M 1-92: The Death of an AGB Star Told by Its Isotopic Ratios
Abstract
:1. Introduction
2. Observational Data and Modelling Process
- Outer tips: as a continuation of the main shell (6), they have very similar values for its variables: a cold temperature of 20 K and a relatively high density of 7 × .
- Inner tips: made of warm (600 K) but very thin (7.5 × ) gas, with 5 km s−1 of turbulence, a slightly higher value than the rest of the nebula.
- Equatorial structure: it has a high density at the very centre (1.75 × ) that decreases with radius with a linear dependence until 7 × . Similarly, in terms of temperature, we have warm gas at the centre (160 K) that decreases with radius in a multiplicative inverse law, until the 17 K of the shell are reached.
- Ring: it is the area of the main shell that is located around the equatorial structure. Despite this differentiation, all its physical variables are the same as those of the shell. Its purpose in the model is to discriminate the spatial distribution of certain species across the equator, as some are present in the centre (equatorial structure) but not in the ring.
- Knots: they represent the ionised gas found inside the lobes, with an assigned temperature of 500 K and a density of 3.5 × . These are the structures with the highest turbulence, 18 km s−1, in addition to a velocity law similar to that of a shock front, where the head of the front has slowed down to 15 km s−1 while the rest is advancing at 55 km s−1.
- Shell: it is the main structure of the nebula, with a temperature of just 17 K and a constant density of 7 × . Like all other structures except for knots and the inner tips, its turbulence is set at 2 km s−1.
3. Results
3.1. CO Results
- 12CO: 5.5 × ;
- 13CO: 1.8 × ;
- C17O: 1.0 × ;
- C18O: 6.0 × .
- 12CO/13CO/C17O/C18O ;
- C17O/C18O .
3.2. HCO+ and HCN Results
- Shell and outer tips: ; H13CO+ ;
- Ring: ; H13CO+ ;
- Centre: ; H13CO+ ;
- Knots: ; H13CO+ ;
- Inner tips: ; H13CO+ .
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alcolea, J.; Neri, R.; Bujarrabal, V. Minkowski’s footprint revisited—Planetary nebula formation from a single sudden event? Astron. Astrophys. 2007, 468, L41–L44. [Google Scholar] [CrossRef]
- Blackman, E.G.; Lucchini, S. Using kinematic properties of pre-planetary nebulae to constrain engine paradigms. Mon. Not. R. Astron. Soc. Lett. 2014, 440, L16–L20. [Google Scholar] [CrossRef]
- Jones, D.; Boffin, H.M.J. Binary stars as the key to understanding planetary nebulae. Nat. Astron. 2017, 1, 0117. [Google Scholar] [CrossRef]
- Douchin, D.; De Marco, O.; Frew, D.J.; Jacoby, G.H.; Jasniewicz, G.; Fitzgerald, M.; Passy, J.C.; Harmer, D.; Hillwig, T.; Moe, M. The binary fraction of planetary nebula central stars—II. A larger sample and improved technique for the infrared excess search. Mon. Not. R. Astron. Soc. 2015, 448, 3132–3155. [Google Scholar] [CrossRef]
- Sánchez Contreras, C.; Alcolea, J.; Bujarrabal, V.; Castro-Carrizo, A.; Velilla Prieto, L.; Santander-García, M.; Quintana-Lacaci, G.; Cernicharo, J. Through the magnifying glass: ALMA acute viewing of the intricate nebular architecture of OH 231.8+4.2. Astron. Astrophys. 2018, 618, A164. [Google Scholar] [CrossRef]
- Sánchez Contreras, C.; Sahai, R.; Gil de Paz, A.; Goodrich, R. Echelle Long-Slit Optical Spectroscopy of Evolved Stars. Astrophys. J. Suppl. Ser. 2008, 179, 166–194. [Google Scholar] [CrossRef]
- Alcolea, J.; Agúndez, M.; Bujarrabal, V.; Castro-Carrizo, A.; Desmurs, J.F.; Martínez-Fernández, J.E.; Sánchez Contreras, C.; Santander-García, M. M 1-92 Revisited: New Findings and Open Questions: New NOEMA Observations of Minkowski’s Footprint. Galaxies 2022, 10, 47. [Google Scholar] [CrossRef]
- Bujarrabal, V.; Alcolea, J.; Neri, R. The Structure and Dynamics of the Proto-Planetary Nebula M1-92. Astrophys. J. 1998, 504, 915–920. [Google Scholar] [CrossRef]
- Palmer, J.W.; Lopez, J.A.; Meaburn, J.; Lloyd, H.M. The kinematics and morphology of the planetary nebula Fleming 1. Bullets, jets and an expanding ring. Astron. Astrophys. 1996, 307, 225. [Google Scholar]
- Ohlmann, S.T.; Röpke, F.K.; Pakmor, R.; Springel, V. Hydrodynamic Moving-mesh Simulations of the Common Envelope Phase in Binary Stellar Systems. Astrophys. J. Lett. 2016, 816, L9. [Google Scholar] [CrossRef]
- Solf, J. Long-slit spectroscopic study of the bipolar reflection nebula M 1-92: Detection of compact Herbig-Haro condensations in the lobes. Astron. Astrophys. 1994, 282, 567–585. [Google Scholar]
- Bujarrabal, V.; Alcolea, J.; Sahai, R.; Zamorano, J.; Zijlstra, A.A. The shock structure in the protoplanetary nebula M1-92: Imaging of atomic and H_2 line emission. Astron. Astrophys. 1998, 331, 361–371. [Google Scholar]
- Davis, C.J.; Smith, M.D.; Gledhill, T.M.; Varricatt, W.P. Near-infrared echelle spectroscopy of protoplanetary nebulae: Probing the fast wind in H2. Mon. Not. R. Astron. Soc. 2005, 360, 104–118. [Google Scholar] [CrossRef]
- Sánchez Contreras, C.; Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Sargent, A. 1″ Resolution Mapping of the Molecular Envelope of the Protoplanetary Nebula CRL 618. Astrophys. J. 2004, 617, 1142–1156. [Google Scholar] [CrossRef]
- Cox, P.; Lucas, R.; Huggins, P.J.; Forveille, T.; Bachiller, R.; Guilloteau, S.; Maillard, J.P.; Omont, A. Multiple molecular outflows in AFGL 2688. Astron. Astrophys. 2000, 353, L25–L28. [Google Scholar]
- Alcolea, J.; Agúndez, M.; Bujarrabal, V.; Castro Carrizo, A.; Desmurs, J.F.; Sánchez-Contreras, C.; Santander-García, M. M 1-92 revisited: The chemistry of a common envelope nebula? Proc. Int. Astron. Union 2018, 343, 343–344. [Google Scholar] [CrossRef]
- Bujarrabal, V.; Alcolea, J.; Neri, R.; Grewing, M. The mass and temperature distribution in the protoplanetary nebula M 1-92: 13CO interferometric observations. Astron. Astrophys. 1997, 320, 540–552. [Google Scholar]
- Steffen, W.; Koning, N.; Wenger, S.; Morisset, C.; Magnor, M. Shape: A 3D Modeling Tool for Astrophysics. IEEE Trans. Vis. Comput. Graph. 2011, 17, 454–465. [Google Scholar] [CrossRef]
- Santander-García, M.; Bujarrabal, V.; Koning, N.; Steffen, W. SHAPEMOL: A 3D code for calculating CO line emission in planetary and protoplanetary nebulae. Detailed model-fitting of the complex nebula NGC 6302. Astron. Astrophys. 2015, 573, A56. [Google Scholar] [CrossRef]
- Castor, J.I. Spectral line formation in Wolf-Rayet envelopes. Mon. Not. R. Astron. Soc. 1970, 149, 111. [Google Scholar] [CrossRef]
- De Nutte, R.; Decin, L.; Olofsson, H.; Lombaert, R.; de Koter, A.; Karakas, A.; Milam, S.; Ramstedt, S.; Stancliffe, R.J.; Homan, W.; et al. Nucleosynthesis in AGB stars traced by oxygen isotopic ratios. I. Determining the stellar initial mass by means of the 17O/18O ratio. Astron. Astrophys. 2017, 600, A71. [Google Scholar] [CrossRef]
- Karakas, A.I. Helium enrichment and carbon-star production in metal-rich populations. Mon. Not. R. Astron. Soc. 2014, 445, 347–358. [Google Scholar] [CrossRef]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef]
- Stancliffe, R.J.; Tout, C.A.; Pols, O.R. Deep dredge-up in intermediate-mass thermally pulsing asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2004, 352, 984–992. [Google Scholar] [CrossRef]
- Groenewegen, M.A.T.; van den Hoek, L.B.; de Jong, T. The evolution of galactic carbon stars. Astron. Astrophys. 1995, 293, 381–395. [Google Scholar]
- Marigo, P.; Cummings, J.D.; Curtis, J.L.; Kalirai, J.; Chen, Y.; Tremblay, P.E.; Ramirez-Ruiz, E.; Bergeron, P.; Bladh, S.; Bressan, A.; et al. Carbon star formation as seen through the non-monotonic initial-final mass relation. Nat. Astron. 2020, 4, 1102–1110. [Google Scholar] [CrossRef]
- Pardo, J.R.; Cernicharo, J. Molecular Abundances in CRL 618. Astrophys. J. 2007, 654, 978–987. [Google Scholar] [CrossRef]
- Zhang, Y.; Kwok, S.; Nakashima, J.I.; Chau, W.; Dinh-V-Trung. A Molecular Line Survey of the Carbon-rich Protoplanetary Nebula AFGL 2688 in the 3 mm and 1.3 mm Windows. Astrophys. J. 2013, 773, 71. [Google Scholar] [CrossRef]
Transition | Telescope | Observation Date | HPBW |
---|---|---|---|
12CO J = 1 − 0 2,3 | IRAM 30m RMT | Sept. 2015 | |
Feb., May, Jun. 2016 | |||
12CO J = 2 − 1 1,2,3 | IRAM 30m RMT | Jun., Jul. 2015 | |
Sept. 2015 | |||
June 2016 | |||
12CO J = 5 − 4 4 | HIFI/HSO | Nov. 2010 | |
12CO J = 7 − 6 5 | HIFI/HSO | Dec. 2012 | |
12CO J = 9 − 8 4 | HIFI/HSO | May 2011 | |
13CO J = 1 − 0 1,2,3 | IRAM 30m RMT | Jun., Jul. 2015 | |
Sept. 2015 | |||
Feb., May, Jun. 2016 | |||
13CO J = 2 − 1 3 | IRAM 30m RMT | Feb., May, Jun. 2016 | |
C17O J = 1 − 0 1,2,3 | IRAM 30m RMT | Jun., Jul. 2015 | |
Sept. 2015 | |||
Feb., May, Jun. 2016 | |||
C17O J = 2 − 1 2,3 | IRAM 30m RMT | Sept. 2015 | |
Feb. 2016 | |||
C18O J = 1 − 0 1,2,3 | IRAM 30m RMT | Jun., Jul. 2015 | |
Sept. 2015 | |||
Feb., May, Jun. 2016 | |||
C18O J = 2 − 1 3 | IRAM 30m RMT | Feb., Jun. 2016 | |
J = 1 − 0 2,3 | IRAM 30m RMT | Sept. 2015 | |
Feb. 2016 | |||
J = 2 − 1 3 | IRAM 30m RMT | May 2016 | |
J = 3 − 2 3 | IRAM 30m RMT | Feb., May 2016 | |
H13CO+ J = 1 − 0 3 | IRAM 30m RMT | Feb., May 2016 | 28.6 |
H13CO+ J = 2 − 1 3 | IRAM 30m RMT | May 2016 | |
H13CO+ J = 3 − 2 3 | IRAM 30m RMT | June 2016 | |
13CO J = 2 − 1 6 | NOEMA | Mar., Apr. 2018 | × * |
C17O J = 2 − 1 6 | NOEMA | Mar., Apr. 2018 | × * |
C18O J = 2 − 1 6 | NOEMA | Mar., Apr. 2018 | × * |
J = 2 − 1 6 | NOEMA | Mar., Apr. 2018 | × ** |
H13CO+ J = 2 − 1 6 | NOEMA | Mar., Apr. 2018 | × ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masa, E.; Alcolea, J.; Santander-García, M.; Bujarrabal, V.; Sánchez Contreras, C.; Castro-Carrizo, A. M 1-92: The Death of an AGB Star Told by Its Isotopic Ratios. Galaxies 2024, 12, 63. https://doi.org/10.3390/galaxies12050063
Masa E, Alcolea J, Santander-García M, Bujarrabal V, Sánchez Contreras C, Castro-Carrizo A. M 1-92: The Death of an AGB Star Told by Its Isotopic Ratios. Galaxies. 2024; 12(5):63. https://doi.org/10.3390/galaxies12050063
Chicago/Turabian StyleMasa, Elisa, Javier Alcolea, Miguel Santander-García, Valentín Bujarrabal, Carmen Sánchez Contreras, and Arancha Castro-Carrizo. 2024. "M 1-92: The Death of an AGB Star Told by Its Isotopic Ratios" Galaxies 12, no. 5: 63. https://doi.org/10.3390/galaxies12050063
APA StyleMasa, E., Alcolea, J., Santander-García, M., Bujarrabal, V., Sánchez Contreras, C., & Castro-Carrizo, A. (2024). M 1-92: The Death of an AGB Star Told by Its Isotopic Ratios. Galaxies, 12(5), 63. https://doi.org/10.3390/galaxies12050063