Lubrication Mechanisms of a Nanocutting Fluid with Carbon Nanotubes and Sulfurized Isobutylene (CNTs@T321) Composites as Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of CNTs@T321 Composites
2.2. Preparation and Performance Testing of Nanofluids
2.3. Milling Test
3. Results and Discussion
3.1. Characterization of Composites
3.2. Physical Performance Test Results of Nanofluids
3.3. Milling Performance of Different Fluids under MQL Conditions
3.3.1. Force and Temperature in the Cutting Area
3.3.2. Tool Wear and Surface Roughness
3.4. Effect of Concentration of Nanoparticle on Milling Properties
3.4.1. Force and Temperature in Cutting Area
3.4.2. Tool Wear and Surface Roughness of Workpiece
4. Discussion on the Lubrication Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruce, R.W. Handbook of Lubrication and Tribology: Theory and Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Klocke, F.; Eisenblatter, G. Dry Cutting. Ann. CIRP 1997, 46, 519–526. [Google Scholar] [CrossRef]
- Mirer, F.E. New Evidence on The Health Hazards and Control of Metalworking Fluids Since Completion of the Osha Advisory Committee Report. Am. J. Ind. Med. 2010, 53, 792–801. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Proceedings of the 1995 ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995; Volume 66, pp. 99–105. [Google Scholar]
- Kilincarslan, S.K.; Cetin, M.H. Improvement of the Milling Process Performance by Using Cutting Fluids Prepared with Nano-Silver and Boric Acid. J. Manuf. Process. 2020, 56, 707–717. [Google Scholar] [CrossRef]
- Kumar, A.S.; Paul, S.D.S. Tribological Characteristics and Micro-milling Performance of Nanoparticle Enhanced Water Based Cutting Fluids in Minimum Quantity Lubrication. J. Manuf. Process. 2020, 56, 766–776. [Google Scholar] [CrossRef]
- Lee, P.H.; Nam, T.S.; Li, C.J.; Lee, S.W. Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication. Trans. Korean Soc. Mech. Eng. A 2010, 34, 1493–1498. [Google Scholar] [CrossRef]
- Rahmati, B.; Sarhan, A.A.D.; Sayuti, M. Morphology of Surface Generated by End Milling AL6061-T6 Using Molybdenum Disulfide (MoS2) Nano-lubrication in End Milling Machining. J. Clean Prod. 2013, 66, 685–691. [Google Scholar] [CrossRef]
- Marcon, A.; Melkote, S.; Kalaitzidou, K.; Debra, D. An Experimental Evaluation of Graphite Nanoplatelet Based Lubricant in Micro-Milling. CIRP Ann.-Manuf. Technol. 2010, 59, 141–144. [Google Scholar] [CrossRef]
- Sayuti, M.; Sarhan, A.A.D. Cutting Force Reduction and Surface Quality Improvement in Machining of Aerospace Duralumin AL-2017-T4 Using Carbon Onion Nano-Lubrication System. Int. J. Adv. Manuf. Technol. 2013, 65, 1493–1500. [Google Scholar] [CrossRef]
- Sayuti, M.; Erh, O.M.; Sarhan, A.A.D.; Hamdi, M. Investigation on the Morphology of The Machined Surface in End Milling of Aerospace AL6061-T6 for Novel Uses of SiO2 Nano Lubrication System. J. Clean Prod. 2013, 66, 655–663. [Google Scholar] [CrossRef]
- Pham, Q.D.; Tran, M.D.; Ngo, M.T.; Tran, T.L.; Nguyen, V.T. Improvement in the Hard Milling of AISI D2 Steel under the MQCL Condition Using Emulsion-Dispersed MoS2 Nanosheets. Lubricants 2020, 8, 62. [Google Scholar]
- Duc, T.M.; Long, T.T.; Tuan, N.M. Novel Uses of Al2O3/MoS2 Hybrid Nanofluid in MQCL Hard Milling of Hardox 500 Steel. Lubricants 2021, 9, 45. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubes of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Clancy, T.C.; Gates, T.S. Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites. Polymer 2006, 47, 5990–5996. [Google Scholar] [CrossRef]
- Sharma, A.K.; Arun, K.T.A.K.; Dixit, A.R. Effects of Minimum Quantity Lubrication (MQL) in Machining Processes Using Conventional and Nanofluid Based Cutting Fluids: A Comprehensive Review. J. Clean Prod. 2016, 127, 1–18. [Google Scholar] [CrossRef]
- Prabhu, S.; Vinayagam, B.K. AFM Investigation in Grinding Process with Nanofluids Using Taguchi Analysis. Int. J. Adv. Manuf. Technol. 2012, 60, 149–160. [Google Scholar] [CrossRef]
- Sharma, P.; Sidhu, B.S.; Sharma, J. Investigation of Effects of Nanofluids on Turning of AISI D2 Steel Using Minimum Quantity Lubrication. J. Clean Prod. 2015, 108, 72–79. [Google Scholar] [CrossRef]
- Rao, S.N.; Satyanarayana, D.B.; Venkatasubbaiah, D.K. Experimental Estimation of Tool Wear and Cutting Temperatures in MQL Using Cutting Fluids with CNT Inclusion. Int. J. Eng. Sci. 2011, 4, 2928–2931. [Google Scholar]
- Roy, S.; Ghosh, A. High-Speed Turning of AISI 4140 Steel Using Nanofluid Through Twin Jet SQL System. ASME Int. Manuf. Sci. Eng. Conf. 2013, 55461, 10–14. [Google Scholar]
- Wang, P.; Zhang, D. Effect of Molecular Structure on Dispersion of Carbon Nanotubes by Natural Organic Matter Surrogates. China Environ. Sci. 2018, 38, 3429–3436. [Google Scholar]
- Yuba, R.P.; Li, W.Z. Synthesis, Properties, and Applications of Carbon Nanotubes Filled with Foreign Materials: A Review. Mater. Today Phys. 2018, 7, 7–34. [Google Scholar]
- Sinha, A.K.; Hwang, D.W.; Hwang, L.P. A Novel Approach to Bulk Synthesis of Carbon Nanotubes Filled with Metal by A Catalytic Chemical Vapor Deposition Method. Chem. Phys. Lett. 2000, 332, 455–460. [Google Scholar] [CrossRef]
- Wang, G.J.; Qu, Z.H. Modification of Carbon Nanotubes by Chemical Reaction. Prog. Chem. 2006, 18, 1305–1312. [Google Scholar]
- Connell, M.J.; Boul, P.; Ericson, L.M. Reversible Water-Solubilization of Single-Walled Carbon Nanotubes by Polymer Wrapping. Chem. Phys. Lett. 2001, 342, 265–271. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Iijima, S. Capillarity Induced Filling of Carbon Nanotubes. Nature 1993, 361, 333–335. [Google Scholar] [CrossRef]
- Dujardin, E.; Ebbesen, T.W.; Hiura, H. Capillarity of Carbon Nanotubes. Science 1994, 265, 1850–1852. [Google Scholar] [CrossRef] [PubMed]
- Pederson, M.R.; Broughton, J.Q. Nano-Capillarity in Fullerene Tubules. Phys. Rev. Lett. 1992, 69, 2689–2692. [Google Scholar] [CrossRef]
- Kumar, P.G.; Renuka, M.; Velraj, R. Thermal and Electrical Conductivity Enhancement of Solar Glycol-Water Mixture Containing MWCNTs. Fuller. Nanotub. Car. N. 2018, 26, 871–879. [Google Scholar]
- Guan, J.J.; Wang, J.; Lv, T.; Xu, X.F. Dispersion Stability and Enhanced Heat Transfer of Cutting Use Nanofluids Prepared by Composite of Carbon Nanotubes and Dialkyl Pentasulfide. Mater. Res. Express 2019, 8, 085633. [Google Scholar]
- Nurettin, S.; Muammer, K. Stabilization of the Aqueous Dispersion of Carbon Nanotubes Using Different Approaches. Therm. Sci. Eng. Prog. 2018, 8, 411–417. [Google Scholar]
- Dhar, N.; Islam, M.; Islam, S.; Mithu, M. An Experimental Investigation on Effect of Minimum Quantity Lubrication in Machining AISI 1040 Steel. Int. J. Mach. Tools Manuf. 2007, 47, 748–753. [Google Scholar] [CrossRef]
- Bikash, C.B.; Chetana, D.S.; Sudarsan, G.P.; Venkateswara, R. Spread Ability Studies of Metal Working Fluids on Tool Surface and Its Impact on Minimum Amount Cooling and Lubrication Turning. J. Mater. Process. Tech. 2017, 244, 1–16. [Google Scholar] [CrossRef]
- Xu, J.; Yamda, K.; Sekiya, K. Study of Comparing Cutting Force Signal Features for Dry, Air Cooling and Minimum Quantity Lubrication (MQL) Drilling. J. Adv. Mech. Des. Syst. 2017, 11, JAMDSM0030. [Google Scholar] [CrossRef]
- Xia, J.; Li, B.Z.; Zhang, X.P. The Effects of Minimum Quantity Lubrication (MQL) on Machining Force, Temperature, And Residual Stress. Int. J. Precis. Eng. Man. 2014, 15, 2443–2451. [Google Scholar]
- Zhang, Y.B.; Li, C.H.; Jia, D.Z.; Li, B.K. Experimental Study on The Effect of Nanoparticle Concentration on The Lubricating Property of Nanofluids for MQL Grinding of Ni-Based Alloy. J. Mater. Process. Tech. 2016, 232, 100–115. [Google Scholar] [CrossRef]
- Chinchanikar, S.; Kore, S.S.; Hujare, P.A. Review on Nanofluids in Minimum Quantity Lubrication Machining. J. Manuf. Process. 2021, 68, 56–70. [Google Scholar] [CrossRef]
- Abubakr, M.; Hegab, H.; Osman, T.A.; Elharouni, F.; Kishawy, H.A.; Esawi, A.M. Carbon Nanotube–Based Nanofluids: Properties and Applications. In Handbook of Carbon Nanotubes; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Guan, J.J.; Liu, D.L.; Wang, Y.; Feng, B.H.; Xu, X.F. Tribological Properties of Nanofluid Prepared by Composite of Multi-Walled Carbon Nanotube and Oleic Acid. Tribology 2020, 40, 290–299. [Google Scholar]
- Dosbaeva, G.K.; Hakim, M.A.; Shalaby, M.A. Cutting Temperature Effect on PCBN And CVD Coated Carbide Tools in Hard Turning of D2 Tool Steel. Int. J. Refract. Met. H 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Briggs, D. Surface Analysis of Polymers by XPS and Static SIMS, 1st ed.; Cambridge University Press: Cambridge, NY, USA, 1998. [Google Scholar]
- Rashi, G.; Amzad, K.; Om, P.K. Fatty Acid-Derived Ionic Liquids as Renewable Lubricant Additives: Effect of Chain Length and Unsaturation. J. Mol. Liq. 2020, 301, 112322. [Google Scholar]
- Hegab, H.; Umer, U.; Esawi, A.; Kishawy, H.A. Tribological Mechanisms of Nano-Cutting Fluid Minimum Quantity Lubrication: A Comparative Performance Analysis Model. Int. J. Adv. Manuf. Technol. 2020, 108, 3133–3139. [Google Scholar] [CrossRef]
Ingredient | Mass Content | Function |
---|---|---|
Deionization water | 97.3 wt%–98.4 wt% | Base Fluid |
MWCNTs/composites | 0.1 wt%–1.2 wt% | Lubricant additives |
Tw-80/SDBS surfactant | 0.5 wt% | Activator |
Triethanolamine | 0.5 wt% | Antirust |
Groups | Fluids | Cooling Methods | MQL Conditions |
---|---|---|---|
A1 | Emulsion (1 wt%) | Pressure: 0.5 MPa Rate: 40 mL/h Spray distance: 10 mm | |
A2 | CNTs nanofluids (0.1 wt%) | MQL | |
A3 | Composites nanofluids (0.1 wt%) | ||
B1–B10 | CNTs nanofluids (0.02 wt%–1.1 wt%) | MQL | |
C1–C10 | Composites nanofluids (0.02 wt%–1.1 wt%) |
Cutting Fluids | Main Testing Items | |||
---|---|---|---|---|
F/N | T/°C | Ra/μm | VB/μm | |
1 wt% Emulsion | 218 | 105 | 0.939 | 158 |
0.1 wt% CNTs | 201 | 85 | 0.701 | 134 |
0.1 wt% Composites | 185 | 71 | 0.674 | 105 |
Elements | Concentration of Main Elements | |||
---|---|---|---|---|
Dry Cutting | Emulsion | CNTs Nanofluids | Composite Nanofluids | |
C | 24.41 | 41.34 | 49.47 | 55.11 |
O | 43.57 | 40.05 | 32.69 | 35.97 |
Fe | 32.02 | 18.61 | 17.84 | 8.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Gao, C.; Xu, Z.; Yang, L.; Huang, S. Lubrication Mechanisms of a Nanocutting Fluid with Carbon Nanotubes and Sulfurized Isobutylene (CNTs@T321) Composites as Additives. Lubricants 2022, 10, 189. https://doi.org/10.3390/lubricants10080189
Guan J, Gao C, Xu Z, Yang L, Huang S. Lubrication Mechanisms of a Nanocutting Fluid with Carbon Nanotubes and Sulfurized Isobutylene (CNTs@T321) Composites as Additives. Lubricants. 2022; 10(8):189. https://doi.org/10.3390/lubricants10080189
Chicago/Turabian StyleGuan, Jiju, Chao Gao, Zhengya Xu, Lanyu Yang, and Shuiquan Huang. 2022. "Lubrication Mechanisms of a Nanocutting Fluid with Carbon Nanotubes and Sulfurized Isobutylene (CNTs@T321) Composites as Additives" Lubricants 10, no. 8: 189. https://doi.org/10.3390/lubricants10080189
APA StyleGuan, J., Gao, C., Xu, Z., Yang, L., & Huang, S. (2022). Lubrication Mechanisms of a Nanocutting Fluid with Carbon Nanotubes and Sulfurized Isobutylene (CNTs@T321) Composites as Additives. Lubricants, 10(8), 189. https://doi.org/10.3390/lubricants10080189