Three-Dimensional Rogue Waves in Earth’s Ionosphere
Abstract
:1. Introduction
2. Plasma Model and Derivation of a 3D NLSE
3. MI IAWs and RWs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, M. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Elsevier: Amsterdam, The Netherlands, 2012; Volume 43. [Google Scholar]
- Grandian, M. Multi-Instrument and Modelling Studies of Ionospheres at Earth and Mars. Ph.D. Thesis, Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), Toulouse, France, November 2017. [Google Scholar]
- El-Labany, S.; Sabry, R.; El-Taibany, W.; Elghmaz, E. Propagation of three-dimensional ion-acoustic solitary waves in magnetized negative ion plasmas with nonthermal electrons. Phys. Plasmas 2010, 17, 042301. [Google Scholar] [CrossRef]
- Chowdhury, N.; Mannan, A.; Hasan, M.; Mamun, A. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas. Chaos 2017, 27, 093105. [Google Scholar] [CrossRef]
- Abdelwahed, H.; Sabry, R.; El-Rahman, A. On the positron superthermality and ionic masses contributions on the wave behaviour in collisional space plasma. Adv. Space Res. 2020, 66, 259. [Google Scholar] [CrossRef]
- Bacal, M.; Hamilton, G. H− and D− Production in Plasmas. Phys. Rev. Lett. 1979, 42, 1538. [Google Scholar] [CrossRef]
- Gottscho, R.A.; Gaebe, C.E. Negative Ion Kinetics in RF Glow Discharges. IEEE Trans. Plasma Sci. 1986, 14, 92. [Google Scholar] [CrossRef]
- Pedersen, A. Measurements of ion concentrations in the D-region of the ionosphere with a Gerdien condenser rocket probe. Tellus 1965, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Sabry, R.; Moslem, W.; Shukla, P.K. Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons. Phys. Plasmas 2009, 16, 032302. [Google Scholar] [CrossRef]
- Chaizy, P.; Reme, H.; Sauvaud, J.; d’Uston, C.; Lin, R.; Larson, D.; Mitchell, D.; Anderson, K.; Carlson, C.; Korth, A.; et al. Negative ions in the coma of comet Halley. Nature 1991, 349, 393. [Google Scholar] [CrossRef]
- Coates, A.; Crary, F.; Lewis, G.; Young, D.; Waite, J.; Sittler, E. Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Temerin, M.; Cerny, K.; Lotko, W.; Mozer, F. Observations of Double Layers and Solitary Waves in the Auroral Plasma. Phys. Rev. Lett. 1982, 48, 1175. [Google Scholar] [CrossRef]
- Michel, F.C. Theory of Neutron Star Magnetospheres; University of Chicago Press: Chicago, IL, USA, 1991. [Google Scholar]
- Panwar, A.; Ryu, C.; Bains, A. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma. Phys. Plasmas 2014, 21, 122105. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.; Mannan, A.; Hasan, M.; Mamun, A. Modulational instability, ion-acoustic envelope solitons, and rogue waves in four-component plasmas. Plasma Phys. Rep. 2019, 45, 459. [Google Scholar] [CrossRef]
- Michel, F.C. Theory of pulsar magnetospheres. Rev. Mod. Phys. 1982, 54. [Google Scholar] [CrossRef]
- Haque, M.; Mannan, A.; Mamun, A. The (3 + 1)-dimensional dust-acoustic waves in multi-components magneto-plasmas. Contrib. Plasma Phys. 2019, 59, e201900049. [Google Scholar] [CrossRef]
- Haque, M.N.; Mannan, A. Dynamics of ion-acoustic rogue waves in electron-positron-ion magneto-plasmas. Contrib. Plasma Phys. 2020, 61, e202000161. [Google Scholar]
- Marklund, M.; Shukla, P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 2006, 78, 591. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.; Yu, M.; Tsintsadze, N. Intense solitary laser pulse propagation in a plasma. Phys. Fluids 1984, 27, 327. [Google Scholar] [CrossRef]
- Shukla, P.; Rao, N.; Yu, M.; Tsintsadze, N. Relativistic nonlinear effects in plasmas. Phys. Rep. 1986, 138, 1. [Google Scholar] [CrossRef]
- Surko, C.; Murphy, T. Use of the positron as a plasma particle. Phys. Fluids B: Plasma Phys. 1990, 2, 1372. [Google Scholar] [CrossRef]
- Sabry, R.; Moslem, W.; Shukla, P.K.; Saleem, H. Cylindrical and spherical ion-acoustic envelope solitons in multicomponent plasmas with positrons. Phys. Rev. E 2009, 79, 056402. [Google Scholar] [CrossRef] [PubMed]
- Shalini, S.; Misra, A. Modulation of ion-acoustic waves in a nonextensive plasma with two-temperature electrons. Phys. Plasmas 2015, 22, 092124. [Google Scholar] [CrossRef] [Green Version]
- Sultana, S.; Kourakis, I. Electrostatic solitary waves in the presence of excess superthermal electrons: Modulational instability and envelope soliton modes. Plasma Phys. Control. Fusion 2011, 53, 045003. [Google Scholar] [CrossRef] [Green Version]
- Baluku, T.; Hellberg, M. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons. Phys. Plasmas 2012, 19, 012106. [Google Scholar] [CrossRef]
- Bains, A.; Tribeche, M.; Gill, T. Modulational instability of ion-acoustic waves in a plasma with aq-nonextensive electron velocity distribution. Phys. Plasmas 2011, 18, 022108. [Google Scholar] [CrossRef]
- Sabry, R.; Moslem, W.; Shukla, P. Three-dimensional ion-acoustic wave packet in magnetoplasmas with superthermal electrons. Plasma Phys. Control. Fusion 2012, 54, 035010. [Google Scholar] [CrossRef]
- El-Tantawy, S.; Wazwaz, A.; Rahman, A.U. Three-dimensional modulational instability of the electrostatic waves in e–p–i magnetoplasmas having superthermal particles. Phys. Plasmas 2017, 24, 022126. [Google Scholar] [CrossRef]
- El-Labany, S.K.; El-Taibany, W.F.; El-Bedwehy, N.A.; El-Shafeay, N.A. Modulation of the nonlinear ion acoustic waves in a weakly relativistic warm plasma with superthermally distributed electrons. Alfarama J. Basic Appl. Sci. 2020, 1, 99. [Google Scholar]
- Janssen, P.A. Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 2003, 33, 863. [Google Scholar] [CrossRef]
- Ganshin, A.; Efimov, V.; Kolmakov, G.; Mezhov-Deglin, L.; Clintock, P.V.M. Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 2008, 101, 065303. [Google Scholar] [CrossRef] [Green Version]
- Shats, M.; Punzmann, H.; Xia, H. Capillary Rogue Waves. Phys. Rev. Lett. 2010, 104, 104503. [Google Scholar] [CrossRef]
- Bludov, Y.V.; Konotop, V.; Akhmediev, N. Matter rogue waves. Phys. Rev. A 2009, 80, 033610. [Google Scholar] [CrossRef] [Green Version]
- Sabry, R.; Moslem, W.; Shukla, P. Freak waves in white dwarfs and magnetars. Phys. Plasmas 2012, 19, 122903. [Google Scholar] [CrossRef]
- Abdelwahed, H.; El-Shewy, E.; Zahran, M.; Elwakil, S. On the rogue wave propagation in ion pair superthermal plasma. Phys. Plasmas 2016, 23, 022102. [Google Scholar] [CrossRef]
- Ahmed, N.; Mannan, A.; Chowdhury, N.A.; Mamun, A.A. Electrostatic rogue waves in double pair plasmas. Chaos 2018, 28, 123107. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Rahman, M.H.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Ion-acoustic rogue waves in multi-ion plasmas. Commun. Theor. Phys. 2019, 71, 1017. [Google Scholar] [CrossRef] [Green Version]
- Khondaker, S.; Mannan, A.; Chowdhury, N.A.; Mamun, A.A. Rogue waves in multi-pair plasma medium. Contrib. Plasma Phys. 2019, 59, e201800125. [Google Scholar] [CrossRef] [Green Version]
- Jahan, S.; Haque, M.N.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Ion-acoustic rogue waves in double pair plasma having non-extensive particles. Universe 2021, 7, 63. [Google Scholar] [CrossRef]
- Rahman, M.H.; Chowdhury, N.A.; Mannan, A.; Rahman, M.; Mamun, A.A. Modulational instability, rogue waves, and envelope solitons in opposite polarity dusty plasmas. Chin. J. Phys. 2018, 56, 2061. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Rogue waves in space dusty plasmas. Phys. Plasmas 2017, 24, 113701. [Google Scholar] [CrossRef]
- Rajib, T.I.; Tamanna, N.K.; Chowdhury, N.A.; Mannan, A.; Sultana, S.; Mamun, A.A. Dust-ion-acoustic rogue waves in presence of non-extensive non-thermal electrons. Phys. Plasmas 2019, 26, 123701. [Google Scholar] [CrossRef]
- Jahan, S.; Mannan, A.; Chowdhury, N.A. Dust-acoustic rogue waves in four-component plasmas. Plasma Phys. Rep. 2020, 46, 90. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Dust-acoustic rogue waves in an electron-positron-ion-dust plasma medium. Galaxies 2021, 9, 31. [Google Scholar] [CrossRef]
- Sikta, J.N.; Chowdhury, N.A.; Mannan, A.; Sharmin, S.; Mamun, A.A. Electrostatic Dust-Acoustic Rogue Waves in an Electron Depleted Dusty Plasma. Plasma 2021, 4, 15. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 1968, 73, 2839. [Google Scholar] [CrossRef]
- Zaheer, S.; Murtaza, G.; Shah, H. Some electrostatic modes based on non-Maxwellian distribution functions. Phys. Plasmas 2004, 11, 2246. [Google Scholar] [CrossRef]
- Qureshi, M.; Shah, H.; Murtaza, G.; Schwartz, S.; Mahmood, F. Parallel propagating electromagnetic modes with the generalized (r, q) distribution function. Phys. Plasmas 2004, 11, 3819. [Google Scholar] [CrossRef]
- El-Taibany, W.; Taha, R. Variable-size dust grains with generalized (r, q) electrons in a dusty plasma. Contrib. Plasma Phys. 2019, 59, e201800072. [Google Scholar] [CrossRef]
- El-Bedwehy, N.; El-Taibany, W.F. Modulational instability of dust-ion acoustic waves in the presence of generalized (r, q) distributed electrons. Phys. Plasmas 2020, 27, 012107. [Google Scholar] [CrossRef]
- Guo, S.; Mei, L. Three-dimensional dust-ion-acoustic rogue waves in a magnetized dusty pair-ion plasma with nonthermal nonextensive electrons and opposite polarity dust grains. Phys. Plasmas 2014, 21, 082303. [Google Scholar] [CrossRef]
- Yahia, M.E.; Tolba, R.E.; Moslem, W.M. Super rogue wave catalysis in Titan’s ionosphere. Adv. Space Res. 2021, 67, 1412. [Google Scholar] [CrossRef]
- Peregrine, D.H. Water waves, nonlinear Schrödinger equations and their solutions. Anziam J. 1983, 25, 16. [Google Scholar] [CrossRef] [Green Version]
- Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J.M. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 2009, 80, 026601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelwahed, H.; Sabry, R. Modulated 3D electron-acoustic rogue waves in magnetized plasma with nonthermal electrons. Astrophys. Space Sci. 2017, 362, 92. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Taibany, W.F.; El-Bedwehy, N.A.; El-Shafeay, N.A.; El-Labany, S.K. Three-Dimensional Rogue Waves in Earth’s Ionosphere. Galaxies 2021, 9, 48. https://doi.org/10.3390/galaxies9030048
El-Taibany WF, El-Bedwehy NA, El-Shafeay NA, El-Labany SK. Three-Dimensional Rogue Waves in Earth’s Ionosphere. Galaxies. 2021; 9(3):48. https://doi.org/10.3390/galaxies9030048
Chicago/Turabian StyleEl-Taibany, Wael F., Nabila A. El-Bedwehy, Nora A. El-Shafeay, and Salah K. El-Labany. 2021. "Three-Dimensional Rogue Waves in Earth’s Ionosphere" Galaxies 9, no. 3: 48. https://doi.org/10.3390/galaxies9030048
APA StyleEl-Taibany, W. F., El-Bedwehy, N. A., El-Shafeay, N. A., & El-Labany, S. K. (2021). Three-Dimensional Rogue Waves in Earth’s Ionosphere. Galaxies, 9(3), 48. https://doi.org/10.3390/galaxies9030048