Attaining Ultra-Smooth 18CrNiMo7-6 Case Hardening Steel Surfaces with Chemical Mechanical Polishing
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. The Performance of Three Typical Carboxylic Acids in 18CrNiMo7-6 Steel CMP
3.2. Synergistic Effect of Citric Acid and H2O2 on the CMP of 18CrNiMo7-6 Steel
3.3. Characterization of the Surface Film of 18CrNiMo7-6 Steel
3.4. Action Mechanism of Citric Acid and H2O2 in the CMP of 18CrNiMo7-6 Steel
4. Conclusions
- (1)
- In the presence of 0.1 wt% H2O2 at pH 3, compared with formic acid and oxalic acid, citric acid with three additional carbon atoms in addition to carboxylic groups can enhance the MRR of 18CrNiMo7-6 steel without sacrificing surface quality, which may be ascribed to the relatively stable adsorption on the steel’s surface. Citric acid can be used as a suitable complexing agent for the CMP of 18CrNiMo7-6 steel;
- (2)
- An evident synergistic effect existed between citric acid and H2O2. Under acidic conditions, as the H2O2 concentration increased, the MRR of the 18CrNiMo7-6 steel first increased and then gradually decreased, while the surface roughness decreased on the whole. No obvious corrosion and scratches could be found on the surface. Moreover, a satisfactory CMP performance (i.e., 514 nm/min MRR and 0.85 nm surface roughness Sa), was attained with the slurry containing 2 wt% colloidal silica, 0.067 M citric acid and 1 wt% H2O2 at pH 3. No observable processing damage was generated in the substrate;
- (3)
- During CMP, iron was first oxidized to Fe2+ and Fe3+ by H2O2. Then, the citric acid reacted with Fe2+ and Fe3+ on the surface to form complexes such as FeHCit and FeCit. Between the two consecutive mechanical abrasions, the complexes may not have dissolved in the slurry in time, and much may have remained on the surface preventing further corrosion, thereby leading to a surface roughness that was low. However, the surface integrity may have been weakened by the complexes and, therefore, the MRR was high.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, H.; Lei, L.; Qin, M.; Wang, G. Parametric Design on Solving the Maximum Deformation of Traction Helical Gear on Locomotive. J. Phys. Conf. Ser. 2020, 1650, 022020. [Google Scholar] [CrossRef]
- Höhn, B.R.; Michaelis, K. Influence of oil temperature on gear failures. Tribol. Int. 2004, 37, 103–109. [Google Scholar] [CrossRef]
- Kr Singh, D.; Kurien, J.; Villayamore, A. Study and analysis of wind turbine gearbox lubrication failure and its mitigation process. Mater. Today Proc. 2021, 44, 3976–3983. [Google Scholar] [CrossRef]
- Li, J.; Luo, J. Advancements in superlubricity. Sci. China Technol. Sci. 2013, 56, 2877–2887. [Google Scholar] [CrossRef]
- Xu, J.; Li, J. New achievements in superlubricity from international workshop on superlubricity: Fundamental and applications. Friction 2015, 3, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gao, T.; Luo, J. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes. Adv. Sci. 2018, 5, 1700616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Du, Y.; Huang, S.; Meng, F.; Chen, L.; Xie, W.; Chang, K.; Zhang, C.; Lu, Y.; Lin, C.-T.; et al. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces. Adv. Sci. 2020, 7, 1903239. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Adachi, K.; Kato, K. Sliding friction and wear property of a-C and a-CNx coatings against SiC balls in water. Thin Solid Films 2006, 514, 231–239. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Ge, X.; Yi, S.; Wang, H.; Liu, Y.; Luo, J. Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol. ACS Appl. Mater. Interfaces 2020, 12, 18859–18869. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Said, Z.; Zhang, Y.; Li, R.; Debnath, S.; Ali, H.M.; Gao, T.; Long, Y. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. J. Manuf. Processes 2021, 71, 501–514. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Li, C.; Zhou, Z.; Nie, X.; Chen, Y.; Cao, H.; Liu, B.; Zhang, N.; Said, Z.; et al. Biological Stability of Water-Based Cutting Fluids: Progress and Application. Chin. J. Mech. Eng. 2022, 35, 3. [Google Scholar] [CrossRef]
- Speed, D.; Westerhoff, P.; Sierra-Alvarez, R.; Draper, R.; Pantano, P.; Aravamudhan, S.; Chen, K.L.; Hristovski, K.; Herckes, P.; Bi, X.; et al. Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: Towards environmental health and safety assessments. Environ. Sci. Nano 2015, 2, 227–244. [Google Scholar] [CrossRef]
- Lee, H. Environmental impact of concentration of slurry components in thick copper CMP. Int. J. Precis. Eng. Manuf.-Green Technol. 2017, 4, 13–18. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Dai, Y.; Yue, D.; Lu, X.; Luo, J. Achievement of a near-perfect smooth silicon surface. Sci. China Technol. Sci. 2013, 56, 2847–2853. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, J.; Zhang, J.; Liu, D.; Yu, Z.; Guo, D. Environment friendly chemical mechanical polishing of copper. Appl. Surf. Sci. 2019, 467–468, 5–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Hu, W.; Zhang, L.; Xie, W.; Liao, L. Chemical mechanical polishing for sapphire wafers using a developed slurry. J. Manuf. Processes 2021, 62, 762–771. [Google Scholar] [CrossRef]
- Jiang, L.; He, Y.; Luo, J. Effects of pH and oxidizer on chemical mechanical polishing of AISI 1045 steel. Tribol. Lett. 2014, 56, 327–335. [Google Scholar] [CrossRef]
- Jiang, L.; He, Y.; Luo, J. Chemical mechanical polishing of steel substrate using colloidal silica-based slurries. Appl. Surf. Sci. 2015, 330, 487–495. [Google Scholar] [CrossRef]
- Jiang, L.; He, Y.; Yang, Y.; Luo, J. Chemical mechanical polishing of stainless steel as solar cell substrate. ECS J. Solid State Sci. Technol. 2015, 4, P162–P170. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yao, W.; He, Y.; Cheng, Z.; Yuan, J.; Luo, J. An experimental investigation of double-side processing of cylindrical rollers using chemical mechanical polishing technique. Int. J. Adv. Manuf. Technol. 2016, 82, 523–534. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Chen, Y.; Wang, M.; Ge, X. Investigation on S-136 steel surface planarization by chemical mechanical polishing. Microelectron. Eng. 2015, 134, 47–53. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, R.; Wang, Y.; Wang, Z.; Su, J. Study on Dispersant of Hydrogen Peroxide-Oxalic Acid Polishing Slurry in Chemical Mechanical Polishing of 304 Stainless Steel. J. Phys. Conf. Ser. 2020, 1622, 012097. [Google Scholar] [CrossRef]
- Yongsheng, W.; Haixu, L.; Xiaojun, C.; Zhankui, W.; Jianxiu, S. Selection of Surfactants for Hydrogen peroxide-oxalic acid Polishing Slurry in Chemical Mechanical Polishing of 304 Stainless Steel. J. Phys. Conf. Ser. 2020, 1681, 012013. [Google Scholar] [CrossRef]
- Lee, D.; Kim, H.; Pak, B.; Kim, D.; Jeong, H.; Lee, H. Electrochemical Analysis of the Slurry Composition for Chemical Mechanical Polishing of Flexible Stainless-Steel Substrates. J. Frict. Wear 2017, 38, 482–489. [Google Scholar] [CrossRef]
- Kim, T.; Lee, H. Preliminary Study on Fluidized Bed Chemical Mechanical Polishing (FB-CMP) Process for Stainless Steel 304 (SS304). Micromachines 2020, 11, 705. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, Z.; Liu, J.; Li, Y.; Cui, X.; Liu, L. A novel process of chemical mechanical polishing for FV520B steel. J. Manuf. Processes 2020, 59, 51–57. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Wu, H.; Zhong, X.; Qian, L. Performance of Carboxyl Groups in Chemical Mechanical Polishing of GCr15 Bearing Steel: Effects of Carbon Chain Length and pH. Tribol. Lett. 2021, 69, 161. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, L.; Zhong, X.; Liu, J.; Qin, N.; Qian, L. Exploring the role of −NH2 functional groups of ethylenediamine in chemical mechanical polishing of GCr15 bearing steel. Friction 2021, 9, 1673–1687. [Google Scholar] [CrossRef]
- Zhou, G.; Guo, J.; Zhao, J.; Tang, Q.; Hu, Z. Nanoindentation Properties of 18CrNiMo7-6 Steel after Carburizing and Quenching Determined by Continuous Stiffness Measurement Method. Metals 2020, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wei, P.; Liu, H.; Zhang, B.; Tao, G. Effect of shot peening intensity on surface integrity of 18CrNiMo7-6 steel. Surf. Coat. Technol. 2021, 421, 127194. [Google Scholar] [CrossRef]
- Sun, D.; Guo, Z.; Gu, J. The microstructure and crystallography of lath martensite with Greninger-Troiano orientation relationship in a Fe-12.8Ni-1.5Si-0.22%C steel. Mater. Charact. 2021, 181, 111501. [Google Scholar] [CrossRef]
- Moschona, A.; Plesu, N.; Mezei, G.; Thomas, A.G.; Demadis, K.D. Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular size. Corros. Sci. 2018, 145, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Delahay, P.; Pourbaix, M.; Van Rysselberghe, P. Potential-pH diagrams. J. Chem. Educ. 1950, 27, 683. [Google Scholar] [CrossRef]
- Kubal, M.; Panacek, F. Potential-pH diagram for Fe–H2O–citric acid system. Br. Corros. J. 1995, 30, 309–311. [Google Scholar] [CrossRef]
- Beverskog, B.; Puigdomenech, I. Revised pourbaix diagrams for iron at 25–300 °C. Corros. Sci. 1996, 38, 2121–2135. [Google Scholar] [CrossRef]
- Small, L.; Brumbach, M.; Apblett, C.; Ihlefeld, J.F.; Brennecka, G.; Duquette, D. On the Degradation Processes of Thin Film PZT in 0.1 N H2SO4. J. Electrochem. Soc. 2013, 160, C128–C135. [Google Scholar] [CrossRef]
- Liu, T.; Li, T.; Liu, X. TEM and electron diffraction analysis of ω-Fe to cementite transformation in quenched and tempered high carbon steels. AIP Adv. 2019, 9, 045219. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q. A new method of calculating interplanar spacing: The position-factor method. J. Appl. Crystallogr. 2012, 45, 1303–1308. [Google Scholar] [CrossRef]
- Cheng, L.; Böttger, A.; de Keijser, T.H.; Mittemeijer, E.J. Lattice parameters of iron-carbon and iron-nitrogen martensites and austenites. Scr. Metall. Mater. 1990, 24, 509–514. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Mills, P.; Sullivan, J.L. A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 1983, 16, 723–732. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Keller, P.; Strehblow, H.-H. XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4. Corros. Sci. 2004, 46, 1939–1952. [Google Scholar] [CrossRef]
- Barroux, A.; Duguet, T.; Ducommun, N.; Nivet, E.; Delgado, J.; Laffont, L.; Blanc, C. Combined XPS / TEM study of the chemical composition and structure of the passive film formed on additive manufactured 17-4PH stainless steel. Surf. Interfaces 2021, 22, 100874. [Google Scholar] [CrossRef]
- El-Katori, E.E.; Nessim, M.I.; Deyab, M.A.; Shalabi, K. Electrochemical, XPS and theoretical examination on the corrosion inhibition efficacy of stainless steel via novel imidazolium ionic liquids in acidic solution. J. Mol. Liq. 2021, 337, 116467. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 2011, 186, 256–264. [Google Scholar] [CrossRef]
- Du, C.W.; Li, X.G.; Liang, P.; Liu, Z.Y.; Jia, G.F.; Cheng, Y.F. Effects of Microstructure on Corrosion of X70 Pipe Steel in an Alkaline Soil. J. Mater. Eng. Perform. 2009, 18, 216–220. [Google Scholar] [CrossRef]
- De Laat, J.; Le, T.G. Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Appl. Catal. B Environ. 2006, 66, 137–146. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kwon, O.J.; Kang, M.C.; Kim, J.J. Effects of the Functional Groups of Complexing Agents and Cu Oxide Formation on Cu Dissolution Behaviors in Cu CMP Process. J. Electrochem. Soc. 2011, 158, H190. [Google Scholar] [CrossRef]
- Chu, C.M.; Wan, C.C. Effect of citric acid as a chelating agent on anodic behavior of pure iron with potentiostatic polarization and cyclic voltammetry methods. Mater. Chem. Phys. 1993, 33, 189–196. [Google Scholar] [CrossRef]
- Choi, S.; Tripathi, S.; Dornfeld, D.A.; Doyle, F.M. Copper CMP Modeling: Millisecond Scale Adsorption Kinetics of BTA in Glycine-Containing Solutions at pH 4. J. Electrochem. Soc. 2010, 157, H1153. [Google Scholar] [CrossRef]
- Tripathi, S.; Choi, S.; Doyle, F.M.; Dornfeld, D.A. Integrated Tribo-Chemical Modeling of Copper CMP. MRS Online Proc. Libr. 2010, 1157, 203. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, Z.; Wu, B.; Hu, W.; Meng, F.; Li, Y. A review: Green chemical mechanical polishing for metals and brittle wafers. J. Phys. D Appl. Phys. 2021, 54, 373001. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Xiao, G.; Qian, L. High-performance chemical mechanical polishing of GCr15 bearing steel enabled by the synergistic action of oxalic acid and H2O2. J. Solid State Electrochem. 2022, 26, 809–820. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Wu, H.; Zhao, T.; Qian, L. 5-Methyl-1H-Benzotriazole as an Effective Corrosion Inhibitor for Ultra-Precision Chemical Mechanical Polishing of Bearing Steel. J. Electrochem. Soc. 2020, 167, 131502. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Qian, L. Achievement of sub-nanometer surface roughness of bearing steel via chemical mechanical polishing with the synergistic effect of heterocyclic compounds containing N and S. J. Appl. Electrochem. 2022, 52, 357–373. [Google Scholar] [CrossRef]
- Peng, Y.; Shen, B.; Wang, Z.; Yang, P.; Yang, W.; Bi, G. Review on polishing technology of small-scale aspheric optics. Int. J. Adv. Manuf. Technol. 2021, 115, 965–987. [Google Scholar] [CrossRef]
Component | Chemical |
---|---|
Abrasive | Colloidal silica (YZ8040, Shanghai YZ-Lapping Material Co., Ltd., Shanghai, China) |
Complexing agent | Formic acid, oxalic acid or citric acid |
Oxidant | H2O2 |
pH buffer | HNO3 and KOH |
Others | Ultrapure water |
Parameter | Value |
---|---|
Set pressure displayed on the panel | 5 kg |
Carrier speed | 60 rpm |
Platen speed | 60 rpm |
Slurry flow rate | 100 mL/min |
Time of each polishing | 1 min |
Polishing pad | IC1010/Suba-IV polyurethane pad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Gao, Y.; Jiang, L.; Liu, J.; Qian, L. Attaining Ultra-Smooth 18CrNiMo7-6 Case Hardening Steel Surfaces with Chemical Mechanical Polishing. Lubricants 2022, 10, 199. https://doi.org/10.3390/lubricants10090199
Peng W, Gao Y, Jiang L, Liu J, Qian L. Attaining Ultra-Smooth 18CrNiMo7-6 Case Hardening Steel Surfaces with Chemical Mechanical Polishing. Lubricants. 2022; 10(9):199. https://doi.org/10.3390/lubricants10090199
Chicago/Turabian StylePeng, Wumao, Yang Gao, Liang Jiang, Jinwei Liu, and Linmao Qian. 2022. "Attaining Ultra-Smooth 18CrNiMo7-6 Case Hardening Steel Surfaces with Chemical Mechanical Polishing" Lubricants 10, no. 9: 199. https://doi.org/10.3390/lubricants10090199
APA StylePeng, W., Gao, Y., Jiang, L., Liu, J., & Qian, L. (2022). Attaining Ultra-Smooth 18CrNiMo7-6 Case Hardening Steel Surfaces with Chemical Mechanical Polishing. Lubricants, 10(9), 199. https://doi.org/10.3390/lubricants10090199