Fifty Years After the Discovery of the First Stellar-Mass Black Hole: A Review of Cyg X-1
Abstract
:1. Cyg X-1: The First-Ever Discovered Stellar-Mass Black Hole
2. Cyg X-1 as the Laboratory for Stellar Physics
2.1. Measure the Spin of the Black Hole in Cyg X-1
2.2. The Missing Links Between Cyg X-1 and Gravitational Wave Binaries
2.3. The Origin of the High BH Spin in Cyg X-1
2.4. Black Holes in the Mass Gap
3. Cyg X-1 as the Laboratory for Accretion Physics
3.1. The Persistently High Radiative Efficiency
3.2. The Accretion Geometry of Cyg X-1
3.3. Fast X-Ray Variability
4. Cyg X-1 as the Laboratory for High-Energy Plasma Physics
4.1. Optically Thin Pair Plasma
4.2. Optically Thick Plasma
5. Conclusions
Funding
Conflicts of Interest
1 | In this model, “cold electrons” refers to those with lower Lorentz factors than the bulk Lorentz factor of the jet. |
2 | A high density usually refers to values significantly higher than cm−3, which were previously assumed in disk models. For stellar-mass BH accretion disks, high density would range between cm−3, while for supermassive BH accretion disks, it usually falls between cm−3. |
References
- Bolton, C.T. Identification of Cygnus X-1 with HDE 226868. Nature 1972, 235, 271–273. [Google Scholar] [CrossRef]
- Webster, B.L.; Murdin, P. Cygnus X-1-a Spectroscopic Binary with a Heavy Companion ? Nature 1972, 235, 37–38. [Google Scholar] [CrossRef]
- Bowyer, S.; Byram, E.T.; Chubb, T.A.; Friedman, H. Cosmic X-ray Sources. Science 1965, 147, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Hawking, S. A Brief History of Time; Bantam Books: New York, NY, USA, 1998. [Google Scholar]
- Orosz, J.A.; McClintock, J.E.; Aufdenberg, J.P.; Remillard, R.A.; Reid, M.J.; Narayan, R.; Gou, L. The Mass of the Black Hole in Cygnus X-1. Astrophys. J. 2011, 742, 84. [Google Scholar] [CrossRef]
- Miller-Jones, J.C.A.; Bahramian, A.; Orosz, J.A.; Mandel, I.; Gou, L.; Maccarone, T.J.; Neijssel, C.J.; Zhao, X.; Ziółkowski, J.; Reid, M.J.; et al. Cygnus X-1 contains a 21-solar mass black hole—Implications for massive star winds. Science 2021, 371, 1046–1049. [Google Scholar] [CrossRef]
- Janssens, S.; Shenar, T.; Degenaar, N.; Bodensteiner, J.; Sana, H.; Audenaert, J.; Frost, A.J. MWC 656 is unlikely to contain a black hole. Astron. Astrophys. 2023, 677, L9. [Google Scholar] [CrossRef]
- Van den Heuvel, E.P.J. High-Mass X-ray Binaries: Progenitors of double compact objects. Proc. Int. Astron. Union 2018, 14, 1–13. [Google Scholar] [CrossRef]
- Reynolds, C.S. Observing black holes spin. Nat. Astron. 2019, 3, 41–47. [Google Scholar] [CrossRef]
- Fabian, A.C.; Rees, M.J.; Stella, L.; White, N.E. X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc. 1989, 238, 729–736. [Google Scholar] [CrossRef]
- Reynolds, C.S. Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy. Space Sci. Rev. 2014, 183, 277–294. [Google Scholar] [CrossRef]
- Zhang, S.N.; Cui, W.; Chen, W. Black Hole Spin in X-Ray Binaries: Observational Consequences. Astrophys. J. Lett. 1997, 482, L155–L158. [Google Scholar] [CrossRef]
- McClintock, J.E.; Narayan, R.; Steiner, J.F. Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets. Space Sci. Rev. 2014, 183, 295–322. [Google Scholar] [CrossRef]
- Gou, L.; McClintock, J.E.; Remillard, R.A.; Steiner, J.F.; Reid, M.J.; Orosz, J.A.; Narayan, R.; Hanke, M.; García, J. Confirmation via the Continuum-fitting Method that the Spin of the Black Hole in Cygnus X-1 Is Extreme. Astrophys. J. 2014, 790, 29. [Google Scholar] [CrossRef]
- Kawano, T.; Done, C.; Yamada, S.; Takahashi, H.; Axelsson, M.; Fukazawa, Y. Black hole spin of Cygnus X-1 determined from the softest state ever observed. Publ. Astron. Soc. Jpn. 2017, 69, 36. [Google Scholar] [CrossRef]
- Zhao, X.; Gou, L.; Dong, Y.; Zheng, X.; Steiner, J.F.; Miller-Jones, J.C.A.; Bahramian, A.; Orosz, J.A.; Feng, Y. Re-estimating the Spin Parameter of the Black Hole in Cygnus X-1. Astrophys. J. 2021, 908, 117. [Google Scholar] [CrossRef]
- Kushwaha, A.; Agrawal, V.K.; Nandi, A. AstroSat and MAXI view of Cygnus X-1: Signature of an ’extreme’ soft nature. Mon. Not. R. Astron. Soc. 2021, 507, 2602–2613. [Google Scholar] [CrossRef]
- Fabian, A.C.; Wilkins, D.R.; Miller, J.M.; Reis, R.C.; Reynolds, C.S.; Cackett, E.M.; Nowak, M.A.; Pooley, G.G.; Pottschmidt, K.; Sanders, J.S.; et al. On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra. Mon. Not. R. Astron. Soc. 2012, 424, 217–223. [Google Scholar] [CrossRef]
- Tomsick, J.A.; Nowak, M.A.; Parker, M.; Miller, J.M.; Fabian, A.C.; Harrison, F.A.; Bachetti, M.; Barret, D.; Boggs, S.E.; Christensen, F.E.; et al. The Reflection Component from Cygnus X-1 in the Soft State Measured by NuSTAR and Suzaku. Astrophys. J. 2014, 780, 78. [Google Scholar] [CrossRef]
- Parker, M.L.; Tomsick, J.A.; Miller, J.M.; Yamaoka, K.; Lohfink, A.; Nowak, M.; Fabian, A.C.; Alston, W.N.; Boggs, S.E.; Christensen, F.E.; et al. NuSTAR and Suzaku Observations of the Hard State in Cygnus X-1: Locating the Inner Accretion Disk. Astrophys. J. 2015, 808, 9. [Google Scholar] [CrossRef]
- Duro, R.; Dauser, T.; Grinberg, V.; Miškovičová, I.; Rodriguez, J.; Tomsick, J.; Hanke, M.; Pottschmidt, K.; Nowak, M.A.; Kreykenbohm, S.; et al. Revealing the broad iron Kα line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations. Astron. Astrophys. 2016, 589, A14. [Google Scholar] [CrossRef]
- Walton, D.J.; Tomsick, J.A.; Madsen, K.K.; Grinberg, V.; Barret, D.; Boggs, S.E.; Christensen, F.E.; Clavel, M.; Craig, W.W.; Fabian, A.C.; et al. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk. Astrophys. J. 2016, 826, 87. [Google Scholar] [CrossRef]
- Krawczynski, H.; Beheshtipour, B. New Constraints on the Spin of the Black Hole Cygnus X-1 and the Physical Properties of its Accretion Disk Corona. Astrophys. J. 2022, 934, 4. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Properties of the Binary Black Hole Merger GW150914. Phys. Rev. Lett. 2016, 116, 241102. [Google Scholar] [CrossRef] [PubMed]
- Belczynski, K.; Klencki, J.; Fields, C.E.; Olejak, A.; Berti, E.; Meynet, G.; Fryer, C.L.; Holz, D.E.; O’Shaughnessy, R.; Brown, D.A.; et al. Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astron. Astrophys. 2020, 636, A104. [Google Scholar] [CrossRef]
- Fishbach, M.; Kalogera, V. Apples and Oranges: Comparing Black Holes in X-Ray Binaries and Gravitational-wave Sources. Astrophys. J. Lett. 2022, 929, L26. [Google Scholar] [CrossRef]
- Moreno Méndez, E. The need for hypercritical accretion in massive black hole binaries with large Kerr parameters. Mon. Not. R. Astron. Soc. 2011, 413, 183–189. [Google Scholar] [CrossRef]
- Russell, D.M.; Fender, R.P.; Gallo, E.; Kaiser, C.R. The jet-powered optical nebula of Cygnus X-1. Mon. Not. R. Astron. Soc. 2007, 376, 1341–1349. [Google Scholar] [CrossRef]
- Zdziarski, A.A.; Chand, S.; Banerjee, S.; Szanecki, M.; Janiuk, A.; Lubinski, P.; Niedzwiecki, A.; Dewangan, G.; Misra, R. What Is the Black Hole Spin in Cyg X-1? arXiv 2024, arXiv:2402.12325. [Google Scholar] [CrossRef]
- Petrucci, P.O.; Gronkiewicz, D.; Rozanska, A.; Belmont, R.; Bianchi, S.; Czerny, B.; Matt, G.; Malzac, J.; Middei, R.; De Rosa, A.; et al. Radiation spectra of warm and optically thick coronae in AGNs. Astron. Astrophys. 2020, 634, A85. [Google Scholar] [CrossRef]
- Gronkiewicz, D.; Różańska, A.; Petrucci, P.O.; Belmont, R. Thermal instability as a constraint for warm X-ray coronas in active galactic nuclei. Astron. Astrophys. 2023, 675, A198. [Google Scholar] [CrossRef]
- Neijssel, C.J.; Vinciguerra, S.; Vigna-Gómez, A.; Hirai, R.; Miller-Jones, J.C.A.; Bahramian, A.; Maccarone, T.J.; Mandel, I. Wind Mass-loss Rates of Stripped Stars Inferred from Cygnus X-1. Astrophys. J. 2021, 908, 118. [Google Scholar] [CrossRef]
- Belczynski, K.; Bulik, T.; Fryer, C.L. High Mass X-ray Binaries: Future Evolution and Fate. arXiv 2012, arXiv:1208.2422. [Google Scholar] [CrossRef]
- Gallegos-Garcia, M.; Fishbach, M.; Kalogera, V.; L Berry, C.P.; Doctor, Z. Do High-spin High-mass X-Ray Binaries Contribute to the Population of Merging Binary Black Holes? Astrophys. J. Lett. 2022, 938, L19. [Google Scholar] [CrossRef]
- Qin, Y.; Marchant, P.; Fragos, T.; Meynet, G.; Kalogera, V. On the Origin of Black Hole Spin in High-mass X-Ray Binaries. Astrophys. J. Lett. 2019, 870, L18. [Google Scholar] [CrossRef]
- Shimanskii, V.V.; Karitskaya, E.A.; Bochkarev, N.G.; Galazutdinov, G.A.; Lyuty, V.M.; Shimanskaya, N.N. Analysis of optical spectra of V1357 Cyg≡Cyg X-1. Astron. Rep. 2012, 56, 741–760. [Google Scholar] [CrossRef]
- Batta, A.; Ramirez-Ruiz, E.; Fryer, C. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries. Astrophys. J. Lett. 2017, 846, L15. [Google Scholar] [CrossRef]
- Schrøder, S.L.; Batta, A.; Ramirez-Ruiz, E. Black Hole Formation in Fallback Supernova and the Spins of LIGO Sources. Astrophys. J. Lett. 2018, 862, L3. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3. Phys. Rev. X 2023, 13, 011048. [Google Scholar] [CrossRef]
- Liotine, C.; Zevin, M.; Berry, C.P.L.; Doctor, Z.; Kalogera, V. The Missing Link between Black Holes in High-mass X-Ray Binaries and Gravitational-wave Sources: Observational Selection Effects. Astrophys. J. 2023, 946, 4. [Google Scholar] [CrossRef]
- Vink, J.S. Mass loss and the evolution of massive stars. New Astron. Rev. 2008, 52, 419–422. [Google Scholar] [CrossRef]
- Sukhbold, T.; Ertl, T.; Woosley, S.E.; Brown, J.M.; Janka, H.T. Core-collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions. Astrophys. J. 2016, 821, 38. [Google Scholar] [CrossRef]
- Wyrzykowski, Ł.; Mandel, I. Constraining the masses of microlensing black holes and the mass gap with Gaia DR2. Astron. Astrophys. 2020, 636, A20. [Google Scholar] [CrossRef]
- Lam, C.Y.; Lu, J.R.; Udalski, A.; Bond, I.; Bennett, D.P.; Skowron, J.; Mróz, P.; Poleski, R.; Sumi, T.; Szymański, M.K.; et al. An Isolated Mass-gap Black Hole or Neutron Star Detected with Astrometric Microlensing. Astrophys. J. Lett. 2022, 933, L23. [Google Scholar] [CrossRef]
- Lam, C.Y.; Lu, J.R. A Reanalysis of the Isolated Black Hole Candidate OGLE-2011-BLG-0462/MOA-2011-BLG-191. Astrophys. J. 2023, 955, 116. [Google Scholar] [CrossRef]
- Kaczmarek, Z.; McGill, P.; Perkins, S.E.; Dawson, W.A.; Huston, M.; Ho, M.F.; Abrams, N.S.; Lu, J.R. On Finding Black Holes in Photometric Microlensing Surveys. arXiv 2024, arXiv:2410.14098. [Google Scholar] [CrossRef]
- Hurley, J.R.; Pols, O.R.; Tout, C.A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc. 2000, 315, 543–569. [Google Scholar] [CrossRef]
- Belczynski, K.; Taam, R.E.; Kalogera, V.; Rasio, F.A.; Bulik, T. On the Rarity of Double Black Hole Binaries: Consequences for Gravitational Wave Detection. Astrophys. J. 2007, 662, 504–511. [Google Scholar] [CrossRef]
- Belczynski, K.; Dominik, M.; Bulik, T.; O’Shaughnessy, R.; Fryer, C.; Holz, D.E. The Effect of Metallicity on the Detection Prospects for Gravitational Waves. Astrophys. J. Lett. 2010, 715, L138–L141. [Google Scholar] [CrossRef]
- Gaia Collaboration; Panuzzo, P.; Mazeh, T.; Arenou, F.; Holl, B.; Caffau, E.; Jorissen, A.; Babusiaux, C.; Gavras, P.; Sahlmann, J.; et al. Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry. Astron. Astrophys. 2024, 686, L2. [Google Scholar] [CrossRef]
- Tananbaum, H.; Gursky, H.; Kellogg, E.; Giacconi, R.; Jones, C. Observation of a Correlated X-Ray Transition in Cygnus X-1. Astrophys. J. Lett. 1972, 177, L5. [Google Scholar] [CrossRef]
- Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M.A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G.L.; Hanke, M.; et al. Long term variability of Cygnus X-1. V. State definitions with all sky monitors. Astron. Astrophys. 2013, 554, A88. [Google Scholar] [CrossRef]
- Tomsick, J.A.; Parker, M.L.; García, J.A.; Yamaoka, K.; Barret, D.; Chiu, J.L.; Clavel, M.; Fabian, A.; Fürst, F.; Gandhi, P.; et al. Alternative Explanations for Extreme Supersolar Iron Abundances Inferred from the Energy Spectrum of Cygnus X-1. Astrophys. J. 2018, 855, 3. [Google Scholar] [CrossRef]
- König, O.; Mastroserio, G.; Dauser, T.; Méndez, M.; Wang, J.; García, J.A.; Steiner, J.F.; Pottschmidt, K.; Ballhausen, R.; Connors, R.M.; et al. Long term variability of Cygnus X-1. VIII. A spectral-timing look at low energies with NICER. Astron. Astrophys. 2024, 687, A284. [Google Scholar] [CrossRef]
- Kong, A.K.H.; McClintock, J.E.; Garcia, M.R.; Murray, S.S.; Barret, D. The X-Ray Spectra of Black Hole X-Ray Novae in Quiescence as Measured by Chandra. Astrophys. J. 2002, 570, 277–286. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef]
- Plant, D.S.; Fender, R.P.; Ponti, G.; Muñoz-Darias, T.; Coriat, M. The truncated and evolving inner accretion disc of the black hole GX 339-4. Astron. Astrophys. 2015, 573, A120. [Google Scholar] [CrossRef]
- García, J.A.; Steiner, J.F.; McClintock, J.E.; Remillard, R.A.; Grinberg, V.; Dauser, T. X-Ray Reflection Spectroscopy of the Black Hole GX 339–4: Exploring the Hard State with Unprecedented Sensitivity. Astrophys. J. 2015, 813, 84. [Google Scholar] [CrossRef]
- Xrism Collaboration; Audard, M.; Awaki, H.; Ballhausen, R.; Bamba, A.; Behar, E.; Boissay-Malaquin, R.; Brenneman, L.; Brown, G.V.; Corrales, L.; et al. XRISM Spectroscopy of the Fe Kα Emission Line in the Seyfert Active Galactic Nucleus NGC 4151 Reveals the Disk, Broad-line Region, and Torus. Astrophys. J. Lett. 2024, 973, L25. [Google Scholar] [CrossRef]
- XRISM Collaboration. The XRISM/Resolve view of the Fe K region of Cyg X-3. arXiv 2024, arXiv:2411.00597. [Google Scholar] [CrossRef]
- Thorne, K.S.; Price, R.H. Cygnus X-1: An interpretation of the spectrum and its variability. Astrophys. J. Lett. 1975, 195, L101–L105. [Google Scholar] [CrossRef]
- Sunyaev, R.A.; Truemper, J. Hard X-ray spectrum of CYG X-1. Nature 1979, 279, 506–508. [Google Scholar] [CrossRef]
- Fabian, A.C.; Zoghbi, A.; Ross, R.R.; Uttley, P.; Gallo, L.C.; Brandt, W.N.; Blustin, A.J.; Boller, T.; Caballero-Garcia, M.D.; Larsson, J.; et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 2009, 459, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Kara, E.; Steiner, J.F.; Fabian, A.C.; Cackett, E.M.; Uttley, P.; Remillard, R.A.; Gendreau, K.C.; Arzoumanian, Z.; Altamirano, D.; Eikenberry, S.; et al. The corona contracts in a black-hole transient. Nature 2019, 565, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.C.; Miller, J.M.; Reynolds, M.T.; Fabian, A.C.; Walton, D.J.; Cackett, E.; Steiner, J.F. Evidence of Light-bending Effects and Its Implication for Spectral State Transitions. Astrophys. J. 2013, 763, 48. [Google Scholar] [CrossRef]
- Chartas, G.; Rhea, C.; Kochanek, C.; Dai, X.; Morgan, C.; Blackburne, J.; Chen, B.; Mosquera, A.; MacLeod, C. Gravitational lensing size scales for quasars. Astron. Nachrichten 2016, 337, 356. [Google Scholar] [CrossRef]
- Wilkins, D.R.; Fabian, A.C. Understanding X-ray reflection emissivity profiles in AGN: Locating the X-ray source. Mon. Not. R. Astron. Soc. 2012, 424, 1284–1296. [Google Scholar] [CrossRef]
- Henri, G.; Petrucci, P.O. Anisotropic illumination of AGN’s accretion disk by a non thermal source. I. General theory and application to the Newtonian geometry. Astron. Astrophys. 1997, 326, 87–98. [Google Scholar] [CrossRef]
- Miniutti, G.; Fabian, A.C.; Goyder, R.; Lasenby, A.N. The lack of variability of the iron line in MCG-6-30-15: General relativistic effects. Mon. Not. R. Astron. Soc. 2003, 344, L22–L26. [Google Scholar] [CrossRef]
- Markoff, S.; Nowak, M.A.; Wilms, J. Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? Astrophys. J. 2005, 635, 1203–1216. [Google Scholar] [CrossRef]
- Gonzalez, A.G.; Wilkins, D.R.; Gallo, L.C. Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles. Mon. Not. R. Astron. Soc. 2017, 472, 1932–1945. [Google Scholar] [CrossRef]
- Galeev, A.A.; Rosner, R.; Vaiana, G.S. Structured coronae of accretion disks. Astrophys. J. 1979, 229, 318–326. [Google Scholar] [CrossRef]
- Stern, B.E.; Poutanen, J.; Svensson, R.; Sikora, M.; Begelman, M.C. On the Geometry of the X-Ray–Emitting Region in Seyfert Galaxies. Astrophys. J. Lett. 1995, 449, L13. [Google Scholar] [CrossRef]
- Eardley, D.M.; Lightman, A.P.; Shapiro, S.L. Cygnus X-1: A two-temperature accretion disk model which explains the observed hard X-ray spectrum. Astrophys. J. Lett. 1975, 199, L153–L155. [Google Scholar] [CrossRef]
- Krawczynski, H.; Muleri, F.; Dovčiak, M.; Veledina, A.; Rodriguez Cavero, N.; Svoboda, J.; Ingram, A.; Matt, G.; Garcia, J.A.; Loktev, V.; et al. Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1. Science 2022, 378, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.; Fender, R.; Kaiser, C.; Russell, D.; Morganti, R.; Oosterloo, T.; Heinz, S. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 2005, 436, 819–821. [Google Scholar] [CrossRef]
- Poutanen, J.; Veledina, A.; Beloborodov, A.M. Polarized X-Rays from Windy Accretion in Cygnus X-1. Astrophys. J. Lett. 2023, 949, L10. [Google Scholar] [CrossRef]
- Beloborodov, A.M. Electron-positron outflows from gamma-ray emitting accretion discs. Mon. Not. R. Astron. Soc. 1999, 305, 181–189. [Google Scholar] [CrossRef]
- Dauser, T.; García, J.; Wilms, J. Relativistic reflection: Review and recent developments in modeling. Astron. Nachrichten 2016, 337, 362. [Google Scholar] [CrossRef]
- You, B.; Tuo, Y.; Li, C.; Wang, W.; Zhang, S.N.; Zhang, S.; Ge, M.; Luo, C.; Liu, B.; Yuan, W.; et al. Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070. Nat. Commun. 2021, 12, 1025. [Google Scholar] [CrossRef]
- Liu, B.F.; Mineshige, S.; Shibata, K. A Simple Model for a Magnetic Reconnection-heated Corona. Astrophys. J. Lett. 2002, 572, L173–L176. [Google Scholar] [CrossRef]
- Miller, K.A.; Stone, J.M. The Formation and Structure of a Strongly Magnetized Corona above a Weakly Magnetized Accretion Disk. Astrophys. J. 2000, 534, 398–419. [Google Scholar] [CrossRef]
- Dexter, J.; Begelman, M.C. A relativistic outflow model of the X-ray polarization in Cyg X-1. Mon. Not. R. Astron. Soc. 2024, 528, L157–L160. [Google Scholar] [CrossRef]
- Begelman, M.C.; Sikora, M. Inverse Compton Scattering of Ambient Radiation by a Cold Relativistic Jet: A Source of Beamed, Polarized X-Ray and Optical Observations of X-Ray–selected BL Lacertae Objects. Astrophys. J. 1987, 322, 650. [Google Scholar] [CrossRef]
- Rodriguez, J.; Grinberg, V.; Laurent, P.; Cadolle Bel, M.; Pottschmidt, K.; Pooley, G.; Bodaghee, A.; Wilms, J.; Gouiffès, C. Spectral State Dependence of the 0.4-2 MeV Polarized Emission in Cygnus X-1 Seen with INTEGRAL/IBIS, and Links with the AMI Radio Data. Astrophys. J. 2015, 807, 17. [Google Scholar] [CrossRef]
- Russell, D.M.; Shahbaz, T. The multiwavelength polarization of Cygnus X-1. Mon. Not. R. Astron. Soc. 2014, 438, 2083–2096. [Google Scholar] [CrossRef]
- Jourdain, E.; Roques, J.P.; Chauvin, M.; Clark, D.J. Separation of Two Contributions to the High Energy Emission of Cygnus X-1: Polarization Measurements with INTEGRAL SPI. Astrophys. J. 2012, 761, 27. [Google Scholar] [CrossRef]
- Fender, R.P.; Stirling, A.M.; Spencer, R.E.; Brown, I.; Pooley, G.G.; Muxlow, T.W.B.; Miller-Jones, J.C.A. A transient relativistic radio jet from Cygnus X-1. Mon. Not. R. Astron. Soc. 2006, 369, 603–607. [Google Scholar] [CrossRef]
- Chattopadhyay, T.; Kumar, A.; Rao, A.R.; Bhargava, Y.; Vadawale, S.V.; Ratheesh, A.; Dewangan, G.; Bhattacharya, D.; Mithun, N.P.S.; Bhalerao, V. High Hard X-Ray Polarization in Cygnus X-1 Confined to the Intermediate Hard State: Evidence for a Variable Jet Component. Astrophys. J. Lett. 2024, 960, L2. [Google Scholar] [CrossRef]
- Bouchet, T.; Rodriguez, J.; Cangemi, F.; Thalhammer, P.; Laurent, P.; Grinberg, V.; Wilms, J.; Pottschmidt, K. INTEGRAL/IBIS polarization detection in the hard and soft intermediate states of Swift J1727.8–1613. Astron. Astrophys. 2024, 688, L5. [Google Scholar] [CrossRef]
- Steiner, J.F.; Nathan, E.; Hu, K.; Krawczynski, H.; Dovčiak, M.; Veledina, A.; Muleri, F.; Svoboda, J.; Alabarta, K.; Parra, M.; et al. An IXPE-led X-Ray Spectropolarimetric Campaign on the Soft State of Cygnus X-1: X-Ray Polarimetric Evidence for Strong Gravitational Lensing. Astrophys. J. Lett. 2024, 969, L30. [Google Scholar] [CrossRef]
- Jana, A.; Chang, H.K. X-ray polarization changes with the state transition in Cygnus X-1. Mon. Not. R. Astron. Soc. 2024, 527, 10837–10843. [Google Scholar] [CrossRef]
- Ratheesh, A.; Dovčiak, M.; Krawczynski, H.; Podgorný, J.; Marra, L.; Veledina, A.; Suleimanov, V.F.; Rodriguez Cavero, N.; Steiner, J.F.; Svoboda, J.; et al. X-Ray Polarization of the Black Hole X-Ray Binary 4U 1630–47 Challenges the Standard Thin Accretion Disk Scenario. Astrophys. J. 2024, 964, 77. [Google Scholar] [CrossRef]
- Rodriguez Cavero, N.; Marra, L.; Krawczynski, H.; Dovčiak, M.; Bianchi, S.; Steiner, J.F.; Svoboda, J.; Capitanio, F.; Matt, G.; Negro, M.; et al. The First X-Ray Polarization Observation of the Black Hole X-Ray Binary 4U 1630-47 in the Steep Power-law State. Astrophys. J. Lett. 2023, 958, L8. [Google Scholar] [CrossRef]
- Podgorný, J.; Marra, L.; Muleri, F.; Rodriguez Cavero, N.; Ratheesh, A.; Dovčiak, M.; Mikušincová, R.; Brigitte, M.; Steiner, J.F.; Veledina, A.; et al. The first X-ray polarimetric observation of the black hole binary LMC X-1. Mon. Not. R. Astron. Soc. 2023, 526, 5964–5975. [Google Scholar] [CrossRef]
- Marra, L.; Brigitte, M.; Rodriguez Cavero, N.; Chun, S.; Steiner, J.F.; Dovčiak, M.; Nowak, M.; Bianchi, S.; Capitanio, F.; Ingram, A.; et al. IXPE observation confirms a high spin in the accreting black hole 4U 1957+115. Astron. Astrophys. 2024, 684, A95. [Google Scholar] [CrossRef]
- Svoboda, J.; Dovčiak, M.; Steiner, J.F.; Kaaret, P.; Podgorný, J.; Poutanen, J.; Veledina, A.; Muleri, F.; Taverna, R.; Krawczynski, H.; et al. Dramatic Drop in the X-Ray Polarization of Swift J1727.8–1613 in the Soft Spectral State. Astrophys. J. Lett. 2024, 966, L35. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Radiative Transfer; Dover Publication: Mineola, NY, USA, 1960. [Google Scholar]
- Straub, O.; Bursa, M.; Sądowski, A.; Steiner, J.F.; Abramowicz, M.A.; Kluźniak, W.; McClintock, J.E.; Narayan, R.; Remillard, R.A. Testing slim-disk models on the thermal spectra of LMC X-3. Astron. Astrophys. 2011, 533, A67. [Google Scholar] [CrossRef]
- Fabian, A.C.; Buisson, D.J.; Kosec, P.; Reynolds, C.S.; Wilkins, D.R.; Tomsick, J.A.; Walton, D.J.; Gandhi, P.; Altamirano, D.; Arzoumanian, Z.; et al. The soft state of the black hole transient source MAXI J1820+070: Emission from the edge of the plunge region? Mon. Not. R. Astron. Soc. 2020, 493, 5389–5396. [Google Scholar] [CrossRef]
- Nowak, M.A. Are there three peaks in the power spectra of GX 339-4 and Cyg X-1? Mon. Not. R. Astron. Soc. 2000, 318, 361–367. [Google Scholar] [CrossRef]
- Pottschmidt, K.; Wilms, J.; Nowak, M.A.; Pooley, G.G.; Gleissner, T.; Heindl, W.A.; Smith, D.M.; Remillard, R.; Staubert, R. Long term variability of Cygnus X-1. I. X-ray spectral-temporal correlations in the hard state. Astron. Astrophys. 2003, 407, 1039–1058. [Google Scholar] [CrossRef]
- Axelsson, M.; Done, C. Breaking the spectral degeneracies in black hole binaries with fast timing data: The hard state of Cygnus X-1. Mon. Not. R. Astron. Soc. 2018, 480, 751–758. [Google Scholar] [CrossRef]
- Uttley, P.; McHardy, I.M.; Vaughan, S. Non-linear X-ray variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 2005, 359, 345–362. [Google Scholar] [CrossRef]
- Gierliński, M.; Zdziarski, A.A. Discovery of powerful millisecond flares from Cygnus X-1. Mon. Not. R. Astron. Soc. 2003, 343, L84–L88. [Google Scholar] [CrossRef]
- Grinberg, V.; Pottschmidt, K.; Böck, M.; Schmid, C.; Nowak, M.A.; Uttley, P.; Tomsick, J.A.; Rodriguez, J.; Hell, N.; Markowitz, A.; et al. Long term variability of Cygnus X-1. VI. Energy-resolved X-ray variability 1999-2011. Astron. Astrophys. 2014, 565, A1. [Google Scholar] [CrossRef]
- Zhou, M.; Grinberg, V.; Bu, Q.C.; Santangelo, A.; Cangemi, F.; Diez, C.M.; König, O.; Ji, L.; Nowak, M.A.; Pottschmidt, K.; et al. The spectral-timing analysis of Cygnus X-1 with Insight-HXMT. Astron. Astrophys. 2022, 666, A172. [Google Scholar] [CrossRef]
- Cui, W.; Heindl, W.A.; Rothschild, R.E.; Zhang, S.N.; Jahoda, K.; Focke, W. Rossi X-Ray Timing Explorer Observation of Cygnus X-1 in Its High State. Astrophys. J. Lett. 1997, 474, L57–L60. [Google Scholar] [CrossRef]
- Li, Y.; Yan, Z.; Gao, C.; Yu, W. X-ray spectral and timing evolution during the 2018 outburst of MAXI J1820+070. arXiv 2024, arXiv:2407.08421. [Google Scholar] [CrossRef]
- Uttley, P.; McHardy, I.M. The flux-dependent amplitude of broadband noise variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 2001, 323, L26–L30. [Google Scholar] [CrossRef]
- Gaskell, C.M. Lognormal X-Ray Flux Variations in an Extreme Narrow-Line Seyfert 1 Galaxy. Astrophys. J. Lett. 2004, 612, L21–L24. [Google Scholar] [CrossRef]
- Gleissner, T.; Wilms, J.; Pottschmidt, K.; Uttley, P.; Nowak, M.A.; Staubert, R. Long term variability of Cyg X-1. II. The rms-flux relation. Astron. Astrophys. 2004, 414, 1091–1104. [Google Scholar] [CrossRef]
- Wilms, J.; Nowak, M.A.; Pottschmidt, K.; Pooley, G.G.; Fritz, S. Long term variability of Cygnus X-1. IV. Spectral evolution 1999–2004. Astron. Astrophys. 2006, 447, 245–261. [Google Scholar] [CrossRef]
- Lyubarskii, Y.E. Flicker noise in accretion discs. Mon. Not. R. Astron. Soc. 1997, 292, 679–685. [Google Scholar] [CrossRef]
- Arévalo, P.; Uttley, P. Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems. Mon. Not. R. Astron. Soc. 2006, 367, 801–814. [Google Scholar] [CrossRef]
- Mastroserio, G.; Ingram, A.; van der Klis, M. An X-ray reverberation mass measurement of Cygnus X-1. Mon. Not. R. Astron. Soc. 2019, 488, 348–361. [Google Scholar] [CrossRef]
- Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschmidt, K.; Hanke, M.; Böck, M. The causal connection between disc and power-law variability in hard state black hole X-ray binaries. Mon. Not. R. Astron. Soc. 2011, 414, L60–L64. [Google Scholar] [CrossRef]
- Wang, J.; Mastroserio, G.; Kara, E.; García, J.A.; Ingram, A.; Connors, R.; van der Klis, M.; Dauser, T.; Steiner, J.F.; Buisson, D.J.K.; et al. Disk, Corona, Jet Connection in the Intermediate State of MAXI J1820+070 Revealed by NICER Spectral-timing Analysis. Astrophys. J. Lett. 2021, 910, L3. [Google Scholar] [CrossRef]
- Goodman, J. Are gamma-ray bursts optically thick? Astrophys. J. Lett. 1986, 308, L47. [Google Scholar] [CrossRef]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley Publishing: Boston, MA, USA, 1990; Volume 69. [Google Scholar]
- Fabian, A.C.; Lohfink, A.; Kara, E.; Parker, M.L.; Vasudevan, R.; Reynolds, C.S. Properties of AGN coronae in the NuSTAR era. Mon. Not. R. Astron. Soc. 2015, 451, 4375–4383. [Google Scholar] [CrossRef]
- Guilbert, P.W.; Fabian, A.C.; Rees, M.J. Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 1983, 205, 593–603. [Google Scholar] [CrossRef]
- Svensson, R. Electron-Positron Pair Equilibria in Relativistic Plasmas. Astrophys. J. 1982, 258, 335. [Google Scholar] [CrossRef]
- Tazaki, F.; Ueda, Y.; Ishino, Y.; Eguchi, S.; Isobe, N.; Terashima, Y.; Mushotzky, R.F. Suzaku Observation of the Brightest Broad-line Radio Galaxy 4C 50.55 (IGR J21247+5058). Astrophys. J. 2010, 721, 1340–1347. [Google Scholar] [CrossRef]
- Kara, E.; García, J.A.; Lohfink, A.; Fabian, A.C.; Reynolds, C.S.; Tombesi, F.; Wilkins, D.R. The high-Eddington NLS1 Ark 564 has the coolest corona. Mon. Not. R. Astron. Soc. 2017, 468, 3489–3498. [Google Scholar] [CrossRef]
- Tortosa, A.; Marinucci, A.; Matt, G.; Bianchi, S.; La Franca, F.; Ballantyne, D.R.; Boorman, P.G.; Fabian, A.C.; Farrah, D.; Fuerst, F.; et al. Broad-band X-ray spectral analysis of the Seyfert 1 galaxy GRS 1734-292. Mon. Not. R. Astron. Soc. 2017, 466, 4193–4200. [Google Scholar] [CrossRef]
- Walton, D.J.; Brightman, M.; Risaliti, G.; Fabian, A.C.; Fürst, F.; Harrison, F.A.; Lohfink, A.; Matt, G.; Miniutti, G.; Parker, M.L.; et al. Disentangling the complex broad-band X-ray spectrum of IRAS 13197-1627 with NuSTAR, XMM-Newton and Suzaku. Mon. Not. R. Astron. Soc. 2018, 473, 4377–4391. [Google Scholar] [CrossRef]
- Xu, Y.; Harrison, F.A.; García, J.A.; Fabian, A.C.; Fürst, F.; Gandhi, P.; Grefenstette, B.W.; Madsen, K.K.; Miller, J.M.; Parker, M.L.; et al. Reflection Spectra of the Black Hole Binary Candidate MAXI J1535-571 in the Hard State Observed by NuSTAR. Astrophys. J. Lett. 2018, 852, L34. [Google Scholar] [CrossRef]
- Jiang, J.; Walton, D.J.; Fabian, A.C.; Parker, M.L. A relativistic disc reflection model for 1H0419-577: Multi-epoch spectral analysis with XMM-Newton and NuSTAR. Mon. Not. R. Astron. Soc. 2019, 483, 2958–2967. [Google Scholar] [CrossRef]
- Buisson, D.J.K.; Fabian, A.C.; Barret, D.; Fürst, F.; Gandhi, P.; García, J.A.; Kara, E.; Madsen, K.K.; Miller, J.M.; Parker, M.L.; et al. MAXI J1820+070 with NuSTAR I. An increase in variability frequency but a stable reflection spectrum: Coronal properties and implications for the inner disc in black hole binaries. Mon. Not. R. Astron. Soc. 2019, 490, 1350–1362. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, J.; Liu, H.; Bambi, C.; Reynolds, C.S.; Fabian, A.C.; Dauser, T.; Madsen, K.; Young, A.; Gallo, L.; et al. The Low Temperature Corona in ESO 51—G030 Revealed by NuSTAR and XMM-Newton. arXiv 2022, arXiv:2208.01452. [Google Scholar] [CrossRef]
- Fabian, A.C.; Lohfink, A.; Belmont, R.; Malzac, J.; Coppi, P. Properties of AGN coronae in the NuSTAR era—II. Hybrid plasma. Mon. Not. R. Astron. Soc. 2017, 467, 2566–2570. [Google Scholar] [CrossRef]
- Coppi, P.S. The Physics of Hybrid Thermal/Non-Thermal Plasmas. arXiv 1999, arXiv:astro-ph/9903158. [Google Scholar] [CrossRef]
- Nowak, M.A.; Hanke, M.; Trowbridge, S.N.; Markoff, S.B.; Wilms, J.; Pottschmidt, K.; Coppi, P.; Maitra, D.; Davis, J.E.; Tramper, F. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State. Astrophys. J. 2011, 728, 13. [Google Scholar] [CrossRef]
- Gierliński, M.; Zdziarski, A.A.; Poutanen, J.; Coppi, P.S.; Ebisawa, K.; Johnson, W.N. Radiation mechanisms and geometry of Cygnus X-1 in the soft state. Mon. Not. R. Astron. Soc. 1999, 309, 496–512. [Google Scholar] [CrossRef]
- Titarchuk, L. Generalized Comptonization Models and Application to the Recent High-Energy Observations. Astrophys. J. 1994, 434, 570. [Google Scholar] [CrossRef]
- Ling, J.C.; Mahoney, W.A.; Wheaton, W.A.; Jacobson, A.S. Long-Term Gamma-Ray Spectral Variability of Cygnus X-1. Astrophys. J. Lett. 1987, 321, L117. [Google Scholar] [CrossRef]
- Poutanen, J.; Coppi, P.S. Unification of Spectral States of Accreting Black Holes. In Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, Paris, France, 14–18 December 1998; p. 355. [Google Scholar]
- Tomsick, J.A.; Boggs, S.E.; Zoglauer, A.; Hartmann, D.; Ajello, M.; Burns, E.; Fryer, C.; Karwin, C.; Kierans, C.; Lowell, A.; et al. The Compton Spectrometer and Imager. arXiv 2023, arXiv:2308.12362. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Jiang, J.; Abdikamalov, A.B.; Bambi, C.; Reynolds, C.S. Black hole spin measurements based on a thin disc model with finite thickness - I. An example study of MCG-06-30-15. Mon. Not. R. Astron. Soc. 2022, 514, 3246–3259. [Google Scholar] [CrossRef]
- Kammoun, E.S.; Papadakis, I.E.; Dovčiak, M. A Hard Look at Thermal Reverberation and Optical/Ultraviolet Lags in NGC 5548. Astrophys. J. Lett. 2019, 879, L24. [Google Scholar] [CrossRef]
- Jiang, J.; Fabian, A.C.; Wang, J.; Walton, D.J.; García, J.A.; Parker, M.L.; Steiner, J.F.; Tomsick, J.A. High-density reflection spectroscopy: I. A case study of GX 339-4. Mon. Not. R. Astron. Soc. 2019, 484, 1972–1982. [Google Scholar] [CrossRef]
- Jiang, J.; Fabian, A.C.; Dauser, T.; Gallo, L.; García, J.A.; Kara, E.; Parker, M.L.; Tomsick, J.A.; Walton, D.J.; Reynolds, C.S. High Density Reflection Spectroscopy - II. The density of the inner black hole accretion disc in AGN. Mon. Not. R. Astron. Soc. 2019, 489, 3436–3455. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, J.; Zhang, Z.; Bambi, C.; Fabian, A.C.; García, J.A.; Ingram, A.; Kara, E.; Steiner, J.F.; Tomsick, J.A.; et al. High-density Reflection Spectroscopy of Black Hole X-Ray Binaries in the Hard State. Astrophys. J. 2023, 951, 145. [Google Scholar] [CrossRef]
- Ross, R.R.; Fabian, A.C. X-ray reflection in accreting stellar-mass black hole systems. Mon. Not. R. Astron. Soc. 2007, 381, 1697–1701. [Google Scholar] [CrossRef]
- Burgess, A.; Summers, H.P. The Effects of Electron and Radiation Density on Dielectronic Recombination. Astrophys. J. 1969, 157, 1007. [Google Scholar] [CrossRef]
- Summers, H.P. The ionization equilibrium of hydrogen-like to argon-like ions of elements. Mon. Not. R. Astron. Soc. 1974, 169, 663–680. [Google Scholar] [CrossRef]
- Ding, Y.; García, J.A.; Kallman, T.R.; Mendoza, C.; Bautista, M.; Harrison, F.A.; Tomsick, J.A.; Dong, J. Next Generation Accretion Disk Reflection Model: High-Density Plasma Effects. arXiv 2024, arXiv:2409.00253. [Google Scholar] [CrossRef]
- Jiang, J.; Buisson, D.J.K.; Dauser, T.; Fabian, A.C.; Fürst, F.; Gallo, L.C.; Harrison, F.A.; Parker, M.L.; Steiner, J.F.; Tomsick, J.A.; et al. A NuSTAR and Swift view of the hard state of MAXI J1813-095. Mon. Not. R. Astron. Soc. 2022, 514, 1952–1960. [Google Scholar] [CrossRef]
- Connors, R.M.T.; García, J.A.; Tomsick, J.; Mastroserio, G.; Grinberg, V.; Steiner, J.F.; Jiang, J.; Fabian, A.C.; Parker, M.L.; Harrison, F.; et al. The Long-stable Hard State of XTE J1752-223 and the Disk Truncation Dilemma. Astrophys. J. 2022, 935, 118. [Google Scholar] [CrossRef]
- Coughenour, B.M.; Tomsick, J.A.; Mastroserio, G.; Steiner, J.F.; Connors, R.M.T.; Jiang, J.; Hare, J.; Shaw, A.W.; Ludlam, R.M.; Fabian, A.C.; et al. Reflection and Timing Study of the Transient Black Hole X-Ray Binary MAXI J1803-298 with NuSTAR. Astrophys. J. 2023, 949, 70. [Google Scholar] [CrossRef]
Name | P (Days) | ||
---|---|---|---|
Cyg X-1 | 5.6 | ||
LMC X-1 | 3.9 | ||
LMC X-3 | 1.7 | ||
MWC 656 | ≈60 | ≈13 | |
M33 X-7 | 3.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J. Fifty Years After the Discovery of the First Stellar-Mass Black Hole: A Review of Cyg X-1. Galaxies 2024, 12, 80. https://doi.org/10.3390/galaxies12060080
Jiang J. Fifty Years After the Discovery of the First Stellar-Mass Black Hole: A Review of Cyg X-1. Galaxies. 2024; 12(6):80. https://doi.org/10.3390/galaxies12060080
Chicago/Turabian StyleJiang, Jiachen. 2024. "Fifty Years After the Discovery of the First Stellar-Mass Black Hole: A Review of Cyg X-1" Galaxies 12, no. 6: 80. https://doi.org/10.3390/galaxies12060080
APA StyleJiang, J. (2024). Fifty Years After the Discovery of the First Stellar-Mass Black Hole: A Review of Cyg X-1. Galaxies, 12(6), 80. https://doi.org/10.3390/galaxies12060080