The Initial-Final Mass Relation from Carbon Stars in Open Clusters
Abstract
:1. Introduction
2. Observations and Analysis
3. Results
4. Luminosity and the IFMR
- Case 2: We adopted the distances and extinctions of the open cluster to which each star belongs to according to [22], and the same bolometric corrections as in Case 1.
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AGB | Asymptotic giant branch |
2MASS | Two micron sky survey |
IFMR | Initial final mass relation |
SED | Spectrum energy distribution |
FRUITY | FRANEC repository of updated isotopic tables & yields |
1 | We adopt here the usual notation [X/H] = log (X/H)★ − log (X/H)⊙, where (X/H)★ is the abundance by number of the element X in the corresponding star. |
2 |
References
- Frost, C.A.; Lattanzio, J. On the numerical treatment and dependence of the third dredge-up phenomenon. Astrophys. J. 1996, 473, 383–387. [Google Scholar] [CrossRef]
- Ventura, P.; D’Antona, F. Full computation of massive AGB evolution. I. The large impact of convection on nucleosynthesis. Astron. Astrophys. 2005, 438, 279–288. [Google Scholar] [CrossRef]
- Straniero, O.; Abia, C.; Domínguez, I. The carbon star mystery: 40 years later. Eur. Phys. J. A 2023, 59, 17. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Domínguez, I.; Lederer, M.T. Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys. J. 2009, 696, 797–820. [Google Scholar] [CrossRef]
- Marigo, P.; Bressan, A.; Nanni, A.; Girardi, L.; Pumo, M.L. Evolution of thermally pulsing asymptotic giant branch stars—I. The COLIBRI code. Mon. Not. R. Astron. Soc. 2013, 434, 488–526. [Google Scholar] [CrossRef]
- Catalan, S.; Isern, J.; García-Berro, E.; Ribasl, I. The initial-final mass relationship of white dwarfs revisited: Effect on the luminosity function and mass distribution. Mon. Not. R. Astron. Soc. 2008, 387, 1693–1703. [Google Scholar] [CrossRef]
- Salaris, M.; Serenelli, A.; Weiss, A.; Bertolami, M.M. Semi-empirical White Dwarf Initial-Final Mass Relationships: A Thorough Analysis of Systematic Uncertainties Due to Stellar Evolution Models. Astrophys. J. 2009, 692, 1013–1032. [Google Scholar] [CrossRef]
- Cummings, J.D.; Kalirai, J.S.; Tremblay, P.E.; Ramirez-Ruiz, E.; Choi, J. The White Dwarf Initial-Final Mass Relation for Progenitor Stars from 0.85 to 7.5 M⊙. Astrophys. J. 2018, 866, 21. [Google Scholar] [CrossRef]
- Cunningham, T.; Tremblay, P.-E.; O’Brien, M.W. Initial-final mass relation from white dwarfs within 40 pc. Mon. Not. R. Astron. Soc. 2024, 527, 3602–3611. [Google Scholar] [CrossRef]
- Kalirai, J.S.; Marigo, P.; Tremblay, P.-E. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars. Astrophys. J. 2014, 782, 17. [Google Scholar] [CrossRef]
- Marigo, P.; Cummings, J.D.; Curtis, J.L.; Kalirai, J.; Chen, Y.; Tremblay, P.-E.; Ramirez-Ruiz, E.; Bergeron, P.; Bladh, S.; Bressan, A.; et al. Carbon star formation as seen through the non-monotonic initial-final mass relation. Nat. Astron. 2020, 4, 1102–1110. [Google Scholar] [CrossRef]
- Brown, A.G.A.; Vallenari, A.; Prusti, T.; De Bruijne, J.; Babusiaux, C.; Biermann, M.; Creevey, O.; Evans, D.; Eyer, L.; Hutton, A.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar]
- Marigo, P.; Bossini, D.; Trabucchi, M.; Addari, F.; Girardi, L.; Cummings, J.D.; Pastorelli, G.; Tio, P.D.; Costa, G.; Bressan, A. A fresh look at AGB stars in galactic open cluster with Gaia: Impact on stellar models and the initial-final mass relation. Astrophys. J. Suppl. Ser. 2022, 258, 1–37. [Google Scholar] [CrossRef]
- Mattsson, L.; Wahlin, R.; Höfner, S. Dust driven mass loss from carbon stars as a function of stellar parameters. I. A grid of solar-metallicity wind models. Astron. Astrophys. 2010, 509, A14. [Google Scholar] [CrossRef]
- Eriksson, K.; Nowotny, W.; Höfner, S.; Aringer, B.; Wachter, A. Synthetic photometry for carbon-rich giants. IV. An extensive grid of dynamic atmosphere and wind models. Astron. Astrophys. 2014, 566, A14. [Google Scholar] [CrossRef]
- Bladh, S.; Eriksson, K.; Marigo, P.; Liljegren, S.; Aringer, B. Carbon star wind models at solar and sub-solar metallicities: A comparative study. I. Mass loss and the properties of dust-driven winds. Astron. Astrophys. 2019, 623, A119. [Google Scholar] [CrossRef]
- Abia, C.; Domínguez, I.; Gallino, R.; Busso, M.; Masera, S.; Straniero, O.; de Laverny, P.; Plez, B.; Isern, J. s-Process Nucleosynthesis in Carbon Stars. Astrophys. J. 2002, 579, 817–837. [Google Scholar] [CrossRef]
- Abia, C.; Cunha, K.; Cristallo, S.; Laverny, P.D. The origin of fluorine: Abundances in AGB carbon stars revisited. Astron. Astrophys. 2015, 581, A88. [Google Scholar] [CrossRef]
- Hedrosa, R.P.; Abia, C.; Busso, M.; Cristallo, S.; Domínguez, I.; Palmerini, S.; Plez, B.; Straniero, O. Nitrogen Isotopes in Asymptotic Giant Branch Carbon Stars and Presolar SiC Grains: A Challenge for Stellar Nucleosynthesis. Astrophys. J. 2013, 768, L11. [Google Scholar] [CrossRef]
- Abia, C.; Hedrosa, R.P.; Domínguez, I.; Straniero, O. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars. Astron. Astrophys. 2017, 599, A39. [Google Scholar] [CrossRef]
- Cunha, K.; Smith, V.V.; Hasselquist, S.; Souto, D.; Shetrone, M.D.; Prieto, C.A.; Bizyaev, D.; Frinchaboy, P.; García-Hernández, D.A.; Holtzman, J.; et al. Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce II Lines in the H-band Spectral Window. Astrophys. J. 2017, 844, 145. [Google Scholar] [CrossRef]
- Cavallo, L.; Spina, L.; Carraro, G.; Magrini, L.; Poggio, E.; Cantat-Gaudin, T.; Pasquato, M.; Lucatello, S.; Ortolani, S.; Schiappacasse-Ulloa, J. Parameter Estimation for Open Clusters using an Artificial Neural Network with a QuadTree-based Feature Extractor. Astron. J. 2024, 167, 1. [Google Scholar] [CrossRef]
- Plez, B. Turbospectrum: Code for Spectral Synthesis; Astrophysics Source Code Library, 2012. [Google Scholar]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951–970. [Google Scholar] [CrossRef]
- Addari, F.; Marigo, P.; Bressan, A.; Costa, G.; Shepherd, K.; Volpato, G. The Role of the Third Dredge-up and Mass Loss in Shaping the Initial–Final Mass Relation of White Dwarfs. Astrophys. J. 2024, 964, 51. [Google Scholar] [CrossRef]
- Lodders, K.; Fegley, B. Condensation chemistry of carbon stars. AIP Conf. Proc. 1997, 402, 391–423. [Google Scholar]
- Palmerini, S.; Cristallo, S.; Busso, M.; Abia, C.; Uttenthaler, S.; Gialanella, L.; Maiorca, E. Deep Mixing in Evolved Stars. II. Interpreting Li Abundances in Red Giant Branch and Asymptotic Giant Branch Stars. Astrophys. J. 2011, 741, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Jeffery, C.S. White dwarf-red giant mergers, early-type R stars, J stars and lithium. Mon. Not. R. Astron. Soc. 2013, 430, 2113–2120. [Google Scholar] [CrossRef]
- Sengupta, S.; Izzard, R.G.; Lau, H.H.B. A nova re-accretion model for J-type carbon stars. Astron. Astrophys. 2013, 599, A66. [Google Scholar] [CrossRef]
- Davis, A.M. Cosmochemistry special feature: Stardust in meteorites. Proc. Natl. Acad. Sci. USA 2011, 108, 19142–19146. [Google Scholar] [CrossRef]
- Bailer-Jones, C.A.L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3. Astron. J. 2021, 161, 147. [Google Scholar] [CrossRef]
- Lallement, R.; Vergely, J.L.; Babusiaux, C.; Cox, N.L.J. Updated Gaia-2MASS 3D maps of Galactic interstellar dust. Astron. Astrophys. 2022, 661, A147. [Google Scholar] [CrossRef]
- Kerschbaum, F.; Lebzelter, T.; Mekul, L. Bolometric corrections for cool giants based on near-infrared photometry. Astron. Astrophys. 2010, 524, A87. [Google Scholar] [CrossRef]
- Abia, C.; de Laverny, P.; Romero-Gómez, M.; Figueras, F. Characterisation of Galactic carbon stars and related stars from Gaia EDR3. Astron. Astrophys. 2022, 664, A45. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Anders, F.; Castro-Ginard, A.; Jordi, C.; Romero-Gómez, M.; Soubiran, C.; Casamiquela, L.; Tarricq, Y.; Moitinho, A.; Vallenari, A.; et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 2020, 640, A1. [Google Scholar] [CrossRef]
- Dias, W.S.; Monteiro, H.; Moitinho, A.; Lépine, J.R.D.; Carraro, G.; Paunzen, E.; Alessi, B.; Villela, L. Updated parameters of 1743 open clusters based on Gaia DR2. Mon. Not. R. Astron. Soc. 2021, 504, 256–371. [Google Scholar] [CrossRef]
- Blanco, V.M.; McCarthy, M.F.; Blanco, B.M. Carbon and late M-type stars in the Magellanic Clouds. Astrophys. J. 1980, 242, 938–964. [Google Scholar] [CrossRef]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef]
- Hunt, E.L.; Sabine, R. Improving the open cluster census. II. An all-sky cluster catalogue with Gaia DR3. Astron. Astrophys. 2023, 673, A114. [Google Scholar] [CrossRef]
Name | Open Cluster | Log (Age) | p |
---|---|---|---|
V493 Mon | Trumpler 5 | 9.63 | 0.68 |
C* 908 | Ruprecht 37 | 9.37 | 0.99 |
MSB 75 | NGC 7789 | 9.20 | 0.99 |
Case 63 | Berkeley 9 | 9.14 | 0.99 |
Case 473 | Berkeley 53 | 8.99 | 0.68 |
IRAS 19582+2907 | FSR 0172 | 8.20 | 0.99 |
Case 121 | Berkeley 72 | 7.73 | 0.99 |
Case 588 | Dias 2 | 9.24 | 0.99 |
DH Mon | Ruprecht 37 | 9.37 | 0.68 |
Star | [M/H] | C/O | / | / | / | A(Li) | [F/M] | [<s>/M] |
---|---|---|---|---|---|---|---|---|
V493 Mon | −0.4 | <1.5 | <25 | - | - | - | - | - |
C* 908 | −0.3 | 1.07 | 50 | 1000 | - | 0.0 | - | 0.25 |
MSB 75 | −0.25 | 1.05 | 35 | >700 | 650 | −0.6 | −0.1 | 0.4 |
Case 63 | −0.1 | 1.05 | 52 | 1250 | 580 | −2.0 | 0.15 | 0.32 |
Case 473 | 0.0 | 1.07 | 58 | - | 670 | −1.0 | 0.3 | <0.5 |
IRAS19582+2907 | 0.0 | 1.04 | 50 | - | - | -0.5 | - | 0.6 |
Case 121 | −0.2 | 1.07 | 55 | >1000 | 1000 | -1.0 | −0.1 | 0.2 |
Case 588 | −1.0 | 1.41 | 70 | 800 | - | −0.6 | - | 1.0 |
DH Mon | −0.3 | 1.06 | 10 | 200–500 | - | +0.6 | - | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abia, C.; Domínguez, I.; Marigo, P.; Cristallo, S.; Straniero, O. The Initial-Final Mass Relation from Carbon Stars in Open Clusters. Galaxies 2024, 12, 67. https://doi.org/10.3390/galaxies12060067
Abia C, Domínguez I, Marigo P, Cristallo S, Straniero O. The Initial-Final Mass Relation from Carbon Stars in Open Clusters. Galaxies. 2024; 12(6):67. https://doi.org/10.3390/galaxies12060067
Chicago/Turabian StyleAbia, Carlos, Inma Domínguez, Paola Marigo, Sergio Cristallo, and Oscar Straniero. 2024. "The Initial-Final Mass Relation from Carbon Stars in Open Clusters" Galaxies 12, no. 6: 67. https://doi.org/10.3390/galaxies12060067
APA StyleAbia, C., Domínguez, I., Marigo, P., Cristallo, S., & Straniero, O. (2024). The Initial-Final Mass Relation from Carbon Stars in Open Clusters. Galaxies, 12(6), 67. https://doi.org/10.3390/galaxies12060067