Assessing the Tribological Impact of 3D Printed Carbon-Reinforced ABS Composite Cylindrical Gears
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- Printing temperature (P): 250 °C (low) to 270 °C (high)
- Annealing temperature (A): 110 °C (low) to 130 °C (high)
- -
- Factorial points: 22 factorial combinations of the low and high levels for each factor.
- -
- Axial points: Axial points were added at ±α (, which is approximately 1.414, extending beyond the range of the factorial points to estimate curvature).
- -
- Center points: Five replicates of the central condition were included to evaluate experimental error and provide an internal check for the adequacy of the model. The levels (low, center and high) for the considered printing parameters are presented in Table 1.
- -
- Four factorial points at (±1, ±1) (runs 1–4) representing the combinations of high and low levels of printing and annealing temperatures,
- -
- Four axial points (±α, 0) and (0, ±α) (runs 5–8) extending beyond the factorial range, allowing for the detection of curvature in the response surface,
- -
- Five center points at the mid-level of each factor (runs 9–13), repeated to estimate the pure error, providing robustness to the model.
2.2. 3D Printing of Specimens
2.3. Tribological Testing
3. Results and Discussion
3.1. Experimental Results Regarding the Tribological Properties of ABS–CF 3D Printed Samples
3.2. ANOVA Analysis
3.3. Multi-Response Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Letcher, T.; Waytashek, M. Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer. In Advanced Manufacturing, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; American Society of Mechanical Engineers: Montreal, QC, Canada, 2014; Volume 2A, p. V02AT02A014. [Google Scholar]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Adeniran, O.; Cong, W.; Bediako, E.; Aladesanmi, V. Additive Manufacturing of Carbon Fiber Reinforced Plastic Composites: The Effect of Fiber Content on Compressive Properties. J. Compos. Sci. 2021, 5, 325. [Google Scholar] [CrossRef]
- Dickson, A.N.; Barry, J.N.; McDonnell, K.A.; Dowling, D.P. Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing. Addit. Manuf. 2017, 16, 146–152. [Google Scholar] [CrossRef]
- Lobov, E.; Dobrydneva, A.; Vindokurov, I.; Tashkinov, M. Effect of Short Carbon Fiber Reinforcement on Mechanical Properties of 3D-Printed Acrylonitrile Butadiene Styrene. Polymers 2023, 15, 2011. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.N.; Yahya, A. Effects of 3D Printing Parameters on Mechanical Properties of ABS Samples. Designs 2023, 7, 136. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Experimental Validation of Numerical Model for Thermomechanical Performance of Material Extrusion Additive Manufacturing Process: Effect of Process Parameters. Polymers 2022, 14, 3482. [Google Scholar] [CrossRef]
- Akıncıoğlu, G.; Şirin, E.; Aslan, E. Tribological Characteristics of ABS Structures with Different Infill Densities Tested by Pin-on-Disc. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2023, 237, 1224–1234. [Google Scholar] [CrossRef]
- Ulkir, O.; Ertugrul, I.; Ersoy, S.; Yağımlı, B. The Effects of Printing Temperature on the Mechanical Properties of 3D-Printed Acrylonitrile Butadiene Styrene. Appl. Sci. 2024, 14, 3376. [Google Scholar] [CrossRef]
- Arjun, P.; Bidhun, V.K.; Lenin, U.K.; Amritha, V.P.; Pazhamannil, R.V.; Govindan, P. Effects of Process Parameters and Annealing on the Tensile Strength of 3D Printed Carbon Fiber Reinforced Polylactic Acid. Mater. Today Proc. 2022, 62, 7379–7384. [Google Scholar] [CrossRef]
- Butt, J.; Bhaskar, R. Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics. JMMP 2020, 4, 38. [Google Scholar] [CrossRef]
- Seok, W.; Jeon, E.; Kim, Y. Effects of Annealing for Strength Enhancement of FDM 3D-Printed ABS Reinforced with Recycled Carbon Fiber. Polymers 2023, 15, 3110. [Google Scholar] [CrossRef] [PubMed]
- Dawoud, M.; Taha, I.; Ebeid, S.J. Effect of processing parameters and graphite content on the tribological behaviour of 3D printed acrylonitrile butadiene styrene: Einfluss von Prozessparametern und Graphitgehalt auf das tribologische Verhalten von 3D-Druck Acrylnitril-Butadien-Styrol Bauteilen. Mater. Werkst 2015, 46, 1185–1195. [Google Scholar] [CrossRef]
- He, Y.; Shen, M.; Wang, Q.; Wang, T.; Pei, X. Effects of FDM Parameters and Annealing on the Mechanical and Tribological Properties of PEEK. Compos. Struct. 2023, 313, 116901. [Google Scholar] [CrossRef]
- El Magri, A.; Vaudreuil, S. Optimizing the Mechanical Properties of 3D-Printed PLA-Graphene Composite Using Response Surface Methodology. Arch. Mater. Sci. Eng. 2021, 112, 13–22. [Google Scholar] [CrossRef]
- Mourya, V.; Bhore, S.P.; Wandale, P.G. Multiobjective Optimization of Tribological Characteristics of 3D Printed Texture Surfaces for ABS and PLA Polymers. J. Thermoplast. Compos. Mater. 2024, 37, 772–799. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant Fibre Based Bio-Composites: Sustainable and Renewable Green Materials. Renew. Sustain. Energy Rev. 2017, 79, 558–584. [Google Scholar] [CrossRef]
- Pervaiz, S.; Qureshi, T.A.; Kashwani, G.; Kannan, S. 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review. Materials 2021, 14, 4520. [Google Scholar] [CrossRef]
- Ranaiefar, M.; Singh, M.; Halbig, M.C. Additively Manufactured Carbon-Reinforced ABS Honeycomb Composite Structures and Property Prediction by Machine Learning. Molecules 2024, 29, 2736. [Google Scholar] [CrossRef]
- Valvez, S.; Reis, P.N.B.; Ferreira, J.A.M. Effect of Annealing Treatment on Mechanical Properties of 3D-Printed Composites. J. Mater. Res. Technol. 2023, 23, 2101–2115. [Google Scholar] [CrossRef]
- Wang, K.; Li, S.; Rao, Y.; Wu, Y.; Peng, Y.; Yao, S.; Zhang, H.; Ahzi, S. Flexure Behaviors of ABS-Based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing. Polymers 2019, 11, 1878. [Google Scholar] [CrossRef] [PubMed]
- Ziemian, C.; Sharma, M.; Ziemi, S. Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling. In Mechanical Engineering; Gokcek, M., Ed.; InTech: Incheon, Republic of Korea, 2012; ISBN 978-953-51-0505-3. [Google Scholar]
- Portoaca, A.-I.; Ripeanu, G.-R.; Nae, I.; Tanase, M. The Influence of 3D Printing Parameters and Heat Treatment on Tribological Behavior. Acta Tech. Napoc. 2023, 66, 537–546. [Google Scholar]
- Portoacă, A.I.; Ripeanu, R.G.; Diniță, A.; Tănase, M. Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance. Polymers 2023, 15, 3419. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Mukhopadhyay, A. Tribological Studies of 3D Printed ABS and PLA Plastic Parts. Mater. Today Proc. 2021, 41, 856–862. [Google Scholar] [CrossRef]
Factor | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Printing temperature (°C) | 250 | 260 | 270 |
Annealing temperature (°C) | 110 | 120 | 130 |
Exp. No. | Printing Temperature, P (°C) | Annealing Temperature, A (°C) |
---|---|---|
1 | 250 | 110 |
2 | 270 | 110 |
3 | 250 | 130 |
4 | 270 | 130 |
5 | 246 | 120 |
6 | 274 | 120 |
7 | 260 | 106 |
8 | 260 | 134 |
9 | 260 | 120 |
10 | 260 | 120 |
11 | 260 | 120 |
12 | 260 | 120 |
13 | 260 | 120 |
Geometric Parameters | Values |
---|---|
Number of teeth | 12 |
Module | 4.5 mm |
Pressure angle | 20° |
Type of gearing | External |
Tip diameter | 63 mm |
Pitch diameter | 54 mm |
Root diameter | 42.75 mm |
Base diameter | 50.7434 mm |
Addendum | 4.5 mm |
Dedendum | 5.625 mm |
Width | 8.5 mm |
Shaft mounting diameter | 10 mm |
Exp. No. | Factor | Response | ||||
---|---|---|---|---|---|---|
COF | Wear, µm | |||||
Printing Temperature, P (°C) | Annealing Temperature, A (°C) | Mean Value | Standard Deviation | Mean Value | Standard Deviation | |
1 | 250 | 110 | 0.25 | 0.0049 | 129.479 | 54.961 |
2 | 270 | 110 | 0.281 | 0.0289 | 148.568 | 30.053 |
3 | 250 | 130 | 0.308 | 0.0076 | 59.823 | 17.834 |
4 | 270 | 130 | 0.319 | 0.0124 | 91.930 | 23.437 |
5 | 246 | 120 | 0.217 | 0.0235 | 98.542 | 27.552 |
6 | 274 | 120 | 0.293 | 0.0217 | 88.201 | 2.418 |
7 | 260 | 106 | 0.276 | 0.0030 | 58.986 | 15.314 |
8 | 260 | 134 | 0.228 | 0.0163 | 66.832 | 13.683 |
9 | 260 | 120 | 0.229 | 0.0113 | 66.803 | 32.065 |
10 | 260 | 120 | 0.246 | 0.0128 | 31.044 | 19.643 |
11 | 260 | 120 | 0.218 | 0.0122 | 98.547 | 43.112 |
12 | 260 | 120 | 0.236 | 0.0145 | 130.856 | 41.153 |
13 | 260 | 120 | 0.221 | 0.0116 | 126.393 | 38.179 |
Response | RSM Model | R2 |
---|---|---|
COF | COF = −0.0053 P + 0.0109 A+ 0.000054 P2 + 0.000146 A2 − 0.000176 PA | 98.9% |
W | W = −10.0 P + 23.6 A+ 0.0239 P2 − 0.087 A2 − 0.016 PA | 90.3% |
Response | Goal | Lower | Target | Upper | Weight | Importance |
---|---|---|---|---|---|---|
Wear | Minimum | 31.0442 | 148.568 | 0.5 | 1 | |
COF | Minimum | 0.2170 | 0.319 | 0.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ripeanu, R.G.; Tănase, M.; Portoacă, A.I.; Diniță, A. Assessing the Tribological Impact of 3D Printed Carbon-Reinforced ABS Composite Cylindrical Gears. Lubricants 2024, 12, 376. https://doi.org/10.3390/lubricants12110376
Ripeanu RG, Tănase M, Portoacă AI, Diniță A. Assessing the Tribological Impact of 3D Printed Carbon-Reinforced ABS Composite Cylindrical Gears. Lubricants. 2024; 12(11):376. https://doi.org/10.3390/lubricants12110376
Chicago/Turabian StyleRipeanu, Razvan George, Maria Tănase, Alexandra Ileana Portoacă, and Alin Diniță. 2024. "Assessing the Tribological Impact of 3D Printed Carbon-Reinforced ABS Composite Cylindrical Gears" Lubricants 12, no. 11: 376. https://doi.org/10.3390/lubricants12110376
APA StyleRipeanu, R. G., Tănase, M., Portoacă, A. I., & Diniță, A. (2024). Assessing the Tribological Impact of 3D Printed Carbon-Reinforced ABS Composite Cylindrical Gears. Lubricants, 12(11), 376. https://doi.org/10.3390/lubricants12110376