Tribological Properties of Multilayer DLC/MoS2 Nanocomposite Coatings on Microtextured Titanium Alloy Surfaces
Abstract
:1. Introduction
2. Experimental Section
2.1. The Preparation of Microtexture
2.2. The Preparation of Multilayer Composite Nanocoatings
2.3. Characterization of Structure and Properties of Textured Multilayer Composite Coatings
3. Results and Discussions
3.1. Microstructure and Mechanical Properties of Textured Multilayer Composite Nanocoatings
3.2. Influence of Different Conditions on Friction Coefficient
3.2.1. Effect of Surface Conditions on Tribology
3.2.2. Effect of Friction Duration on Friction Coefficient
3.2.3. Effect of Friction Temperature on Friction Coefficient
3.3. Wear Trace Morphology of Samples under Different Conditions
3.3.1. Wear Trace Morphology of Samples under Different Surface Conditions
3.3.2. Wear Trace Morphology of Samples under Different Friction Duration
3.3.3. Wear Trace Morphology of Samples at Different Friction Temperatures
4. Conclusions
- (1)
- Under the same friction conditions, the average friction coefficients of the three coatings were 0.4122, 0.1094 and 0.0978. Through the EDS analyses of the dyadic spheres and the abrasion mark area, the coatings produced certain abrasive debris during the friction process, which could form a stable transfer film during the friction process thanks to the good lubrication performance of the nanocoatings, thus maintaining a very low friction coefficient. Meanwhile, the trapping effect of the woven texture on the abrasive debris makes the fluctuation of the friction coefficient smaller after the treatment of the woven coating.
- (2)
- The high hardness characteristics of multilayer composite nanocoatings result in minimal deformation of the texture during friction. Combined with the capture effect of microtextures on debris, the textured coating has the lowest wear under the same conditions and the best wear resistance.
- (3)
- In the long cycle friction experiment of textured coatings, the textured composite coating still has an extremely low friction coefficient and less wear under high friction cycles (7200 cycles) and has the characteristics of long-life lubrication.
- (4)
- Textured composite coatings can achieve low friction coefficients at a high temperature (200 °C), but their wear resistance has decreased. As the temperature increases, the friction coefficient of the textured coating shows a trend of first decreasing and then increasing, but all values remain relatively low.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Zhou, H.; Zhang, D.; Zhang, P.; Zhou, T. Influence of varying distribution distance and angle on fatigue wear resistance of 40Cr alloy steel with laser bionic texture. Mater. Chem. Phys. 2022, 277, 125515–125525. [Google Scholar] [CrossRef]
- Vidyasagar, K.E.C.; Pandey, R.K.; Kalyanasundaram, D. Improvement of Deep Groove Ball Bearing’s Performance Using a Bionic Textured Inner Race. J. Bionic Eng. 2021, 18, 974–990. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, X.; Cheng, J.; Wang, S.; Duan, D.; Xiao, J.; Li, W. Optimization of Performance Parameters and Mechanism of Bionic Texture on Friction Surface. Coatings 2020, 10, 171. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, X.; Xue, Y.; Zhang, K.; Gao, Y.; Wu, C. Synergetic effects of biomimetic microtexture with multi-solid lubricants to improve tribological properties of AISI 4140 steel. Tribol. Int. 2022, 167, 107395–107409. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, Y.; Yi, P.; Yin, X.; Fan, C.; Ma, J. Parameter-dependent tribological properties of sinusoidal-textured plasma-sprayed coatings. Tribol. Int. 2022, 174, 107738–107749. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Luo, T.; Xiao, G.; Yi, M.; Chen, Z.; Zhang, J.; Xu, C. Tribological properties of laser surface texturing modified GCr15 steel under graphene/5CB lubrication. J. Mater. Res. Technol. 2022, 18, 3598–3611. [Google Scholar] [CrossRef]
- Mutyala, K.C.; Wu, Y.A.; Erdemir, A.; Sumant, A.V. Graphene-MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon 2019, 146, 524–527. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Q.; Bai, Y.; Sun, Y.; Li, Z.; Bao, M.; Zhan, H.; Guo, D.; Ma, Y. Tribological behavior of plasma-sprayed metal based solid self-lubricating coatings under heavy load. Wear 2021, 486–487, 204108–204117. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Hou, K.; Ma, L.; Li, Z.; Jia, W.; Wang, H.; Wang, J.; Yang, S. Friction-induced construction of PTFE-anchored MXene heterogeneous lubricating coating and its in-situ tribological transfer mechanism. Chem. Eng. J. 2022, 442, 136238–136248. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, C.; Shi, X.; Xue, Y.; Zhang, K. Synergistic lubrication mechanisms of AISI 4140 steel in dual lubrication systems of multi-solid coating and oil lubrication. Tribol. Int. 2022, 169, 107484–107495. [Google Scholar] [CrossRef]
- Yan, M.; Wang, X.; Zhang, S.; Zhang, S.; Sui, X.; Li, W.; Hao, J.; Liu, W. Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication. Tribol. Int. 2020, 143, 106067–106077. [Google Scholar] [CrossRef]
- Yu, G.; Gong, Z.; Jiang, B.; Wang, D.; Bai, C.; Zhang, J. Superlubricity for hydrogenated diamond like carbon induced by thin MoS2 and DLC layer in moist air. Diam. Relat. Mater. 2020, 102, 107668–107675. [Google Scholar] [CrossRef]
- Tian, J.; Jin, J.; Zhang, C.; Xu, J.; Qi, W.; Yu, Q.; Deng, W.; Wang, Y.; Li, X.; Chen, X.; et al. Shear-induced interfacial reconfiguration governing superlubricity of MoS2-Ag film enabled by diamond-like carbon. Appl. Surf. Sci. 2022, 578, 152068–152081. [Google Scholar] [CrossRef]
- Enke, K.; Dimigen, H.; Hubsch, H. Frictional-properties of diamond-like carbon layers. Appl. Phys. Lett. 1998, 36, 291–292. [Google Scholar] [CrossRef]
- Dimigen, H.; Hubsch, H. Applying low-friction wear-resistant thin solid films by physical vapour deposition. Phillips Tech. Rev. 1983, 41, 186–197. [Google Scholar]
- Wang, M.; Schmidt, K.; Reichelt, K.; Dimigen, H.; Hübsch, H. Characterization of metal-containing amorphous hydrogenated carbon films. J. Mater. Res. 1992, 7, 667–676. [Google Scholar] [CrossRef]
- Wei, Q.; Sharma, A.; Sankar, J.; Narayan, J. Mechanical properties of diamond-like carbon composite thin films prepared by pulsed laser deposition. Compos. Part B Eng. 1999, 30, 675–684. [Google Scholar] [CrossRef]
- Ajayi, O.O.; Kovalchenko, A.; Hersberger, J.G.; Erdemir, A.; Fenske, G.R. Surface damage and wear mechanisms of amorphous carbon coatings under boundary lubrication conditions. Surf. Eng. 2003, 19, 447–453. [Google Scholar] [CrossRef]
- Gassner, G.; Patscheider, J.; Mayrhofer, P.H.; Šturm, S.; Scheu, C. Tribological properties of nanocomposite CrCx/a-C:H thin films. Tribol. Lett. 2007, 27, 97–104. [Google Scholar] [CrossRef]
- Gassner, G.; Patscheider, J.; Mayrhofer, P.H.; Hegedus, E.; Tóth, L.; Kovacs, I.; Pécz, B.; Srot, V.; Scheu, C.; Mitterer, C. Structure of sputtered nanocomposite CrCx/a-C:H thin films. J. Vac. Sci. Technol. B 2006, 24, 1837–1843. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Surya, P.M.; Sridhara, R.D.V.; Rajam, K. Superhard nanocomposite coatings of TiN/a-C prepared by reactive DC magnetron sputtering. Surf. Coat. Technol. 2005, 195, 147–153. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Surya, P.M.; Aithu, P.; Rajam, K. Corrosion behavior of TiN/a-C superhard nanocomposite coatings prepared by a reactive DC magnetron sputtering process. Trans. Inst. Met. Finish. 2004, 85, 1–7. [Google Scholar]
- Jiang, A.; Cao, X.; Wang, Z.; Ma, J.; Xiao, J.; Ma, S. Friction performance and corrosion resistance of MoS2/DLC composite films deposited by magnetron sputtering. Results Phys. 2021, 25, 104278–104287. [Google Scholar] [CrossRef]
- Cheng, B.; Li, Y.C.; Qiu, M. Tribological properties of graphene/MoS2 composite coatings in multiple environments. Lubr. Eng. 2021, 46, 66–73. [Google Scholar]
- Zhao, S.; Li, J.; Wang, R.; Ye, Q.; Mai, Y. Tribological properties of defect-rich molybdenum disulfide/graphene oxide composite coating under various environments. Vacuum 2022, 202, 111125–111131. [Google Scholar] [CrossRef]
- Zhou, L.; Ding, Y.; Cai, Z.B. Research on impact wear behavior of MoS2/C composite coating under different pairs of grinding pairs. Lubr. Eng. 2021, 46, 31–37. [Google Scholar]
- Yang, Y.; Fan, X.; Yue, Z.; Li, W.; Li, H.; Zhu, M. Synergistic lubrication mechanisms of molybdenum disulfide film under graphene-oil lubricated conditions. Appl. Surf. Sci. 2022, 598, 153845–153853. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. Supertough wear-resistant coatings with “chameleon”surface adaptation. Thin Solid Film. 2000, 370, 223–231. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Klobcar, D.; Podgornik, B. Tribological response of laser-textured Ti6Al4V alloy under dry conditions and lubricated with Hank’s solution. Tribol. Int. 2021, 160, 107049–107057. [Google Scholar] [CrossRef]
- Niu, Y.; Pang, X.; Yue, S.; Bao, S.; Zhang, Y. The friction and wear behavior of laser textured surfaces in non-conformal contact under starved lubrication. Wear 2021, 476, 203723–203730. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, W.; Lu, W.; Du, X. Preparation and tribological properties of micro-textured diamond/WSx coatings. Surf. Coat. Technol. 2020, 403, 126369–126378. [Google Scholar] [CrossRef]
- Yang, J.; Fu, H.; He, Y.; Gu, Z.; Fu, Y.; Ji, J.; Zhang, Y.; Zhou, Y. Investigation on friction and wear performance of volcano-shaped textured PVD coating. Surf. Coat. Technol. 2022, 431, 128044–128056. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Venturi, F.; Romero, A.R.; Hussain, T. Microstructure and wear performance of alumina/graphene coating on textured Al2O3/TiC substrate composites. J. Eur. Ceram. Soc. 2021, 41, 1438–1451. [Google Scholar] [CrossRef]
- Gateman, S.M.; Alidokht, S.A.; Mena-Morcillo, E.; Schulz, R.; Chromik, R.R.; Kietzig, A.-M.; Parkin, I.P.; Mauzeroll, J. Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies. Surf. Coat. Technol. 2021, 426, 127790–127800. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, M.; Huang, Y.; Zhou, X.; Ma, G.; Wang, H.; Xing, Z. Microstructure, Phase Composition, Mechanical Properties and Tribological Properties of Plasma Sprayed Al-25Si Wear-Resistant Coatings. Surfaces 2022, 5, 350–364. [Google Scholar] [CrossRef]
- Niu, Y.; Pang, X.; Yue, S.; Wang, S.; Song, C.; Bao, S.; Zhang, Y. Improving tribological properties of Ti-Zr alloys under starved lubrication by combining thermal oxidation and laser surface texturing. Wear 2022, 496–497, 204279–204289. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Dong, D.; Wang, J.; Zhou, L. Improving wear resistance of Zr-2.5Nb alloy by formation of microtextured nitride layer produced via laser surface texturing/plasma nitriding technology. Surf. Interfaces 2020, 20, 100638–100645. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, B.; Liu, Y.; Liu, Y. State of the art for improving tribological performance based on of surface texturing technology. Tribology 2022, 42, 212–215. [Google Scholar]
- Bathe, R.; Krishna, V.S.; Nikumb, S.K. Laser surface texturing of gray cast iron for improving tribological behavior. Appl. Phys. A 2014, 117, 117–123. [Google Scholar] [CrossRef]
- Dumitru, G.; Romano, V.; Gerbig, Y.; Weber, H.; Haefke, H. Femtosecond laser processing of nitride-based thin films to improve their tribological performance. Appl. Phys. A 2005, 80, 283–287. [Google Scholar] [CrossRef]
- Suh, N.P.; Sin, H.C. The genesis of friction. Wear 1981, 69, 91–114. [Google Scholar] [CrossRef]
- Chalkiopoulos, M.; Charitopoulos, A.; Fillon, M.; Papadopoulos, C.I. Effects of thermal and mechanical deformations on textured thrust bearings optimally designed by a THD calculation method. Tribol. Int. 2020, 148, 106303. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, S.Y.; Dai, Q.W.; Huang, W.; Wang, X.L. Research progress in coordinated optimization of lubrication and leakage for texture mechanical seals. Surface Technol. 2019, 48, 1–8. [Google Scholar]
- Ma, Z.; Lei, Y.; Fan, H.Z.; Hu, T.C.; Zhang, J.X.; Song, J.J.; Hu, L.T. Preparation of tungsten disulfide phosphate coating on textured titanium alloy surface and its tribological properties at elevated temperatures. Tribology 2023, 43, 469–480. [Google Scholar]
- Wong, S.K.; Lu, X.; Cotter, J.; Eadie, D.T.; Wong, P.C.; Mitchell, K.A.R. Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling–sliding contact. Wear 2008, 264, 526–534. [Google Scholar] [CrossRef]
Target | Magnetron Time (s) | Magnetron Current (A) |
---|---|---|
MoS2 | 40 | 0.8 |
DLC | 40 | 0.6 |
Working Condition | Load (N) | Sliding Speed (mm/s) | Sliding Stroke (mm) | Sliding Period | Sliding Duration (min) |
---|---|---|---|---|---|
1 | 4 | 20 | 10 | 900 | 15 |
2 | 1800 | 30 | |||
3 | 3600 | 60 | |||
4 | 7200 | 120 |
Working Condition | Load (N) | Sliding Speed (mm/s) | Sliding Stroke (mm) | Sliding Period | Temperature (℃) |
---|---|---|---|---|---|
1 | 4 | 20 | 10 | 900 | 25 |
2 | 100 | ||||
3 | 150 | ||||
4 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Ding, Q.; Peng, H.; Guan, K.; Xi, X.; Kong, N.; Liao, M. Tribological Properties of Multilayer DLC/MoS2 Nanocomposite Coatings on Microtextured Titanium Alloy Surfaces. Lubricants 2024, 12, 374. https://doi.org/10.3390/lubricants12110374
Liu K, Ding Q, Peng H, Guan K, Xi X, Kong N, Liao M. Tribological Properties of Multilayer DLC/MoS2 Nanocomposite Coatings on Microtextured Titanium Alloy Surfaces. Lubricants. 2024; 12(11):374. https://doi.org/10.3390/lubricants12110374
Chicago/Turabian StyleLiu, Ke, Qingqing Ding, Hao Peng, Kang Guan, Xiaowan Xi, Ning Kong, and Maolin Liao. 2024. "Tribological Properties of Multilayer DLC/MoS2 Nanocomposite Coatings on Microtextured Titanium Alloy Surfaces" Lubricants 12, no. 11: 374. https://doi.org/10.3390/lubricants12110374
APA StyleLiu, K., Ding, Q., Peng, H., Guan, K., Xi, X., Kong, N., & Liao, M. (2024). Tribological Properties of Multilayer DLC/MoS2 Nanocomposite Coatings on Microtextured Titanium Alloy Surfaces. Lubricants, 12(11), 374. https://doi.org/10.3390/lubricants12110374