Synthesis of Organic and Inorganic Compounds in Asymptotic Giant Branch Stars
Abstract
:1. Introduction
2. Molecular Synthesis in the Stellar Winds of AGB Stars
3. Synthesis of Complex Organics in Post-AGB Evolution
3.1. Origin of the UIE Bands
3.2. Laboratory Synthesis of Carbonaceous Solids
4. Mixed Aromatic/Aliphatic Organic Nanoparticles (MAONs) as Carrier of UIE Bands
5. Circumstellar Chemical Synthesis
6. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Oró, J. Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun. 1960, 2, 407–412. [Google Scholar] [CrossRef]
- Sanchez, R.A.; Ferbis, J.P.; Orgel, L.E. Studies in Prebiodc Synthesis: II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J. Mol. Biol. 1967, 30, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.P.; Sanchez, R.A.; Orgel, L.E. Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol. 1968, 33, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Dow, W.G. Kerogen studies and geological interpretations. J. Geochem. Explor. 1977, 7, 79–99. [Google Scholar] [CrossRef]
- Sherwood Lollar, B.; Westgate, T.D.; Ward, J.A.; Slater, G.F.; Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 2002, 416, 522–524. [Google Scholar] [CrossRef]
- Kwok, S. Organic Matter in the Universe; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ziurys, L.M. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life. Proc. Natl. Acad. Sci. USA 2006, 103, 12274–12279. [Google Scholar] [CrossRef]
- Cernicharo, J.; Agúndez, M.; Guélin, M.; Bachiller, R. Spectral Line Surveys of Evolved Stars. In Proceedings of the IAU Symposium 280: The Molecular Universe, Toledo, Spain, 1 December 2011; pp. 237–248. [Google Scholar]
- Kwok, S.; Volk, K.; Bidelman, W.P. Classification and Identification of IRAS Sources with Low-Resolution Spectra. Astrophys. J. Suppl. Ser. 1997, 112, 557–584. [Google Scholar] [CrossRef]
- Posch, T.; Kerschbaum, F.; Mutschke, H.; Dorschner, J.; Jäger, C. On the origin of the 19.5 μm feature. Identifying circumstellar Mg-Fe-oxides. Astron. Astrophys. 2002, 393, L7–L10. [Google Scholar] [CrossRef]
- Russell, R.W.; Soifer, B.T.; Willner, S.P. The 4 to 8 micron spectrum of NGC 7027. Astrophys. J. 1977, 217, L149–L153. [Google Scholar] [CrossRef]
- Peeters, E. The Infrared Emission Bands. Proc. Int. Astron. Union 2013, 9, 187–196. [Google Scholar] [CrossRef]
- Kwok, S. The mystery of unidentified infrared emission bands. Astrophys. Space Sci. 2022, 367, 16. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S. The Origin and Evolution of Planetary Nebulae; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Kwok, S. Proto-planetary nebulae. Annu. Rev. Astron. Astrophys. 1993, 31, 63–92. [Google Scholar] [CrossRef]
- Hrivnak, B.J.; Geballe, T.R.; Kwok, S. A Study of the 3.3 and 3.4 μm Emission Features in Proto-Planetary Nebulae. Astrophys. J. 2007, 662, 1059–1066. [Google Scholar] [CrossRef]
- Kwok, S.; Volk, K.; Bernath, P. On the Origin of Infrared Plateau Features in Proto-Planetary Nebulae. Astrophys. J. 2001, 554, L87–L90. [Google Scholar] [CrossRef]
- Knacke, R.F. Carbonaceous compounds in interstellar dust. Nature 1977, 269, 132–134. [Google Scholar] [CrossRef]
- Duley, W.W.; Williams, D.A. The infrared spectrum of interstellar dust—Surface functional groups on carbon. Mon. Not. R. Astron. Soc. 1981, 196, 269–274. [Google Scholar] [CrossRef]
- Sagan, C.; Khare, B.N. Tholins—Organic chemistry of interstellar grains and gas. Nature 1979, 277, 102–107. [Google Scholar] [CrossRef]
- Kwok, S.; Volk, K.; Hrivnak, B.J. Chemical evolution of carbonaceous materials in the last stages of stellar evolution. Astron. Astrophys. 1999, 350, L35–L38. [Google Scholar]
- Sellgren, K.; Uchida, K.I.; Werner, M.W. The 15–20 mm Spitzer spectra of interstellar emission features in NGC 7023. Astrophys. J. 2007, 659, 1338–1351. [Google Scholar] [CrossRef]
- Sturm, E.; Lutz, D.; Tran, D.; Feuchtgruber, H.; Genzel, R.; Kunze, D.; Moorwood, A.F.M.; Thornley, M.D. ISO-SWS spectra of galaxies: Continuum and features. Astron. Astrophys. 2000, 358, 481–493. [Google Scholar]
- Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R. Interstellar polycyclic aromatic hydrocarbons: The infrared emission bands, the excitation/emission mechanism and the astrophysical implications. Astrophys. J. Suppl. Ser. 1989, 71, 733–775. [Google Scholar] [CrossRef] [PubMed]
- Puget, J.L.; Léger, A. A new component of the interstellar matter—Small grains and large aromatic molecules. Annu. Rev. Astron. Astrophys. 1989, 27, 161–198. [Google Scholar] [CrossRef]
- Tielens, A.G.G.M. Interstellar Polycyclic Aromatic Hydrocarbon Molecules. Annu. Rev. Astron. Astrophys. 2008, 46, 289–337. [Google Scholar] [CrossRef]
- Sakata, A.; Wada, S.; Onaka, T.; Tokunaga, A.T. Quenched carbonaceous composite. III—Comparison to the 3.29 micron interstellar emission feature. Astrophys. J. 1990, 353, 543–548. [Google Scholar] [CrossRef]
- Kwok, S.; Zhang, Y. Unidentified Infrared Emission Bands: PAHs or MAONs? Astrophys. J. 2013, 771, 5. [Google Scholar] [CrossRef]
- Sadjadi, S.; Zhang, Y.; Kwok, S. On the Origin of the 11.3 Micron Unidentified Infrared Emission Feature. Astrophys. J. 2015, 807, 95. [Google Scholar] [CrossRef]
- Leger, A.; Puget, J.L. Identification of the ‘unidentified’ IR emission features of interstellar dust? Astron. Astrophys. 1984, 137, L5–L8. [Google Scholar]
- Hudgins, D.M.; Allamandola, L.J. The Spacing of the Interstellar 6.2 and 7.7 Micron Emission Features as an Indicator of Polycyclic Aromatic Hydrocarbon Size. Astrophys. J. Lett. 1999, 513, L69–L73. [Google Scholar] [CrossRef]
- Van Diedenhoven, B.; Peeters, E.; Van Kerckhoven, C.; Hony, S.; Hudgins, D.M.; Allamandola, L.J.; Tielens, A.G.G.M. The Profiles of the 3-12 Micron Polycyclic Aromatic Hydrocarbon Features. Astrophys. J. 2004, 611, 928–939. [Google Scholar] [CrossRef]
- Bauschlicher, C.W., Jr. The Infrared Spectra of C96H24, C96H+24, and C96H+25. Astrophys. J. 2002, 564, 782–786. [Google Scholar]
- Hudgins, D.M.; Bauschlicher, C.W., Jr.; Allamandola, L.J. Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population. Astrophys. J. 2005, 632, 316–332. [Google Scholar] [CrossRef]
- Uchida, K.I.; Sellgren, K.; Werner, M.W.; Houdashelt, M.L. Infrared Space Observatory mid-infrared spectra of reflection nebulae. Astrophys. J. 2000, 530, 817–833. [Google Scholar] [CrossRef]
- Clayton, G.C.; Gordon, K.D.; Salama, F.; Allamandola, L.J.; Martin, P.G.; Snow, T.P.; Whittet, D.C.B.; Witt, A.N.; Wolff, M.J. The Role of Polycyclic Aromatic Hydrocarbons in Ultraviolet Extinction. I. Probing Small Molecular Polycyclic Aromatic Hydrocarbons. Astrophys. J. 2003, 592, 947–952. [Google Scholar] [CrossRef]
- Salama, F.; Galazutdinov, G.A.; Krełowski, J.; Biennier, L.; Beletsky, Y.; Song, I.-O. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: A Survey. Astrophys. J. 2011, 728, 154. [Google Scholar] [CrossRef]
- Gredel, R.; Carpentier, Y.; Rouillé, G.; Steglich, M.; Huisken, F.; Henning, T. Abundances of PAHs in the ISM: Confronting observations with experimental results. Astron. Astrophys. 2011, 530, 26. [Google Scholar] [CrossRef]
- McGuire, B.A.; Loomis, R.A.; Burkhardt, A.M.; Lee, K.L.K.; Shingledecker, C.N.; Charnley, S.B.; Cooke, I.R.; Cordiner, M.A.; Herbst, E.; Kalenskii, S.; et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 2021, 371, 1265–1269. [Google Scholar] [CrossRef]
- Cernicharo, J.; Agúndez, M.; Cabezas, C.; Tercero, B.; Marcelino, N.; Pardo, J.R.; de Vicente, P. Pure hydrocarbon cycles in TMC-1: Discovery of ethynyl cyclopropenylidene, cyclopentadiene, and indene. Astron. Astrophys. 2021, 649, L15. [Google Scholar] [CrossRef]
- Wagner, D.R.; Kim, H.; Saykally, R.J. Peripherally Hydrogenated Neutral Polycyclic Aromatic Hydrocarbons as Carriers of the 3 Micron Interstellar Infrared Emission Complex: Results from Single-Photon Infrared Emission Spectroscopy. Astrophys. J. 2000, 545, 854–860. [Google Scholar] [CrossRef]
- Zhang, Y.; Kwok, S. On the Viability of the PAH Model as an Explanation of the Unidentified Infrared Emission Features. Astrophys. J. 2015, 798, 37. [Google Scholar] [CrossRef]
- Peeters, E.; Mackie, C.; Candian, A.; Tielens, A.G.G.M. A Spectroscopic View on Cosmic PAH Emission. Acc. Chem. Res. 2021, 54, 1921–1933. [Google Scholar] [CrossRef]
- Robertson, J.; O’Reilly, E.P. Electronic and atomic structure of amorphous carbon. Phys. Rev. B 1987, 35, 2946–2957. [Google Scholar] [CrossRef] [PubMed]
- Sakata, A.; Wada, S.; Onaka, T.; Tokunaga, A.T. Infrared spectrum of quenched carbonaceous composite (QCC). II—A new identification of the 7.7 and 8.6 micron unidentified infrared emission bands. Astrophys. J. 1987, 320, L63–L67. [Google Scholar] [CrossRef]
- Godard, M.; Féraud, G.; Chabot, M.; Carpentier, Y.; Pino, T.; Brunetto, R.; Duprat, J.; Engrand, C.; Bréchignac, P.; D’Hendecourt, L.; et al. Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption band. Astron. Astrophys. 2011, 529, 146. [Google Scholar] [CrossRef]
- Colangeli, L.; Mennella, V.; Palumbo, P.; Rotundi, A.; Bussoletti, E. Mass extinction coefficients of various submicron amorphous carbon grains: Tabulated values from 40 NM to 2 mm. Astron. Astrophys. Suppl. Ser. 1995, 113, 561. [Google Scholar]
- Mennella, V.; Baratta, G.A.; Esposito, A.; Ferini, G.; Pendleton, Y.J. The Effects of Ion Irradiation on the Evolution of the Carrier of the 3.4 Micron Interstellar Absorption Band. Astrophys. J. 2003, 587, 727–738. [Google Scholar] [CrossRef]
- Scott, A.; Duley, W.W. Ultraviolet and Infrared Refractive Indices of Amorphous Silicates. Astrophys. J. Suppl. Ser. 1996, 105, 401. [Google Scholar] [CrossRef]
- Mennella, V.; Brucato, J.R.; Colangeli, L.; Palumbo, P. Activation of the 3.4 Micron Band in Carbon Grains by Exposure to Atomic Hydrogen. Astrophys. J. 1999, 524, L71–L74. [Google Scholar] [CrossRef]
- Jäger, C.; Huisken, F.; Mutschke, H.; Jansa, I.L.; Henning, T.H. Formation of Polycyclic Aromatic Hydrocarbons and Carbonaceous Solids In Gas-Phase Condensation Experiments. Astrophys. J. 2009, 696, 706–712. [Google Scholar] [CrossRef]
- Herlin, N.; Bohn, I.; Reynaud, C.; Cauchetier, M.; Galvez, A.; Rouzaud, J.-N. Nanoparticles produced by Laser Pyrolysis of hydrocarbons: Analogy with carbon cosmic dust. Astron. Astrophys. 1998, 330, 1127–1135. [Google Scholar]
- Dartois, E.; Muñoz Caro, G.M.; Deboffle, D.; d’Hendecourt, L. Diffuse interstellar medium organic polymers. Photoproduction of the 3.4, 6.85 and 7.25 μm features. Astron. Astrophys. 2004, 423, L33–L36. [Google Scholar] [CrossRef]
- Pino, T.; Dartois, E.; Cao, A.-T.; Carpentier, Y.; Chamaillé, T.; Vasquez, R.; Jones, A.P.; D’Hendecourt, L.; Bréchignac, P. The 6.2 μm band position in laboratory and astrophysical spectra: A tracer of the aliphatic to aromatic evolution of interstellar carbonaceous dust. Astron. Astrophys. 2008, 490, 665–672. [Google Scholar] [CrossRef]
- Carpentier, Y.; Féraud, G.; Dartois, E.; Brunetto, R.; Charon, E.; Cao, A.-T.; d’Hendecourt, L.; Bréchignac, P.; Rouzaud, J.-N.; Pino, T. Nanostructuration of carbonaceous dust as seen through the positions of the 6.2 and 7.7 μm AIBs. Astron. Astrophys. 2012, 548, 40. [Google Scholar] [CrossRef]
- Martínez, L.; Santoro, G.; Merino, P.; Accolla, M.; Lauwaet, K.; Sobrado, J.; Sabbah, H.; Pelaez, R.J.; Herrero, V.J.; Tanarro, I.; et al. Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat. Astron. 2020, 4, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.; Zhang, Y. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 2011, 479, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Sadjadi, S.; Zhang, Y.; Kwok, S. A Theoretical Study on the Vibrational Spectra of Polycyclic Aromatic Hydrocarbon Molecules with Aliphatic Sidegroups. Astrophys. J. 2015, 801, 34. [Google Scholar] [CrossRef]
- Hsia, C.-H.; Sadjadi, S.; Zhang, Y.; Kwok, S. The 6 μm Feature as a Tracer of Aliphatic Components of Interstellar Carbonaceous Grains. Astrophys. J. 2016, 832, 213. [Google Scholar] [CrossRef]
- Sadjadi, S.; Zhang, Y.; Kwok, S. On the Origin of the 3.3 μm Unidentified Infrared Emission Feature. Astrophys. J. 2017, 845, 123. [Google Scholar] [CrossRef]
- Sadjadi, S.; Kwok, S.; Cataldo, F.; García-Hernández, D.A.; Manchado, A. A theoretical investigation of the possible detection of C24 in space. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 637–641. [Google Scholar] [CrossRef]
- Smith, J.D.T.; Draine, B.T.; Dale, D.A.; Moustakas, J.; Kennicutt, R.C.; Helou, G.; Armus, L.; Roussel, H.; Sheth, K.; Bendo, G.J.; et al. The mid-infrared spectrum of star-forming galaxies: Global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 2007, 656, 770–791. [Google Scholar] [CrossRef]
- Li, A. Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. Nat. Astron. 2020, 4, 339–351. [Google Scholar] [CrossRef]
- Genzel, R.; Lutz, D.; Sturm, E.; Egami, E.; Kunze, D.; Moorwood, A.F.M.; Rigopoulou, D.; Spoon, H.W.W.; Sternberg, A.; Tacconi-Garman, L.E.; et al. What Powers Ultraluminous IRAS Galaxies? Astrophys. J. 1998, 498, 579. [Google Scholar] [CrossRef]
- Galliano, F.; Madden, S.C.; Tielens, A.G.G.M.; Peeters, E.; Jones, A.P. Variations of the Mid-IR Aromatic Features inside and among Galaxies. Astrophys. J. 2008, 679, 310–345. [Google Scholar] [CrossRef]
- Kwok, S. The synthesis of organic and inorganic compounds in evolved stars. Nature 2004, 430, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Volk, K.; Xiong, G.-Z.; Kwok, S. Infrared Space Observatory Spectroscopy of Extreme Carbon Stars. Astrophys. J. 2000, 530, 408–417. [Google Scholar] [CrossRef]
- Cernicharo, J.; Heras, A.M.; Tielens, A.G.G.M.; Pardo, J.R.; Herpin, F.; Guélin, M.; Waters, L.B.F.M. Infrared Space Observatory’s Discovery of C4H2, C6H2, and Benzene in CRL 618. Astrophys. J. 2001, 546, L123–L126. [Google Scholar] [CrossRef]
- Spilker, J.S.; Phadke, K.A.; Aravena, M.; Archipley, M.; Bayliss, M.B.; Birkin, J.E.; Béthermin, M.; Burgoyne, J.; Cathey, J.; Chapman, S.C.; et al. Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy. Nature 2023, 618, 708–711. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Wallerstein, G.; Iben, I.; Parker, P.; Boesgaard, A.M.; Hale, G.M.; Champagne, A.E.; Barnes, C.A.; Käppeler, F.; Smith, V.V.; Hoffman, R.D.; et al. Synthesis of the elements in stars: Forty years of progress. Rev. Mod. Phys. 1997, 69, 995. [Google Scholar] [CrossRef]
- Kwok, S. Organics in the solar system. Res. Astron. Astrophys. 2019, 19, 49. [Google Scholar] [CrossRef]
- Kwok, S. Delivery of Complex Organic Compounds from Planetary Nebulae to the Solar System. Int. J. Astrobiol. 2009, 8, 161–167. [Google Scholar] [CrossRef]
- Kwok, S. Stardust: The Cosmic Seeds of Life; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwok, S. Synthesis of Organic and Inorganic Compounds in Asymptotic Giant Branch Stars. Galaxies 2024, 12, 64. https://doi.org/10.3390/galaxies12050064
Kwok S. Synthesis of Organic and Inorganic Compounds in Asymptotic Giant Branch Stars. Galaxies. 2024; 12(5):64. https://doi.org/10.3390/galaxies12050064
Chicago/Turabian StyleKwok, Sun. 2024. "Synthesis of Organic and Inorganic Compounds in Asymptotic Giant Branch Stars" Galaxies 12, no. 5: 64. https://doi.org/10.3390/galaxies12050064
APA StyleKwok, S. (2024). Synthesis of Organic and Inorganic Compounds in Asymptotic Giant Branch Stars. Galaxies, 12(5), 64. https://doi.org/10.3390/galaxies12050064