Validation of Experimental and Finite Element Biomechanical Evaluation of Human Cadaveric Mandibles
Abstract
:1. Introduction
- Can a difference be stated in strain magnitudes measured at condylar surface locations (L3, L5) with respect to other locations (L1, L2, L4) of strain acquisition for the experimental strain data of four loading groups?
- Does ‘Age of Patient’ have a significant effect on the magnitude of experimental strain?
- Does ‘Sex of Patient’ have a significant effect on the magnitude of experimental strain?
- What degree of statistical correlation and statistical agreement do experimental/measured strain data have with analytical (FE) strain for mandibles in all loading groups?
2. Materials and Methods
2.1. Image Acquisition
2.2. Strain-Gauge Attachment
2.3. Mechanical Testing and Experimental Strain Measurement
2.4. Subject-Specific FE Model Creation
2.5. Finite Element Analysis
3. Result
3.1. Data Analysis
3.2. Statistical Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingawalé, S.; Goswami, T. Temporomandibular joint: Disorders, treatments, and biomechanics. Ann. Biomed. Eng. 2009, 37, 976–996. [Google Scholar] [CrossRef] [PubMed]
- Korioth, T.W.P.; Versluis, A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit. Rev. Oral Biol. Med. 1997, 8, 90–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, H.M. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s Law: The remodeling problem. Anat. Rec. 1990, 226, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J. The Law of Bone Remodeling; Springer: Berlin/Heidelberg, Germany, 1986; (Translation of the German 1892 edition). [Google Scholar]
- Vollmer, D.; Meyer, U.; Joos, U.; Vegh, A.; Piffko, J. Experimental and finite element study of a human mandible. J. Cranio-Maxillofac. Surg. 2000, 28, 91–96. [Google Scholar] [CrossRef]
- Kupczik, K.; Dobson, C.A.; Fagan, M.J.; Crompton, R.H.; Oxnard, C.E.; O’Higgins, P. Assessing mechanical function of the zygomatic region in macaques: Validation and sensitivity testing of finite element models. J. Anat. 2007, 210, 41–53. [Google Scholar] [CrossRef]
- Rayfield, E.J. Strain in the ostrich mandible during simulated pecking and validation of specimen-specific finite element models. J. Anat. 2011, 218, 47–58. [Google Scholar] [CrossRef]
- Groning, F.; Liu, J.; Fagan, M.J.; O’Higgins, P. Validating a voxel-based finite element model of a human mandible using digital speckle pattern interferometry. J. Biomech. 2009, 42, 1224–1229. [Google Scholar] [CrossRef]
- Ingawalé, S.M.; Goswami, T. Biomechanics of the Temporomandibular Joint; InTech Publication: Rijeka, Croatia, 2012; pp. 159–182. [Google Scholar]
- Santis, R.; Mollica, F.; Esposito, R.; Ambrosio, L.; Nicolais, L. An experimental and theoretical composite model of the human mandible. J. Mater.Sci. Mater. Med. 2005, 16, 1191–1197. [Google Scholar] [CrossRef]
- Detamore, M.S.; Athanasiou, K.A.; Mao, J. A call to action for bioengineers and dental professionals: Directives for the future of TMJ bioengineering. Ann. Biomed. Eng. 2007, 35, 1301–1311. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Detamore, M.S. Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc. J. Biomech. 2009, 42, 405–417. [Google Scholar] [CrossRef]
- Bessho, M.; Ohnishi, I.; Matsuyama, J.; Matsumoto, T.; Imai, K.; Nakamura, K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 2007, 40, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- DuChesne, A.; Unnewehr, M.; Schmidt, P.F.; Sotonyi, P.; Brinkmann, B.; Piffko, J.; Fischer, G.; Bajanowski, T. Deformation characteristics of the human mandible in low impact experiments. Int. J. Leg. Med. 2003, 117, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Taddei, F.; Cristofolini, L.; Martelli, S.; Gill, H.S.; Viceconti, M. Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy. J. Biomech. 2006, 39, 2457–2467. [Google Scholar] [CrossRef]
- Varghese, B.; Short, D.; Penmetsa, R.; Goswami, T.; Hangartner, T. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. J. Biomech. 2011, 44, 1374–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.; Ballu, A.; Mesnard, M.; Talaia, P.; Simões, J.A. Numerical and Experimental Models of the Mandible. Exp. Mech. 2011, 51, 1053–1059. [Google Scholar] [CrossRef]
- Ingawalé, S.M. Mandibular Bone Mechanics and Evaluation of Temporomandibular Joint Devices. Ph.D. Dissertation, Wright State University, Dayton, OH, USA, 2012. [Google Scholar]
- Ingawalé, S.M.; Johnson, R.M.; Goswami, T. Biomechanical Evaluation of the Cadaver Mandible under Cyclic Compressive Loads. Ital. J. Maxillo-Facial Surg. 2014, 25, 55–63. [Google Scholar]
- Ingawale, S.M.; Goswami, T. Design and Finite Element Analysis of Patient-Specific Total Temporomandibular Joint Implants. Materials 2022, 15, 4342. [Google Scholar] [CrossRef]
- Evans, F.J. Mechanical Properties of Bone; Charles C Thomas Publisher: Springfield, IL, USA, 1973; p. 322. [Google Scholar]
- Cordey, J.; Gautier, E. Strain gauges used in the mechanical testing of bones Part I: Theoretical and technical aspects. Injury 1999, 30, S-A7–S-A13. [Google Scholar] [CrossRef]
- Cordey, J.; Gautier, E. Strain gauges used in the mechanical testing of bones Part II: “In vitro” and “in vivo”. Injury 1999, 30, S-A14–S-A20. [Google Scholar] [CrossRef]
- Schupp, W.; Arzdorf, M.; Linke, B.; Gutwald, R. Biomechanical testing of different osteosynthesis systems for segmental resection of the mandible. J. Oral Maxillofac. Surg. 2007, 65, 924–930. [Google Scholar] [CrossRef]
- Ahlberg, J.P.; Kovero, O.A.; Hurmerinta, K.A.; Zepa, I.; Nissinen, M.J.; Könönen, M.H. Maximal bite force and its association with signs and symptoms of TMD, occlusion, and body mass index in a cohort of young adults. CRANIO® 2003, 21, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Bakke, M. Bite Force and Occlusion. In Seminars in Orthodontics; WB Saunders: Philadelphia, PA, USA, 2006; Volume 12, pp. 120–126. [Google Scholar]
- Bakke, M.; Zak, M.; Jensen, B.L.; Pedersen, F.K.; Kreiborg, S. Orofacial pain, jaw function, and temporomandibular disorders in women with a history of juvenile chronic arthritis or persistent juvenile chronic arthritis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2001, 92, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Bonjardim, L.R.; Gaviao, M.B.D.; Pereira, L.J.; CAastelo, P.M. Bite force determination in adolescents with and without temporomandibular dysfunction. J. Oral Rehabil. 2005, 32, 577–583. [Google Scholar] [CrossRef]
- Pereira, L.J.; Pastore, M.G.; Bonjardim, L.R.; Castelo, P.M.; Gaviao, M.B.D. Molar bite force and its correlation with signs of temporomandibular dysfunction in mixed and permanent dentition. J. Oral Rehabil. 2007, 34, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Sinn, D.P.; de Assis, E.A.; Throckmorton, G.S. Mandibular excursions and maximum bite forces in patients with temporomandibular joint disorders. J. Oral Maxillofac. Surg. 1996, 54, 671–679. [Google Scholar] [CrossRef]
- Mudunuru, M.K.; Nakshatrala, K.B. A framework for coupled deformation–diffusion analysis with application to degradation/healing. Int. J. Numer. Methods Eng. 2012, 89, 1144–1170. [Google Scholar] [CrossRef] [Green Version]
- Strait, D.S.; Wang, Q.; Dechow, P.C.; Ross, C.F.; Richmond, B.G.; Spencer, M.A.; Patel, B.A. Modeling elastic properties in finite-element analysis: How much precision is needed to produce an accurate model? Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. Off. Publ. Am. Assoc. Anatomist. 2005, 283A, 275–287. [Google Scholar] [CrossRef]
- Ichim, I.; Swain, M.; Kieser, J.A. Mandibular biomechanics and development of the human chin. J. Dent. Res. 2006, 85, 638–642. [Google Scholar] [CrossRef]
- Reina, J.M.; Garcia-Aznar, J.M.; Dominguez, J.; Doblare, M. Numerical estimation of bone density and elastic constants distribution in a human mandible. J. Biomech. 2007, 40, 828–836. [Google Scholar] [CrossRef]
- Schwartz-Dabney, C.L.; Dechow, P.C. Variations in cortical material properties throughout the human dentate mandible. Am. J. Phys. Anthropol. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 2003, 120, 252–277. [Google Scholar] [CrossRef]
- Markert, R.J. Enhancing Medical Education by Improving Statistical Methodology in Journal Articles. Teach. Learn. Med. 2013, 25, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Hylander, W.L. Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. Am. J. Phys. Anthropol. 1984, 64, 1–46. [Google Scholar] [CrossRef]
- Hart, R.T.; Hennebel, V.V.; Thongpreda, N.; Van Buskirk, W.C.; Anderson, R.C. Modeling the biomechanics of the mandible: A three-dimensional finite element study. J. Biomech. 1992, 25, 261–286. [Google Scholar] [CrossRef]
- Wu, Q.; Merchant, F.; Castleman, K.R. Microscope Image Processing; Elsevier Academic Press: Burlington, NJ, USA, 2008. [Google Scholar]
- Hangartner, T.N. The OsteoQuant: An isotope-based CT scanner for precise measurement of bone density. J. Comput. Assist. Tomogr. 1993, 17, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar]
Sr. No. | Load Type | Patient Demographics | Maximum Load before Failure + (N) | Cycles Until Failure # | Failure Location * | Strain Data | Experimental Strain (µm/m) | FE Strain (µm/m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Sex | Age (yrs) | Dental Status ǂ | L1 | L2 | L3 | L4 | L5 | L1 | L2 | L3 | L4 | L5 | ||||||
1 | Group-1 (Molars) | EH | F | 98 | E | 398.9 | 59,074 | A | - | - | - | - | - | - | - | - | - | - | - |
2 | MD | F | 84 | E E | 1009.9 | 60,000 | B | Avg. | −0.3248 | −0.4935 | 5.9940 | −0.4217 | −20.5474 | −0.3255 | −0.4932 | 5.9052 | −0.4217 | −20.7348 | |
Std. Dev. | 0.0002 | 0.0002 | 0.0212 | 0.0001 | 0.2815 | 0.0051 | 0.0046 | 0.0998 | 0.0043 | 0.7914 | |||||||||
3 | HL | M | 71 | E | 2656.6 | 60,000 | B | Avg. | −0.2290 | −0.5187 | 5.9637 | −0.4234 | −8.4591 | −0.1872 | −0.5252 | 7.2618 | −0.3804 | −8.1555 | |
Std. Dev. | 0.0956 | 0.0039 | 2.7575 | 0.0012 | 1.3323 | 0.0659 | 0.0118 | 1.8629 | 0.0312 | 1.0663 | |||||||||
4 | PS | F | 86 | E | 396.1 | 42,700 | B | Avg. | −0.3311 | −0.4870 | 6.8611 | −0.4285 | −8.4050 | −0.3396 | −0.4928 | 6.8860 | −0.4224 | −8.7244 | |
Std. Dev. | 0.0002 | 0.0002 | 0.0270 | 0.0002 | 0.0417 | 0.0123 | 0.0099 | 0.1265 | 0.0186 | 0.2830 | |||||||||
5 | LV | M | 61 | MM | 1429.2 | 60,000 | B | Avg. | −0.3393 | −0.5123 | 3.1337 | −0.4338 | −9.1265 | −0.3609 | −0.5543 | 2.8459 | −0.4404 | −9.5136 | |
Std. Dev. | 0.0002 | 0.0001 | 0.0073 | 0.0001 | 0.0325 | 0.0231 | 0.0470 | 0.3337 | 0.0269 | 0.9127 | |||||||||
6 | CE | M | 71 | E | 399.1 | 54,490 | D, E | Avg. | −0.3410 | −0.5254 | −23.6038 | −0.4252 | −23.6370 | −0.3495 | −0.5376 | −23.8884 | −0.4276 | −24.4458 | |
Std. Dev. | 0.0002 | 0.0002 | 0.2361 | 0.0003 | 0.4690 | 0.0107 | 0.0116 | 0.7160 | 0.0307 | 1.5428 | |||||||||
7 | Group-2 (Incisors) | JL | F | 84 | MM | 966.6 | 60,000 | E | Avg. | −0.0824 | −0.5247 | 10.2097 | −0.4253 | −6.4345 | −0.0844 | −0.5426 | 10.2719 | −0.3803 | −6.4117 |
Std. Dev. | 0.0009 | 0.0002 | 0.0694 | 0.0002 | 0.0197 | 0.0073 | 0.0570 | 0.8514 | 0.0426 | 0.6442 | |||||||||
8 | HK | M | 87 | MM | 671 | 60,000 | A, E | Avg. | −0.3103 | −0.4940 | 7.7373 | −0.4886 | −14.3783 | −0.3553 | −0.4768 | 7.4413 | −0.5115 | −15.0617 | |
Std. Dev. | 0.0002 | 0.0002 | 0.0404 | 0.0096 | 0.1444 | 0.0306 | 0.0451 | 0.5689 | 0.0395 | 0.8936 | |||||||||
9 | AM | F | 83 | MM | 281 | 30,025 | C, E | Avg. | −0.3142 | −0.6870 | 4.4146 | −0.4161 | −14.3646 | −0.3173 | −0.6800 | 4.2788 | −0.4048 | −14.6035 | |
Std. Dev. | 0.0002 | 0.0001 | 0.0126 | 0.0002 | 0.0974 | 0.0106 | 0.0286 | 0.4282 | 0.0503 | 0.7709 | |||||||||
10 | BS | M | 91 | MM | 1001.6 | 60,000 | D | Avg. | −0.3029 | −0.4937 | 4.9044 | −0.4244 | −14.5660 | −0.3010 | −0.5106 | 4.6873 | −0.5264 | −15.1222 | |
Std. Dev. | 0.0002 | 0.0001 | 0.0143 | 0.0456 | 0.1903 | 0.0099 | 0.0207 | 0.3294 | 0.0781 | 0.9518 | |||||||||
11 | PO | F | 82 | MM | 299.8 | 30,674 | A, D, E | Avg. | −0.3217 | −0.4846 | 4.8172 | −0.4308 | −12.0350 | −0.3283 | −0.5036 | 4.7023 | −0.4178 | −12.5282 | |
Std. Dev. | 0.0002 | 0.0002 | 0.0144 | 0.0002 | 0.0946 | 0.0073 | 0.0187 | 0.2648 | 0.0149 | 0.5140 | |||||||||
12 | FH | F | 92 | MM | 501.4 | 60,000 | D | Avg. | −0.3356 | −0.5050 | 4.9497 | −0.3980 | −16.8578 | −0.3480 | −0.5345 | 4.6578 | −0.4089 | −17.3854 | |
Std. Dev. | 0.0002 | 0.0002 | 0.0148 | 0.0002 | 0.1945 | 0.0199 | 0.0350 | 0.4346 | 0.0186 | 1.2198 |
Location of Strain Measurement | Wilcoxon Signed Ranks Test Statistics | ||
---|---|---|---|
Condylar | Non-Condylar | Z | Significance (2-Tailed) v |
L3 | L1 | −2.840 b | 0.005 |
L2 | −3.408 c | 0.001 | |
L4 | −2.556 b | 0.011 | |
L5 | L1 | −3.408 b | 0.001 |
L2 | −3.408 b | 0.001 | |
L4 | −3.408 b | 0.001 |
Location of Strain Measurement | Correspondence between ‘Age’ and ‘Experimental Strain’ | Correspondence between ‘Sex’ and ‘Experimental Strain’ | Statistical Correlation between ‘Experimental Strain’ and ‘FE Strain’ | Statistical Agreement between ‘Experimental Strain’ and ‘FE Strain’ | ||
---|---|---|---|---|---|---|
Spearman’s Rho-Significance (2-Tailed) § | t-Test Significance (2-Tailed) ± | Pearson Correlation | 95% CI | Intraclass Correlation | 95% CI | |
L1 | 0.815 | 0.494 | 0.984 | 0.951 to 0.995 | 0.991 | 0.972 to 0.997 |
L2 | 0.22 | 0.24 | 0.964 | 0.892 to 0.988 | 0.977 | 0.931 to 0.992 |
L3 | 0.042 | 0.298 | 0.999 | 0.997 to 1.00 | 0.999 | 0.998 to 1.000 |
L4 | 0.064 | 0.867 | 0.569 | 0.08 to 0.837 | 0.659 | −0.17 to 0.885 |
L5 | 0.795 | 0.47 | 0.997 | 0.991 to 0.999 | 0.936 | 0.809 to 0.978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingawale, S.M.; Krishnan, D.G.; Goswami, T. Validation of Experimental and Finite Element Biomechanical Evaluation of Human Cadaveric Mandibles. Lubricants 2022, 10, 169. https://doi.org/10.3390/lubricants10080169
Ingawale SM, Krishnan DG, Goswami T. Validation of Experimental and Finite Element Biomechanical Evaluation of Human Cadaveric Mandibles. Lubricants. 2022; 10(8):169. https://doi.org/10.3390/lubricants10080169
Chicago/Turabian StyleIngawale, Shirish M., Deepak G. Krishnan, and Tarun Goswami. 2022. "Validation of Experimental and Finite Element Biomechanical Evaluation of Human Cadaveric Mandibles" Lubricants 10, no. 8: 169. https://doi.org/10.3390/lubricants10080169
APA StyleIngawale, S. M., Krishnan, D. G., & Goswami, T. (2022). Validation of Experimental and Finite Element Biomechanical Evaluation of Human Cadaveric Mandibles. Lubricants, 10(8), 169. https://doi.org/10.3390/lubricants10080169