The New Deep-Underground Direct Measurement of 22Ne(α, γ)26Mg with EASγ: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Background Acquisition
2.3. Simulation
3. Results and Discussion
3.1. Simulation of the De-Excitation of the 11,319.5 keV State of 26Mg
3.1.1. Scenario I: Surface Measurement
3.1.2. Scenario II: Deep-Underground Measurement and No Shielding
3.1.3. III Scenario: Deep-Underground Measurement and Lead Shielding
3.2. Simulation of the De-Excitation of the 26Mg 11,171 keV State
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EASγ | Experimental and Astrophysical Study of 22Ne(α, γ) |
AGB | Asymptotic Giant Branch |
LUNA | Laboratories for Underground Nuclear Astrophysics |
s-process | Slow neutron capture process |
solar mass | |
K | |
LNGS | Laboratori Nazionali del Gran Sasso |
SHADES | Scintillator-He3 Array fro Deep-underground Experiments on the S-process |
UL | Upper Limit |
References
- Gay, P.L.; Lambert, D.L. The isotopic abundances of magnesium in stars. Astrophys. J. 2000, 533, 260. [Google Scholar] [CrossRef]
- Carlos, M.; Karakas, A.I.; Cohen, J.G.; Kobayashi, C.; Melendez, J. A formation timescale of the Galactic halo from Mg isotopes in dwarf stars. Astrophys. J. 2018, 856, 161. [Google Scholar] [CrossRef]
- Melendez, J.; Cohen, J. The Rise of the AGB in the Galactic Halo: Mg Isotopic Ratios and High Precision Elemental Abundances in M71 Giants. Astrophys. J. 2009, 699, 2017. [Google Scholar] [CrossRef]
- Jones, S.W.; Möller, H.; Fryer, C.L.; Fontes, C.J.; Trappitsch, R.; Even, W.P.; Couture, A.; Mumpower, M.R.; Safi-Harb, S. 60Fe in core-collapse supernovae and prospects for X-ray and gamma-ray detection in supernova remnants. Mon. Not. R. Astron. Soc. 2019, 485, 4287–4310. [Google Scholar] [CrossRef]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys. J. 2010, 710, 1557. [Google Scholar] [CrossRef]
- Bisterzo, S.; Gallino, R.; Käppeler, F.; Wiescher, M.; Imbriani, G.; Straniero, O.; Cristallo, S.; Görres, J.; Deboer, R. The branchings of the main s-process: Their sensitivity to α-induced reactions on 13C and 22Ne and to the uncertainties of the nuclear network. Mon. Not. R. Astron. Soc. 2015, 449, 506–527. [Google Scholar] [CrossRef]
- Ciani, G.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the 13C(α, n)16O Cross Section into the s-Process Gamow Peak. Phys. Rev. Lett. 2021, 127, 152701. [Google Scholar] [CrossRef]
- Deboer, R.; Febbraro, M.; Bardayan, D.; Boomershine, C.; Brandenburg, K.; Brune, C.; Coil, S.; Couder, M.; Derkin, J.; Dede, S.; et al. Measurement of the 13C(α, n0)16O Differential Cross Section from 0.8 to 6.5 MeV. Phys. Rev. Lett. 2024, 132, 062702. [Google Scholar] [CrossRef]
- Gao, B.; Jiao, T.; Li, Y.; Chen, H.; Lin, W.; An, Z.; Ru, L.; Zhang, Z.; Tang, X.; Wang, X.; et al. Deep Underground Laboratory Measurement of 13C(α, n)16O in the Gamow Windows of the s and i Processes. Phys. Rev. Lett. 2022, 129, 132701. [Google Scholar] [CrossRef]
- Käppeler, F.; Wiescher, M.; Giesen, U.; Görres, J.; Baraffe, I.; El Eid, M.; Raiteri, C.; Busso, M.; Gallino, R.; Limongi, M.; et al. Reaction rates for O-18 (alpha, gamma) Ne-22, Ne-22 (alpha, gamma) Mg-26, and Ne-22 (alpha, n) Mg-25 in stellar helium burning and s-process nucleosynthesis in massive stars. Astrophys. J. 1994, 437, 396–409. [Google Scholar] [CrossRef]
- Ota, S.; Christian, G.; Lotay, G.; Catford, W.; Bennett, E.; Dede, S.; Doherty, D.; Hallam, S.; Hooker, J.; Hunt, C.; et al. Decay properties of 22Ne+ α resonances and their impact on s-process nucleosynthesis. Phys. Lett. B 2020, 802, 135256. [Google Scholar] [CrossRef]
- Rolfs, C.E.; Rodney, W.S. Cauldrons in the Cosmos: Nuclear Astrophysics; University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Iliadis, C. Nuclear Physics of Stars; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Knoll, G.F. Radiation Detection and Measurement; John & Wiley Sons Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wolke, K.; Harms, V.; Becker, H.; Hammer, J.; Kratz, K.; Rolfs, C.; Schröder, U.; Trautvetter, H.; Wiescher, M.; Wöhr, A. Helium burning of 22Ne. Z. Phys. At. Nucl. 1989, 334, 491–510. [Google Scholar] [CrossRef]
- Giesen, U.; Browne, C.; Görres, J.; Graff, S.; Iliadis, C.; Trautvetter, H.P.; Wiescher, M.; Harms, W.; Kratz, K.; Pfeiffer, B.; et al. The astrophysical implications of low-energy resonances in 22Ne + α. Nucl. Phys. A 1993, 561, 95–111. [Google Scholar] [CrossRef]
- Hunt, S.; Iliadis, C.; Champagne, A.; Downen, L.; Cooper, A. New measurement of the = 0.83 MeV resonance in 22Ne (α, γ)26Mg. Phys. Rev. C 2019, 99, 045804. [Google Scholar] [CrossRef]
- Jaeger, M.; Kunz, R.; Mayer, A.; Hammer, J.; Staudt, G.; Kratz, K.; Pfeiffer, B. 22Ne(α, n)25Mg: The key neutron source in massive stars. Phys. Rev. Lett. 2001, 87, 202501. [Google Scholar] [CrossRef]
- Ota, S.; Christian, G.; Catford, W.; Lotay, G.; Pignatari, M.; Battino, U.; Bennett, E.; Dede, S.; Doherty, D.; Hallam, S.; et al. (6Li, d) and (6Li, t) reactions on 22Ne and implications for s-process nucleosynthesis. Phys. Rev. C 2021, 104, 055806. [Google Scholar] [CrossRef]
- Shahina; deBoer, R.; Görres, J.; Fang, R.; Febbraro, M.; Kelmar, R.; Matney, M.; Manukyan, K.; Nattress, J.; Robles, E.; et al. Strength measurement of the = 830 keV resonance in the 22Ne(α, n)25Mg reaction using a stilbene detector. Phys. Rev. C 2024, 110, 015801. [Google Scholar] [CrossRef]
- Piatti, D.; Masha, E.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. First direct limit on the 334 keV resonance strength in 22Ne(α, γ)26Mg reaction. Eur. Phys. J. A 2022, 58, 194. [Google Scholar] [CrossRef]
- Skowronski, J.; Gesuè, R.M.; Boeltzig, A.; Ciani, G.F.; Piatti, D.; Rapagnani, D.; Aliotta, M.; Ananna, C.; Barile, F.; Bemmerer, D.; et al. Advances in radiative capture studies at LUNA with a segmented BGO detector. J. Phys. G Nucl. Phys. 2023, 50, 045201. [Google Scholar] [CrossRef]
- Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R.; Romano, S.; Sergi, M.; Tumino, A. Trojan Horse Method: Recent applications in nuclear astrophysics. Nucl. Phys. A 2010, 834, 639c–642c. [Google Scholar] [CrossRef]
- Pizzone, R.; Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L.; Romano, S.; Sergi, M.; Tumino, A.; Li, C.; Wen, Q.; et al. Trojan Horse Method: A useful tool for electron screening effect investigation. Nucl. Phys. A 2010, 834, 673c–675c. [Google Scholar] [CrossRef]
- Borcea, C.; Cennini, P.; Dahlfors, M.; Ferrari, A.; Garcia-Muñoz, G.; Haefner, P.; Herrera-Martınez, A.; Kadi, Y.; Lacoste, V.; Radermacher, E.; et al. Results from the commissioning of the n_TOF spallation neutron source at CERN. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 513, 524–537. [Google Scholar] [CrossRef]
- Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Cano-Ott, D.; Coiffet, T.; Colonna, N.; Domingo-Pardo, C.; Dragoni, F.; Franqueira Ximenes, R.; et al. Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN. Phys. Rev. Accel. Beams 2021, 24, 093001. [Google Scholar] [CrossRef]
- Buompane, R.; Di Leva, A.; Gialanella, L.; D’Onofrio, A.; De Cesare, M.; Duarte, J.; Fülöp, Z.; Gasques, L.; Gyürky, G.; Morales-Gallegos, L.; et al. Determination of the 7Be(p,γ)8B cross section at astrophysical energies using a radioactive 7Be ion beam. Phys. Lett. B 2022, 824, 136819. [Google Scholar] [CrossRef]
- Rapagnani, D.; De Cesare, M.; Alfano, D.; Buompane, R.; Cantoni, S.; De Stefano Fumo, M.; Del Vecchio, A.; D’Onofrio, A.; Porzio, G.; Rufolo, G.; et al. Ion Beam Analysis for recession determination and composition estimate of Aerospace Thermal Protection System materials. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 467, 53–57. [Google Scholar] [CrossRef]
- De Cesare, M.; Savino, L.; Di Leva, A.; Rapagnani, D.; Del Vecchio, A.; D’Onofrio, A.; Gialanella, L. Gamma and infrared novel methodologies in Aerospace re-entry: γ-rays crystal efficiency by GEANT4 for TPS material recession assessment and simultaneous dual color infrared temperature determination. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 479, 264–271. [Google Scholar] [CrossRef]
- Goasduff, A.; Santonocito, D.; Menegazzo, R.; Capra, S.; Pullia, A.; Raniero, W.; Rosso, D.; Toniolo, N.; Zago, L.; Naselli, E.; et al. A high resolution γ-ray array for the pandora plasma trap. Front. Phys. 2022, 10, 6081. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.a.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—a simulation toolkit. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Junker, M.; Imbriani, G.; Best, A.; Boeltzig, A.; Compagnucci, A.; Di Leva, A.; Ferraro, F.; Rapagnani, D.; Rigato, V. The deep underground Bellotti Ion Beam Facility—Status and perspectives. Front. Phys. 2023, 11, 1291113. [Google Scholar] [CrossRef]
- Rapagnani, D.; Ananna, C.; Di Leva, A.; Imbriani, G.; Junker, M.; Pignatari, M.; Best, A. Shades. In Proceedings of the EPJ Web of Conferences, Porto, Portugal, 12–16 September 2022; EDP Sciences: Ulis, France, 2022; Volume 260. [Google Scholar]
- Boeltzig, A.; Best, A.; Imbriani, G.; Junker, M.; Aliotta, M.; Bemmerer, D.; Broggini, C.; Bruno, C.; Buompane, R.; Caciolli, A.; et al. Improved background suppression for radiative capture reactions at LUNA with HPGe and BGO detectors. J. Phys. G Nucl. Part. Phys. 2018, 45, 025203. [Google Scholar] [CrossRef]
- Adsley, P.; Battino, U.; Best, A.; Caciolli, A.; Guglielmetti, A.; Imbriani, G.; Jayatissa, H.; La Cognata, M.; Lamia, L.; Masha, E.; et al. Re-evaluation of the 22Ne (α, γ) 26Mg and 22Ne (α, n) 25Mg reaction rates. arXiv 2020, arXiv:2005.14482. [Google Scholar]
- Talwar, R.; Adachi, T.; Berg, G.; Bin, L.; Bisterzo, S.; Couder, M.; DeBoer, R.; Fang, X.; Fujita, H.; Fujita, Y.; et al. Probing astrophysically important states in the 26Mg nucleus to study neutron sources for the s process. Phys. Rev. C 2016, 93, 055803. [Google Scholar] [CrossRef]
- Longland, R.; Iliadis, C.; Karakas, A.I. Reaction rates for the s-process neutron source 22Ne + α. Phys. Rev. C Nucl. Phys. 2012, 85, 065809. [Google Scholar] [CrossRef]
- Lotay, G.; Doherty, D.; Seweryniak, D.; Almaraz-Calderon, S.; Carpenter, M.; Chiara, C.; David, H.; Hoffman, C.; Janssens, R.; Kankainen, A.; et al. Identification of γ-decaying resonant states in 26Mg and their importance for the astrophysical s process. Eur. Phys. J. A 2019, 55, 109. [Google Scholar] [CrossRef]
(keV) | (keV) | (eV) | Events/h | Run-Time (h) | |
---|---|---|---|---|---|
11,319.5 | 14,033 | 120 | |||
11,171 | 1 | 0.034 | 960 |
(keV) | (keV) | Branching Ratio | |
---|---|---|---|
7061 | 4260 | ||
1808.74 | 9512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercogliano, D.; Best, A.; Rapagnani, D. The New Deep-Underground Direct Measurement of 22Ne(α, γ)26Mg with EASγ: A Feasibility Study. Galaxies 2024, 12, 79. https://doi.org/10.3390/galaxies12060079
Mercogliano D, Best A, Rapagnani D. The New Deep-Underground Direct Measurement of 22Ne(α, γ)26Mg with EASγ: A Feasibility Study. Galaxies. 2024; 12(6):79. https://doi.org/10.3390/galaxies12060079
Chicago/Turabian StyleMercogliano, Daniela, Andreas Best, and David Rapagnani. 2024. "The New Deep-Underground Direct Measurement of 22Ne(α, γ)26Mg with EASγ: A Feasibility Study" Galaxies 12, no. 6: 79. https://doi.org/10.3390/galaxies12060079
APA StyleMercogliano, D., Best, A., & Rapagnani, D. (2024). The New Deep-Underground Direct Measurement of 22Ne(α, γ)26Mg with EASγ: A Feasibility Study. Galaxies, 12(6), 79. https://doi.org/10.3390/galaxies12060079