Non-Polar Chain-Enabled Suspension of Carbon Nanoparticles in Base Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization Techniques
3. Results and Discussions
3.1. Structural Analysis
3.2. Suspension Stability
4. Rheological Properties
4.1. Tribological Performance
4.2. Proposed Mechanism
5. Conclusions
- DDA-CNPs remained stably suspended in PAO oil for over 60 days, significantly improved compared to the 3–7-day suspension time of unmodified particles.
- Rheological measurements revealed that the DDA-CNPs resulted in better viscosity stability and a lower value across a range of temperatures and shear rates as compared to base PAO.
- Tribological tests showed a marked reduction in the friction coefficient with the addition of DDA-CNPs, highlighting their effectiveness in reducing friction by around 15–26% for different loads and speeds.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, K.; Yang, X.; Lv, G.; Zhang, Y.; Yang, H.; Gao, Y. Research Progress of Surface Modification and Solid–Liquid Lubrication Synergistic Friction Reduction and Wear Resistance. Int. J. Adv. Manuf. Technol. 2022, 122, 1115–1141. [Google Scholar] [CrossRef]
- Chen, Y.; Jha, S.; Raut, A.; Zhang, W.; Liang, H. Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs. Front. Mech. Eng. 2020, 6, 571464. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; Stump, B.C.; Connatser, R.M.; Lazarevic, S.; Qu, J. Impact of Fuel Contents on Tribological Performance of PAO Base Oil and ZDDP. Lubricants 2018, 6, 79. [Google Scholar] [CrossRef]
- Biresaw, G. Biobased Polyalphaolefin Base Oil: Chemical, Physical, and Tribological Properties. Tribol. Lett. 2018, 66, 76. [Google Scholar] [CrossRef]
- Shah, R.; Das, M.; Kabir, H.; Liang, H.; Salvi, L.; Bunting, L. Additive and Base Oil Trends in Ev Applications. J. Tribol. 2024, 1–18. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Z.; Liu, S.; Ma, L.; Zhan, T.; Wang, J. Synthesis of MXene-Based Self-Dispersing Additives for Enhanced Tribological Properties. Tribol. Lett. 2022, 70, 63. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.; Roy, R.; Younis, H.; AlNahyan, M.; Younes, H. Carbon Nanomaterial-Based Lubricants: Review of Recent Developments. Lubricants 2022, 10, 281. [Google Scholar] [CrossRef]
- Kotia, A.; Chowdary, K.; Srivastava, I.; Ghosh, S.K.; Ali, M.K.A. Carbon Nanomaterials as Friction Modifiers in Automotive Engines: Recent Progress and Perspectives. J. Mol. Liq. 2020, 310, 113200. [Google Scholar] [CrossRef]
- Liñeira del Río, J.M.; López, E.R.; Fernández, J. Tribological Properties of Graphene Nanoplatelets or Boron Nitride Nanoparticles as Additives of a Polyalphaolefin Base Oil. J. Mol. Liq. 2021, 333, 115911. [Google Scholar] [CrossRef]
- Nyholm, N.; Espallargas, N. Functionalized Carbon Nanostructures as Lubricant Additives—A Review. Carbon 2023, 201, 1200–1228. [Google Scholar] [CrossRef]
- Raina, A.; Irfan Ul Haq, M.; Anand, A.; Sudhanraj, J. Lubrication Characteristics of Oils Containing Nanoadditives: Influencing Parameters, Market Scenario and Advancements. J. Inst. Eng. Ser. D 2021, 102, 575–587. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of Nanoparticles in Lubricating Oil: A Critical Review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef]
- Moshkovith, A.; Perfiliev, V.; Verdyan, A.; Lapsker, I.; Popovitz-Biro, R.; Tenne, R.; Rapoport, L. Sedimentation of IF-WS2 Aggregates and a Reproducibility of the Tribological Data. Tribol. Int. 2007, 40, 117–124. [Google Scholar] [CrossRef]
- Lu, H.; Tang, W.; Liu, X.; Wang, B.; Huang, Z. Oleylamine-Modified Carbon Nanoparticles as a Kind of Efficient Lubricating Additive of Polyalphaolefin. J. Mater. Sci. 2017, 52, 4483–4492. [Google Scholar] [CrossRef]
- Liñeira del Río, J.M.; Alonso Pérez, G.; Martínez, A.; Peña, D.; Fernández, J. Tribological Improvement of Potential Lubricants for Electric Vehicles Using Double Functionalized Graphene Oxide as Additives. Tribol. Int. 2024, 193, 109402. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Z.; Liu, L.; Cao, Y.; Cheng, Y.; Chen, D. Preparation of Chemically Functionalized Graphene with Excellent Dispersibility and Tribological Properties as Lubricant Additives by Microwave-Assisted Ball Milling. J. Mol. Liq. 2021, 344, 117929. [Google Scholar] [CrossRef]
- Paul, G.; Shit, S.; Hirani, H.; Kuila, T.; Murmu, N.C. Tribological Behavior of Dodecylamine Functionalized Graphene Nanosheets Dispersed Engine Oil Nanolubricants. Tribol. Int. 2019, 131, 605–619. [Google Scholar] [CrossRef]
- Johnson, E.; Cook, D.; Yollin, P.; Adler, A. Graphene Synthesis Unit 2022. U.S. Patent 20220380218, 1 December 2022. [Google Scholar]
- Uhlig, M.R.; Martin-Jimenez, D.; Garcia, R. Atomic-Scale Mapping of Hydrophobic Layers on Graphene and Few-Layer MoS2 and WSe2 in Water. Nat. Commun. 2019, 10, 2606. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M.; Jin, L.; Li, L.; Mo, Y.; Su, G.; Li, X.; Zhu, H.; Tian, Y. Recent Advances in Friction and Lubrication of Graphene and Other 2D Materials: Mechanisms and Applications. Friction 2019, 7, 199–216. [Google Scholar]
- Woods, C.R.; Britnell, L.; Eckmann, A.; Ma, R.S.; Lu, J.C.; Guo, H.M.; Lin, X.; Yu, G.L.; Cao, Y.; Gorbachev, R.V.; et al. Commensurate-Incommensurate Transition in Graphene on Hexagonal Boron Nitride. Nat. Phys. 2014, 10, 451–456. [Google Scholar] [CrossRef]
- Mao, L.; Park, H.; Soler-Crespo, R.A.; Espinosa, H.D.; Han, T.H.; Nguyen, S.B.T.; Huang, J. Stiffening of Graphene Oxide Films by Soft Porous Sheets. Nat. Commun. 2019, 10, 3677. [Google Scholar] [CrossRef]
- Kinoshita, H.; Nishina, Y.; Alias, A.A.; Fujii, M. Tribological Properties of Monolayer Graphene Oxide Sheets as Water-Based Lubricant Additives. Carbon 2014, 66, 720–723. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Du, H.; Miller, J.D. States of Adsorbed Dodecyl Amine and Water at a Silica Surface as Revealed by Vibrational Spectroscopy. Langmuir 2010, 26, 3407–3414. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Francisco, W.; De Menezes, B.R.C.; Cividanes, L.D.S.; Coutinho, A.D.R.; Thim, G.P. Carbon Nanotube Functionalized with Dodecylamine for the Effective Dispersion in Solvents. Appl. Surf. Sci. 2015, 357, 2154–2159. [Google Scholar] [CrossRef]
- Arole, K.; Tajedini, M.; Sarmah, A.; Athavale, S.; Green, M.J.; Liang, H. Effects of Ti3C2Tz MXene Nanoparticle Additive on Fluidic Properties and Tribological Performance. J. Mol. Liq. 2023, 386, 122435. [Google Scholar] [CrossRef]
- Zolper, T.J.; Seyam, A.M.; Chen, C.; Jungk, M.; Stammer, A.; Stoegbauer, H.; Marks, T.J.; Chung, Y.W.; Wang, Q. Energy Efficient Siloxane Lubricants Utilizing Temporary Shear-Thinning. Tribol. Lett. 2013, 49, 525–538. [Google Scholar] [CrossRef]
- Yasuda, K.; Armstrong, R.C.; Cohen, R.E. Shear Flow Properties of Concentrated Solutions of Linear and Star Branched Polystyrenes. Rheol. Acta 1981, 20, 163–178. [Google Scholar] [CrossRef]
- Carreau, P.J. Rheological Equations from Molecular Network Theories. Trans. Soc. Rheol. 1972, 16, 99–127. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Ye, M.; Liu, Z. On the Shear Viscosity of Dilute Suspension Containing Elliptical Porous Particles at Low Reynolds Number. Powder Technol. 2019, 354, 108–114. [Google Scholar] [CrossRef]
- Ke, H.; Yuan, M.; Xia, S. A Review of Nanomaterials as Viscosity Reducer for Heavy Oil. J. Dispers. Sci. Technol. 2022, 43, 1271–1282. [Google Scholar] [CrossRef]
- Chouhan, A.; Mungse, H.P.; Khatri, O.P. Surface Chemistry of Graphene and Graphene Oxide: A Versatile Route for Their Dispersion and Tribological Applications. Adv. Colloid. Interface Sci. 2020, 283, 102215. [Google Scholar] [CrossRef] [PubMed]
- Mungse, H.P.; Singh, R.; Sugimura, H.; Kumar, N.; Khatri, O.P. Molecular Pillar Supported Graphene Oxide Framework: Conformational Heterogeneity and Tunable d-Spacing. Phys. Chem. Chem. Phys. 2015, 17, 20822–20829. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Duan, F. Friction Properties of Carbon Nanoparticles (Nanodiamond and Nanoscroll) Confined between DLC and a-SiO2 Surfaces. Tribol. Int. 2020, 145, 106153. [Google Scholar] [CrossRef]
- Kabir, M.H.; Dias, D.; Arole, K.; Bahrami, R.; Sue, H.J.; Liang, H. Hydrophilized MoS2 as Lubricant Additive. Lubricants 2024, 12, 80. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Zhou, Y.; Lee, K.R.; Wang, A. Insights into Friction Dependence of Carbon Nanoparticles as Oil-Based Lubricant Additive at Amorphous Carbon Interface. Carbon 2019, 150, 465–474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, M.H.; Dias, D.; Johnson, E.; Kosmoski, J.; Liang, H. Non-Polar Chain-Enabled Suspension of Carbon Nanoparticles in Base Oil. Lubricants 2024, 12, 373. https://doi.org/10.3390/lubricants12110373
Kabir MH, Dias D, Johnson E, Kosmoski J, Liang H. Non-Polar Chain-Enabled Suspension of Carbon Nanoparticles in Base Oil. Lubricants. 2024; 12(11):373. https://doi.org/10.3390/lubricants12110373
Chicago/Turabian StyleKabir, M. Humaun, Darrius Dias, Evan Johnson, Joe Kosmoski, and Hong Liang. 2024. "Non-Polar Chain-Enabled Suspension of Carbon Nanoparticles in Base Oil" Lubricants 12, no. 11: 373. https://doi.org/10.3390/lubricants12110373
APA StyleKabir, M. H., Dias, D., Johnson, E., Kosmoski, J., & Liang, H. (2024). Non-Polar Chain-Enabled Suspension of Carbon Nanoparticles in Base Oil. Lubricants, 12(11), 373. https://doi.org/10.3390/lubricants12110373