Challenges in Mitigating Lubricant Foaming
Abstract
:1. Introduction
2. Eliminating Profoamers
3. Enhancing Antifoams
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rudnick, L.R. Lubricant Additives: Chemistry and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Duncanson, M. Effects of physical and chemical properties on foam in lubricating oils (C). Tribol. Lubr. Technol. 2003, 59, 9. [Google Scholar]
- Prolic, T.C.; Lepusic, A. Effect of foaming on the antiwear properties of lubricating oils. Goriva i Maziva 2012, 51, 38. [Google Scholar]
- Singh, D.K.; Kurien, J.; Villayamore, A. Study and analysis of wind turbine gearbox lubrication failure and its mitigation process. Mater. Today Proc. 2021, 44, 3976–3983. [Google Scholar] [CrossRef]
- Mazzola, S.; Hochmann, M.; Wald, J. Gear Lubrication: Long-Term Protection for Wind Turbines; American Gear Manufacturers Association: Chicago, IL, USA, 2014. [Google Scholar]
- Wind Turbine Gear Lubricants. 2015. Available online: https://www.stle.org/images/pdf/STLE_ORG/TF/2015/windturbine/Wind_Turbine_Gear_Lubricants_TFC_2015_Wind_Turbine_Prince.pdf (accessed on 30 March 2022).
- Calhoun, S.G.; Suja, V.C.; Fuller, G.G. Foaming and antifoaming in non-aqueous liquids. Curr. Opin. Colloid Interface Sci. 2021, 57, 101558. [Google Scholar] [CrossRef]
- Binks, B.; Davies, C.; Fletcher, P.; Sharp, E. Non-aqueous foams in lubricating oil systems. Colloids Surf. Physicochem. Eng. Asp. 2010, 360, 198–204. [Google Scholar] [CrossRef]
- Ross, S.; Nishioka, G. Foaminess of binary and ternary solutions. J. Phys. Chem. 1975, 79, 1561–1565. [Google Scholar] [CrossRef]
- Suja, V.C.; Kar, A.; Cates, W.; Remmert, S.; Savage, P.; Fuller, G. Evaporation-induced foam stabilization in lubricating oils. Proc. Natl. Acad. Sci. USA 2018, 115, 7919–7924. [Google Scholar] [CrossRef] [Green Version]
- Fameau, A.L.; Saint-Jalmes, A. Non-aqueous foams: Current understanding on the formation and stability mechanisms. Adv. Colloid Interface Sci. 2017, 247, 454–464. [Google Scholar] [CrossRef]
- Binks, B.P.; Vishal, B. Particle-stabilized oil foams. Adv. Colloid Interface Sci. 2021, 291, 102404. [Google Scholar] [CrossRef]
- Ross, S. Lubricant Foaming and Aeration Study; Part 1; Technical Report; Rensselaer Polytechnic Inst: Troy, NY, USA, 1983. [Google Scholar]
- Holt, D. Multiring Aromatics for Enhanced Deposit Control. European Patent Appl 709447, 1 May 1996. [Google Scholar]
- Klaus, E.; Jeng, G.; Duda, J. A Study of tricresyl phosphate as a vapor delivered lubricant. Lubr. Eng. 1989, 45, 717–723. [Google Scholar]
- Bartz, W.J. Influence of viscosity index improver, molecular weight, and base oil on thickening, shear stability, and evaporation losses of multigrade oils. Lubr. Sci. 2000, 12, 215–237. [Google Scholar] [CrossRef]
- Ross, S.; Young, G.J. Action of antifoaming agents at optimum concentrations. Ind. Eng. Chem. 1951, 43, 2520–2525. [Google Scholar] [CrossRef]
- Okazaki, S.; Sasaki, T. Two Types of Antifoamers and their Cooperating Action. Bull. Chem. Soc. Jpn. 1960, 33, 564–565. [Google Scholar] [CrossRef] [Green Version]
- Pugh, R. Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci. 1996, 64, 67–142. [Google Scholar] [CrossRef]
- Mellema, M.; Benjamins, J. Importance of the Marangoni effect in the foaming of hot oil with phospholipids. Colloids Surf. Physicochem. Eng. Asp. 2004, 237, 113–118. [Google Scholar] [CrossRef]
- Wu, M.M.; Ho, S.C.; Luo, S. Synthetic lubricant base stock. In Springer Handbook of Petroleum Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1043–1061. [Google Scholar]
- Shi, X.; Fuller, G.G.; Shaqfeh, E.S. Oscillatory spontaneous dimpling in evaporating curved thin films. J. Fluid Mech. 2020, 889. [Google Scholar] [CrossRef]
- Suja, V.C.; Rodríguez-Hakim, M.; Tajuelo, J.; Fuller, G.G. Single bubble and drop techniques for characterizing foams and emulsions. Adv. Colloid Interface Sci. 2020, 286, 102295. [Google Scholar] [CrossRef]
- Challenges during the Life of Your Turbine Oil. 2018. Available online: https://certasenergylubricants.com/wp-content/uploads/2019/12/Turbine-oil-life_whitepaper.pdf (accessed on 30 March 2022).
- Lantz, S.; Zakarian, J.; Deskin, S.; Martini, A. Filtration effects on foam inhibitors and optically detected oil cleanliness. Tribol. Trans. 2017, 60, 1159–1164. [Google Scholar] [CrossRef]
- Suja, V.C.; Kar, A.; Cates, W.; Remmert, S.; Fuller, G. Foam stability in filtered lubricants containing antifoams. J. Colloid Interface Sci. 2020, 567, 1–9. [Google Scholar] [CrossRef]
- Canter, N. Lubricant additives: What degree are they removed by filtration systems? Tribol. Lubr. Technol. 2013, 69, 26. [Google Scholar]
- Bergeron, V.; Cooper, P.; Fischer, C.; Giermanska-Kahn, J.; Langevin, D.; Pouchelon, A. Polydimethylsiloxane (PDMS)-based antifoams. Colloids Surf. Physicochem. Eng. Asp. 1997, 122, 103–120. [Google Scholar] [CrossRef]
- Denkov, N.D. Mechanisms of foam destruction by oil-based antifoams. Langmuir 2004, 20, 9463–9505. [Google Scholar] [CrossRef] [PubMed]
- Shearer, L.; Akers, W. Foaming in lube. J. Phys. Chem. 1958, 62, 1269–1270. [Google Scholar] [CrossRef]
- Karakashev, S.I.; Grozdanova, M.V. Foams and antifoams. Adv. Colloid Interface Sci. 2012, 176, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, S.; Mathew, B.R.; Datta, S. Computational intelligence-based design of lubricant with vegetable oil blend and various nano friction modifiers. Fuel 2019, 241, 733–743. [Google Scholar] [CrossRef]
- Bhaumik, S.; Pathak, S.; Dey, S.; Datta, S. Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties. Tribol. Int. 2019, 140, 105813. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandran Suja, V. Challenges in Mitigating Lubricant Foaming. Lubricants 2022, 10, 108. https://doi.org/10.3390/lubricants10060108
Chandran Suja V. Challenges in Mitigating Lubricant Foaming. Lubricants. 2022; 10(6):108. https://doi.org/10.3390/lubricants10060108
Chicago/Turabian StyleChandran Suja, Vineeth. 2022. "Challenges in Mitigating Lubricant Foaming" Lubricants 10, no. 6: 108. https://doi.org/10.3390/lubricants10060108
APA StyleChandran Suja, V. (2022). Challenges in Mitigating Lubricant Foaming. Lubricants, 10(6), 108. https://doi.org/10.3390/lubricants10060108