. In-flight calibration of the Swift XRT Point Spread Function. In Proceedings of the UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XIV, San Diego, CA, USA, 26–27 August 2007; Volume 5898, pp. 360–368. [Google Scholar] [CrossRef]
- Magallanes-Guijón, G. Fermi-Tools Workshop: Light Curves; 2020. [Google Scholar] [CrossRef]
- Cabrera, J.I.; Coronado, Y.; Benítez, E.; Mendoza, S.; Hiriart, D.; Sorcia, M. A hydrodynamical model for the Fermi-LAT γ-ray light curve of blazar PKS 1510-089. Mon. Not. R. Astron. Soc. 2013, 434, L6–L10. [Google Scholar] [CrossRef]
- Thieler, A.M.; Fried, R.; Rathjens, J. RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression. J. Stat. Softw. 2016, 69, 1–37. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- VanderPlas, J.T. Understanding the Lomb-Scargle Periodogram. Astrophys. J. 2018, 236, 16. [Google Scholar] [CrossRef]
- Baluev, R.V. Keplerian periodogram for Doppler exoplanet detection: Optimized computation and analytic significance thresholds. Mon. Not. R. Astron. Soc. 2015, 446, 1478–1492. [Google Scholar] [CrossRef]
- Dawson, R.I.; Fabrycky, D.C. Radial Velocity Planets De-aliased: A New, Short Period for Super-Earth 55 Cnc e. Astrophys. J. 2010, 722, 937–953. [Google Scholar] [CrossRef]
- Hartman, J.D.; Bakos, G.Á. VARTOOLS: A program for analyzing astronomical time-series data. Astron. Comput. 2016, 17, 1–72. [Google Scholar] [CrossRef]
- Devor, J. Solutions for 10,000 Eclipsing Binaries in the Bulge Fields of OGLE II Using DEBiL. Astrophys. J. 2005, 628, 411–425. [Google Scholar] [CrossRef]
- Schwarzenberg-Czerny, A. On the advantage of using analysis of variance for period search. Mon. Not. R. Astron. Soc. 1989, 241, 153–165. [Google Scholar] [CrossRef]
- Schwarzenberg-Czerny, A. Fast and Statistically Optimal Period Search in Uneven Sampled Observations. Astrophys. J. 1996, 460, L107. [Google Scholar] [CrossRef]
- Kovacs, G.; Zucker, S.; Mazeh, T. A box-fitting algorithm in the search for periodic transits. Astron. Astrophys. 2002, 391, 369–377. [Google Scholar] [CrossRef]
- Roberts, D.H.; Lehar, J.; Dreher, J.W. Time series analysis with CLEAN. I. Derivation of a spectrum. Astron. J. 1987, 93, 968–989. [Google Scholar] [CrossRef]
- Kurtz, D.W. An algorithm for significantly reducing the time necessary to computea Discrete Fourier Transform periodogram of unequally spaced data. Mon. Not. R. Astron. Soc. 1985, 213, 773–776. [Google Scholar] [CrossRef]
- Aschwanden, M. Self-Organized Criticality in Astrophysics. The Statistics of Nonlinear Processes in the Universe; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Press, W.H. Flicker noises in astronomy and elsewhere. Comments Astrophys. 1978, 7, 103–119. [Google Scholar]
- Aschwanden, M.J. Self-Organized Criticality in Solar Physics and Astrophysics. arXiv 2010, arXiv:1003.0122. Available online: http://arxiv.org/abs/1003.0122 (accessed on 23 October 2023).
- Schroeder, M.; Wiesenfeld, K. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Phys. Today 1991, 44, 91. [Google Scholar] [CrossRef]
- May, R. Simple Mathematical Models With Very Complicated Dynamics. Nature 1976, 26, 457. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Bryce, R.; Sprague, K. Revisiting detrended fluctuation analysis. Sci. Rep. 2012, 2, 315. [Google Scholar] [CrossRef]
- Vaughan, S.; Uttley, P.; Markowitz, A.G.; Huppenkothen, D.; Middleton, M.J.; Alston, W.N.; Scargle, J.D.; Farr, W.M. False periodicities in quasar time-domain surveys. Mon. Not. R. Astron. Soc. 2016, 461, 3145–3152. [Google Scholar] [CrossRef]
- Lobban, A.P.; Vaughan, S.; Pounds, K.; Reeves, J.N. X-ray time lags in PG 1211+143. Mon. Not. R. Astron. Soc. 2018, 476, 225–234. [Google Scholar] [CrossRef]
- Vaughan, S. An introduction to X-ray variability from black holes. In Proceedings of the The Extremes of Black Hole Accretion, Madrid, Spain, 8–10 June 2015; Ness, S., Ed.; p. 14. Available online: https://www.cosmos.esa.int/documents/332006/514955/AbstractBook.pdf (accessed on 14 June 2024).
- Deeg, H.J.; Belmonte, J.A. Handbook of Exoplanets; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Narayan, R.; Bartelmann, M. Lectures on Gravitational Lensing. arXiv 1996, arXiv:9606001. Available online: http://arxiv.org/abs/astro-ph/9606001 (accessed on 12 February 2024).
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series; Martino Publishing: Eastford, CT, USA, 2014. [Google Scholar]
- Rieger, F.M.; Mannheim, K. On the central black hole mass in Mkn 501. Astron. Astrophys. 2003, 397, 121–125. [Google Scholar] [CrossRef]
- Mendoza, S. Astrofisica Relativista. Available online: https://www.mendozza.org/sergio/gravitacion (accessed on 3 March 2024).
- Taylor, E.F.; Wheeler, J.A.; Bertschinger, E. Exploring Blackholes. Available online: https://www.eftaylor.com/exploringblackholes/ (accessed on 3 March 2024).
- Creighton, J.D.; Anderson, W.G. Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dodelson, S. Gravitational Lensing; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Giroletti, M.; Giovannini, G.; Feretti, L.; Cotton, W.D.; Edwards, P.G.; Lara, L.; Marscher, A.P.; Mattox, J.R.; Piner, B.G.; Venturi, T. Parsec-Scale Properties of Markarian 501. Astrophys. J. 2004, 600, 127–140. [Google Scholar] [CrossRef]
Band | Observations | Duration | Total |
---|---|---|---|
(y, m, d) | (d) | ||
Radio | 615 | 4174 | |
Optical | 11,849 | 8441 | |
X-rays | 28,000 | 4607 | |
-rays | 4199 | 4239 |
Band | RobPer | L-S | Mean |
---|---|---|---|
(d) | (d) | (d) | |
Radio | 228 | ||
Optical | 228 | ||
X-rays | 223 | ||
-rays | 237 |
Band | AoV | AoV-h | BLS | DFT |
---|---|---|---|---|
(d) | (d) | (d) | (d) | |
Radio | ||||
Optical | ||||
X-rays | ||||
-rays | ||||
Averages |
PSD Exponent | Colors of Noise |
---|---|
white | |
pink | |
Brownian |
Band | ||
---|---|---|
Radio | ± | ± |
Optical | ± | ± |
X-rays | ± | ± |
-rays | ± | ± |
Band | A | m | n | p | ||||
---|---|---|---|---|---|---|---|---|
Days | Days | Days | ||||||
Radio | 130.20 ± 12.77 | |||||||
Optical | ||||||||
X-rays | ||||||||
-rays |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magallanes-Guijón, G.; Mendoza, S. A Supermassive Binary Black Hole Candidate in Mrk 501. Galaxies 2024, 12, 30. https://doi.org/10.3390/galaxies12030030
Magallanes-Guijón G, Mendoza S. A Supermassive Binary Black Hole Candidate in Mrk 501. Galaxies. 2024; 12(3):30. https://doi.org/10.3390/galaxies12030030
Chicago/Turabian StyleMagallanes-Guijón, Gustavo, and Sergio Mendoza. 2024. "A Supermassive Binary Black Hole Candidate in Mrk 501" Galaxies 12, no. 3: 30. https://doi.org/10.3390/galaxies12030030
APA StyleMagallanes-Guijón, G., & Mendoza, S. (2024). A Supermassive Binary Black Hole Candidate in Mrk 501. Galaxies, 12(3), 30. https://doi.org/10.3390/galaxies12030030