Favored Inflationary Models by Scalar Field Condensate Baryogenesis
Abstract
:1. Introduction
Baryon Asymmetry of the Universe
2. SFC Short Description
3. Baryon Asymmetry in Different Inflationary Models
3.1. Notes on Inflation
3.2. Notes on Reheating
3.3. Baryon Asymmetry in Different Inflationary Models—Results
3.3.1. Inflationary Models with Overproduction of Baryon Asymmetry
3.3.2. Inflationary Models with Successful Production of the Observed Baryon Asymmetry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Linde, A. Prospects of Inflation. Phys. Scr. 2005, T117, 40–48. [Google Scholar] [CrossRef]
- Dolgov, A.; Kirilova, D. On particle creation by a time dependent scalar field. Sov. J. Nucl. Phys. 1990, 51, 172–177. [Google Scholar]
- Felder, G.; Kofman, L.; Linde, A. Gravitational Particle Production and the Moduli Problem. JHEP 2000, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, H. Reheating in the Early Universe Cosmology. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2017. [Google Scholar]
- Mazumdar, A.; Zaldivar, B. Quantifying the reheating temperature of the universe. Nucl. Phys. 2014, B886, 312–327. [Google Scholar] [CrossRef] [Green Version]
- Steigman, G. Observational Tests of Antimatter Cosmologies. Ann. Rev. Astron. Astrophys. 1976, 14, 339–372. [Google Scholar] [CrossRef]
- Steigman, G. When clusters collide: Constraints on antimatter on the largest scales. J. Cosmol. Astropart. Phys. 2008, 0910, 001. [Google Scholar] [CrossRef] [Green Version]
- Stecker, F. On the nature of the baryon asymmetry. Nucl. Phys. B 1985, 252, 25–36. [Google Scholar] [CrossRef]
- Ballmoos, P. Antimatter in the Universe: Constraints from gamma-ray astronomy. Hyperfine Interact. 2014, 228, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A. Antimatter in the universe and laboratory. EPJ Web Conf. 2015, 95, 03007. [Google Scholar] [CrossRef]
- Pettini, M.; Cooke, R. A new, precise measurement of the primordial abundance of Deuterium. Mon. Not. R. Astron. Soc. 2012, 425, 2477–2486. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.; Barreiro, R.; Bartlett, J.; Bartolo, N.; et al. [Planck Collaboration], Planck 2015 results. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Sakharov, A. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. JETP 1967, 5, 32–35. [Google Scholar]
- Kuzmin, V.; Rubakov, V.; Shaposhnikov, M. Constraining Antimatter Domains in the Early Universe with Big Bang Nucleosynthesis. Phys. Rev. Lett. 1985, 84, 3756. [Google Scholar]
- Fukugita, M.; Yanagida, T. Barygenesis without grand unification. Phys. Lett. B 1986, 174, 45–47. [Google Scholar] [CrossRef]
- Affleck, I.; Dine, M. A New Mechanism for Baryogenesis. Nucl. Phys. B 1985, 249, 361–380. [Google Scholar] [CrossRef]
- Dolgov, A.; Kirilova, D. Baryon charge condensate and baryogenesis. J. Mosc. Phys. Soc. 1991, 1, 217–229. [Google Scholar]
- Bastero-Gil, M.; Berera, A.; Ramos, R.; Rosa, J. Warm baryogenesis. Phys. Lett. B 2012, 712, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Davoudias, H.; Kitano, R.; Kribs, G.; Murayama, H.; Steinhardt, P. Gravitational Baryogenesis. Phys. Rev. Lett. 2004, 93, 201301. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G.; Scarpetta, G. Baryogenesis in f(R) theories of gravity. Phys. Rev. D 2006, 74, 087504. [Google Scholar] [CrossRef]
- Sahoo, P.; Bhattacharjee, S. Gravitational Baryogenesis in Non-Minimal Coupled f(R,T) Gravity. Int. J. Theor. Phys. 2020, 59, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S.; Sahoo, P. Baryogenesis in f(Q,T) gravity. Eur. Phys. J. C 2020, 80, 289. [Google Scholar] [CrossRef] [Green Version]
- Chizhov, M.; Kirilova, D. Generation of the 128 h-1 Mpc periodicity of the universe in the scalar field condensate baryogenesis. AATr 1996, 10, 69–75. [Google Scholar]
- Kirilova, D.; Chizhov, M. Non-GUT baryogenesis and large-scale structure of the Universe. MNRAS 2000, 314, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Kirilova, D. Baryogenesis model predicting antimatter in the Universe. Nucl. Phys. Proc. Suppl. 2003, 122, 404–408. [Google Scholar] [CrossRef]
- Kirilova, D.; Panayotova, M. The dependence of the baryon asymmetry generation on the couplings of the baryon charge carrying scalar field. BAJ 2014, 20, 45–50. [Google Scholar]
- Kirilova, D.; Panayotova, M. Parameterizing the SFC Baryogenesis Model. Adv. Astron. 2015, 465, 425342. [Google Scholar] [CrossRef] [Green Version]
- Panayotova, M.; Kirilova, D. Baryogenesis with Scalar Field Condensate and Baryon Assymmetry of the Universe. Bulg. J. Phys. 2016, 43, 327–333. [Google Scholar]
- Vilenkin, A.; Ford, L. Gravitational effects upon cosmological phase transitions. Phys. Rev. 1982, D26, 1231. [Google Scholar] [CrossRef]
- Bunch, T.; Davies, P. Quantum field theory in de Sitter space: Renormalization by point-splitting. Proc. R. Soc. Lond. Ser. A 1978, 360, 117. [Google Scholar]
- Starobinsky, A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. 1982, B117, 175–178. [Google Scholar] [CrossRef]
- Kirilova, D.; Panayotova, M. The role of particle creation processes in the scalar condensate baryogenesis model. Bulg. J. Phys. 2007, 34, 330–335. [Google Scholar]
- Kirilova, D.; Panayotova, M. Inhomogeneous baryogenesis model and antimatter in the Universe. In Proceedings of the 8th Serbian-Bulgarian Astronomical Conference (VIII SBGAC), Leskovac, Serbia, 8–12 May 2012. [Google Scholar]
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopaedia Inflationaris. Phys. Dark Univ. 2014, 5–6, 75–235. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Ringeval, C.; Trotta, R.; Vennin, V. The Best Inflationary Models After Planck. JCAP03 2014, 1403, 039. [Google Scholar] [CrossRef]
- Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. 1980, B91, 99–102. [Google Scholar] [CrossRef]
- Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. 1982, B108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Linde, A. Chaotic inflation. Phys. Lett. 1983, 129B, 177–181. [Google Scholar] [CrossRef]
- Linde, A. Initial conditions for inflation. Phys. Lett. 1985, 162B, 281–286. [Google Scholar] [CrossRef]
- Peebles, P.; Vilenkin, A. Quintessential inflation. Phys. Rev. 1999, D59, 063505. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Amoros, J.; Pan, S. The Peebles and Vilenkin quintessential inflation model revisited. Eur. Phys. J. 2019, C79, 505. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. [Plank Collaboration]. Planck 2018 results. X. Constraints on inflation. Astron. Astroph. 2020, 641, A10. [Google Scholar]
- Linde, A. Particle Physics and Inflationary Cosmology; Harwood: Chur, Switzerland, 1990. [Google Scholar]
- Kofman, L.; Linde, A.; Starobinsky, A. Inflationary universe generated by the combined action of a scalar field and gravitational vacuum polarization. Phys. Lett. B 1985, 157, 361–367. [Google Scholar] [CrossRef]
- Marko, A.; Gasperis, G.; Paradis, G.; Cabella, P. Energy Density, Temperature and Entropy Dynamics in Perturbative Reheating. Phys. Rev. 2019, D100, 123532. [Google Scholar]
- Martin, J.; Ringeval, C. First CMB Constraints on the Inflationary Reheating Temperature. Phys. Rev. 2010, D82, 023511. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Ringeval, C.; Vennin, V. Information Gain on Reheating: The One Bit Milestone. Phys. Rev. Lett. 2015, 114, 081303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, M.; Kohri, K.; Sugiyama, N. Cosmological Constraints on Late-time Entropy Production. Phys. Rev. Lett. 1999, 82, 4168. [Google Scholar] [CrossRef] [Green Version]
- Salas, P.; Lattanzi, M.; Mangano, M.; Miele, G.; Pastor, S.; Pisanti, O. Bounds on very low reheating scenarios after Planck. PRD 2015, 92, 123534. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kohri, K.; Moroi, T. Radiative decay of a massive particle and the nonthermal process in primordial nucleosynthesis. PRD 2001, 63, 103502. [Google Scholar] [CrossRef] [Green Version]
- Giudice, G.; Tkachev, I.; Riotto, A. Non-Thermal Production of Dangerous Relics in the Early Universe. JHEP 1999, 9908, 9. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, W. Thermal Production of Gravitinos. NPB 2001, 606, 518–544. [Google Scholar]
- Traschen, J.; Brenberger, R. Particle production during out-of-equilibrium phase transitions. PRD 1990, 42, 2491. [Google Scholar] [CrossRef] [PubMed]
- Kofman, L.; Linde, A.; Starobinski, A. Reheating after Inflation. Phys. Rev. Lett. 1994, 73, 3195. [Google Scholar] [CrossRef] [Green Version]
- Kofman, L.; Linde, A.; Starobinski, A. Towards the Theory of Reheating After Inflation. Phys. Rev. D 1997, 56, 3258–3295. [Google Scholar] [CrossRef] [Green Version]
- Boyanovsky, D.; D’Attanasio, M.; de Vega, H.J.; Holman, R.; Lee, D.-S. Linear versus nonlinear relaxation: Consequences for reheating and thermalization. PRD 1995, 52, 6805. [Google Scholar] [CrossRef] [Green Version]
- Boyanovsky, D.; de Vega, H.; Holman, R.; S-Lee, D.; Singh, A. Dissipation via Particle Production in Scalar Field Theories. PRD 1995, 51, 4419–4444. [Google Scholar] [CrossRef] [Green Version]
- Allahverdi, R.; Ferrantelli, A.; Garcia-Bellido, J.; Mazumdar, A. Non-perturbative production of matter and rapid thermalization after MSSM inflation. Phys. Rev. 2011, D83, 123507. [Google Scholar]
- Felder, G.; Kofman, L.; Linde, A. Instant Preheating. Phys. Rev. 1999, D59, 123523. [Google Scholar] [CrossRef] [Green Version]
- Fujisaki, H.; Kumekawa, K.; Yamaguchi, M.; Yoshimura, M. Particle Production and Dissipative Cosmic Field. Phys. Rev. 1996, D53, 6805. [Google Scholar] [CrossRef] [Green Version]
- Allahverdi, R.; Bastero-Gil, M.; Mazumdar, A. Is nonperturbative inflatino production during preheating a real threat to cosmology? Phys. Rev. 2001, D64, 023516. [Google Scholar] [CrossRef] [Green Version]
- Kirilova, D.; Panayotova, M. Baryon asymmetry of the universe generated by scalar field condensate baryogenesis model in different inflationary scenarios. AIP Conf. Proc. 2019, 2075, 090017. [Google Scholar]
- Kirilova, D.; Panayotova, M. Inflationary models, reheating and scalar field condensate baryogenesis. In Proceedings of the XII SB Astronomical Conference, Sokobanja, Serbia, 25–29 September 2020; pp. 39–47. [Google Scholar]
- Dolgov, A.; Linde, A. Scalar field fluctuations in the expanding universe and the new inflationary universe scenario. Phys. Lett. 1982, 116B, 335–339. [Google Scholar]
- Shafi, O.; Vilenkin, A. Inflation with SU(5). Phys. Rev. Lett. 1984, 52, 691. [Google Scholar] [CrossRef]
- Allahverdi, A.; Enqvist, K.; Garcia-Bellido, J.; Mazumdar, A. Gauge-invariant inflaton in the minimal supersymmetric standard model. Phys. Rev. Lett. 2006, 97, 191304. [Google Scholar] [CrossRef] [Green Version]
- Ferrantelli, A. Reheating, thermalization and non-thermal gravitino production in MSSM inflation. Eur. Phys. J. 2017, C77, 716. [Google Scholar] [CrossRef]
- Abbott, L.; Fahri, E.; Wise, M. Particle production in the new inflationary cosmology. Phys. Lett. 1982, B117, 29–33. [Google Scholar] [CrossRef]
- Van de Bruck, C.; Dansby, P.; Paduraru, L. Reheating and preheating in the simplest extension of Starobinsky inflation. Int. J. Mod. Phys. D 2013, 26, 13. [Google Scholar] [CrossRef] [Green Version]
- Nanopoulos, D.; Olive, K.; Srednicki, M. After primordial inflation. Phys. Lett. 1983, B127, 30. [Google Scholar] [CrossRef] [Green Version]
Starobinsky Inflation | GeV; GeV | , , GeV, | |
GeV; GeV | , , , GeV, | , , GeV, | |
Quintessential Inflation | GeV; GeV | , , , GeV, | , , , GeV, |
Chaotic Inflation, Efficient Thermalization | GeV; GeV | , , GeV, | |
Chaotic Inflation, Delayed Thermalization | GeV; GeV | , , GeV, | , , GeV, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirilova, D.; Panayotova, M. Favored Inflationary Models by Scalar Field Condensate Baryogenesis. Galaxies 2021, 9, 49. https://doi.org/10.3390/galaxies9030049
Kirilova D, Panayotova M. Favored Inflationary Models by Scalar Field Condensate Baryogenesis. Galaxies. 2021; 9(3):49. https://doi.org/10.3390/galaxies9030049
Chicago/Turabian StyleKirilova, Daniela, and Mariana Panayotova. 2021. "Favored Inflationary Models by Scalar Field Condensate Baryogenesis" Galaxies 9, no. 3: 49. https://doi.org/10.3390/galaxies9030049
APA StyleKirilova, D., & Panayotova, M. (2021). Favored Inflationary Models by Scalar Field Condensate Baryogenesis. Galaxies, 9(3), 49. https://doi.org/10.3390/galaxies9030049