Recent Advances in Biomimetic Related Lubrication
Abstract
:1. Introduction
2. Chemistry Aspect of Tribology Lubrication
2.1. Biomedical Treatment
2.2. Engineering
3. Structure Aspect of Tribology Lubrication
3.1. Bionic Lotus Leaf Lubrication
3.2. Bionic Fish Skin Lubrication
4. Chemical–Structural Coupling Aspect of Tribology Lubrication
4.1. Application of Antifouling
4.2. Application of Drag Reduction
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adetunla, A.; Afolalu, S.; Jen, T.-C.; Ogundana, A. The Advances of Tribology in Materials and Energy Conservation and Engineering Innovation. E3S Web Conf. 2023, 391, 01014. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, D.; Wu, S.; Gu, G.; Dong, G.; An, Q.; Guo, H.; Li, C. Minimum Quantity Lubrication Machining Nickel Base Alloy: A Comprehensive Review. Int. J. Adv. Manuf. Technol. 2024, 131, 2407–2445. [Google Scholar] [CrossRef]
- Li, W.; Zhao, T.; Zhu, Y.; Wu, X.; Hu, X.; Yan, W.; Yang, S. Lubricating Organohydrogel with Ultrahigh Durability and Super-Weatherability Enabled by Molecular Chains Aligned Strategy for Drag-Reduction Coating. Chem. Eng. J. 2023, 454, 140057. [Google Scholar] [CrossRef]
- Adetunla, A.; Afolalu, S.; Jen, T.-C.; Ogundana, A. The Development of Tribology in Lubrication Systems of Industrial Applications: Now and Future Impact. E3S Web Conf. 2023, 391, 01013. [Google Scholar] [CrossRef]
- Tzanakis, I.; Hadfield, M.; Thomas, B.; Noya, S.M.; Henshaw, I.; Austen, S. Future Perspectives on Sustainable Tribology. Renew. Sustain. Energy Rev. 2012, 16, 4126–4140. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Cui, X.; An, Q.; Xu, P.; Wang, W.; Jia, D.; Liu, M.; Dambatta, Y.S.; Li, C. Lubricant Activity Enhanced Technologies for Sustainable Machining: Mechanisms and Processability. Chin. J. Aeronaut. 2024, in press. [CrossRef]
- Abdel-Aal, H.A. Functional Surfaces for Tribological Applications: Inspiration and Design. Surf. Topogr. Metrol. Prop. 2016, 4, 043001. [Google Scholar] [CrossRef]
- Yu, H.; Han, Z.; Zhang, J.; Zhang, S. Bionic Design of Tools in Cutting: Reducing Adhesion, Abrasion or Friction. Wear 2021, 482–483, 203955. [Google Scholar] [CrossRef]
- Hossain, K.R.; Wu, J.; Xu, X.; Cobra, K.; Jami, M.M.; Ahmed, M.B.; Wang, X. Tribological Bioinspired Interfaces for 3D Printing. Tribol. Int. 2023, 188, 108904. [Google Scholar] [CrossRef]
- Kong, Y.; Ma, S.; Zhou, F. Bioinspired Interfacial Friction Control: From Chemistry to Structures to Mechanics. Biomimetics 2024, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Liu, Y.; Yi, J.; Xie, H.; Li, C.; Wang, X.; Chai, W. Research Progress of Cartilage Lubrication and Biomimetic Cartilage Lubrication Materials. Front. Bioeng. Biotechnol. 2022, 10, 1012653. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Yu, C.; Zhang, L.; Xie, G.; Guo, D.; Luo, J. Intelligent Lubricating Materials: A Review. Compos. Part B Eng. 2020, 202, 108450. [Google Scholar] [CrossRef]
- Poliakov, A.; Pakhaliuk, V.; Popov, V.L. Current Trends in Improving of Artificial Joints Design and Technologies for Their Arthroplasty. Front. Mech. Eng. 2020, 6, 506169. [Google Scholar] [CrossRef]
- Yuan, H.; Cui, W. The Lubricated Matter in Body. Prog. Mater. Sci. 2024, 146, 101334. [Google Scholar] [CrossRef]
- Neu, C.P.; Komvopoulos, K.; Reddi, A.H. The Interface of Functional Biotribology and Regenerative Medicine in Synovial Joints. Tissue Eng. Part B Rev. 2008, 14, 235–247. [Google Scholar] [CrossRef]
- Peta, K.; Bartkowiak, T.; Rybicki, M.; Galek, P.; Mendak, M.; Wieczorowski, M.; Brown, C.A. Scale-Dependent Wetting Behavior of Bioinspired Lubricants on Electrical Discharge Machined Ti6Al4V Surfaces. Tribol. Int. 2024, 194, 109562. [Google Scholar] [CrossRef]
- Stoyanov, P.; Chromik, R.R. Scaling Effects on Materials Tribology: From Macro to Micro Scale. Materials 2017, 10, 550. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, T.; Erdemir, A.; Li, Q. Tribology of Two-Dimensional Materials: From Mechanisms to Modulating Strategies. Mater. Today 2019, 26, 67–86. [Google Scholar] [CrossRef]
- Luo, J.; Liu, M.; Ma, L. Origin of Friction and the New Frictionless Technology—Superlubricity: Advancements and Future Outlook. Nano Energy 2021, 86, 106092. [Google Scholar] [CrossRef]
- Kandile, N.G.; Harding, D.R.K. A Green Approach to Tribology. In Surfactants in Tribology, Volume 6; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-28770-1. [Google Scholar]
- Ramezani, M.; Ripin, Z.M.; Jiang, C.-P.; Pasang, T. Superlubricity of Materials: Progress, Potential, and Challenges. Materials 2023, 16, 5145. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C. State-of-the-Art on Minimum Quantity Lubrication in Green Machining. J. Clean. Prod. 2023, 429, 139613. [Google Scholar] [CrossRef]
- Lin, P.; Xie, G.; Kang, J.; Sun, X.; Cao, J. Effect and Performance Analysis of Different Surface Treatments on Polymer-Metal Friction Pairs. Tribol. Int. 2024, 195, 109602. [Google Scholar] [CrossRef]
- Hunke, H.; Soin, N.; Shah, T.; Kramer, E.; Witan, K.; Siores, E. Influence of Plasma Pre-Treatment of Polytetrafluoroethylene (PTFE) Micropowders on the Mechanical and Tribological Performance of Polyethersulfone (PESU)–PTFE Composites. Wear 2015, 328–329, 480–487. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Ye, Z.; Yang, D.; He, S. The Effect of Plasma Nitriding on the Tribology of Perfluoropolyether Grease-Lubricated 2Cr13 Steel Couples in Vacuum. Tribol. Lett. 2010, 40, 139–147. [Google Scholar] [CrossRef]
- Hossain, K.R.; Jiang, P.; Yao, X.; Wu, J.; Hu, D.; Yang, X.; Wu, T.; Wang, X. Additive Manufacturing of Polymer-Based Lubrication. Macromol. Mater. Eng. 2023, 308, 2300147. [Google Scholar] [CrossRef]
- Sinha, S.K. Advancements in Biotribology. In Progress in Lubrication and Nano- and Biotribology; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-00-309644-3. [Google Scholar]
- Bercea, M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers 2022, 14, 2365. [Google Scholar] [CrossRef]
- Yuan, H.; Mears LL, E.; Wang, Y.; Su, R.; Qi, W.; He, Z.; Valtiner, M. Lubricants for Osteoarthritis Treatment: From Natural to Bioinspired and Alternative Strategies. Adv. Colloid Interface Sci. 2023, 311, 102814. [Google Scholar] [CrossRef]
- Cooper, B.G.; Bordeianu, C.; Nazarian, A.; Snyder, B.D.; Grinstaff, M.W. Active Agents, Biomaterials, and Technologies to Improve Biolubrication and Strengthen Soft Tissues. Biomaterials 2018, 181, 210–226. [Google Scholar] [CrossRef]
- Fragassi, A.; Greco, A.; Palomba, R. Lubricant Strategies in Osteoarthritis Treatment: Transitioning from Natural Lubricants to Drug Delivery Particles with Lubricant Properties. J. Xenobiotics 2024, 14, 1268–1292. [Google Scholar] [CrossRef]
- Vijayan, P.P.; Puglia, D. Biomimetic Multifunctional Materials: A Review. Emergent Mater. 2019, 2, 391–415. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Yuan, C.; Cao, P.; Bai, X. Antifouling Applications and Fabrications of Biomimetic Micro-Structured Surfaces: A Review. J. Adv. Res. 2024, 59, 201–221. [Google Scholar] [CrossRef]
- Yu, C.; Sasic, S.; Liu, K.; Salameh, S.; van Ommen, J.R. Nature–Inspired Self–Cleaning Surfaces: Mechanisms, Modelling, and Manufacturing. Chem. Eng. Res. Des. 2020, 155, 48–65. [Google Scholar] [CrossRef]
- Saha, R.; Sarkar, M.; Choudhury, S.S.; Kumar, H.; Bhatt, G.; Bhattacharya, S. Evolution of 3d Printing Technology in Fabrication of Microfluidic Devices and Biological Applications: A Comprehensive Review. J. Micromanuf. 2024, 7, 110–140. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Aghda, N.H.; Pillai, A.R.; Thakkar, R.; Nokhodchi, A.; Maniruzzaman, M. Emerging 3D Printing Technologies for Drug Delivery Devices: Current Status and Future Perspective. Adv. Drug Deliv. Rev. 2021, 174, 294–316. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, A.; Daly, P.; Domingo-Roca, R.; Windmill, J.F.C.; Feeney, A.; Jackson-Camargo, J.C. Additive Manufacture of Small-Scale Metamaterial Structures for Acoustic and Ultrasonic Applications. Micromachines 2021, 12, 634. [Google Scholar] [CrossRef]
- Gachot, C.; Rosenkranz, A.; Hsu, S.M.; Costa, H.L. A Critical Assessment of Surface Texturing for Friction and Wear Improvement. Wear 2017, 372–373, 21–41. [Google Scholar] [CrossRef]
- Elgazzar, A.; Zhou, S.-J.; Ouyang, J.-H.; Liu, Z.-G.; Wang, Y.-J.; Wang, Y.-M. A Critical Review of High-Temperature Tribology and Cutting Performance of Cermet and Ceramic Tool Materials. Lubricants 2023, 11, 122. [Google Scholar] [CrossRef]
- Bai, L.; Sun, J.; Zhang, P.; Khan, Z.A. Friction Behavior of a Textured Surface against Several Materials under Dry and Lubricated Conditions. Materials 2021, 14, 5228. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, C.; Zhang, P.; Xu, S.; Kong, L.; Liang, X.; Cui, X. Fundamental, Mechanism and Development of Hydration Lubrication: From Bio-Inspiration to Artificial Manufacturing. Adv. Colloid Interface Sci. 2024, 327, 103145. [Google Scholar] [CrossRef]
- Bayer, I.S. Advances in Tribology of Lubricin and Lubricin-Like Synthetic Polymer Nanostructures. Lubricants 2018, 6, 30. [Google Scholar] [CrossRef]
- Li, J.; Guo, Z.; Liu, W. Biomimetic Superhydrophobic Materials Construct from Binary Structure: A Review on Design, Properties, and Applications. Adv. Mater. Interfaces 2023, 10, 2201847. [Google Scholar] [CrossRef]
- Kumar, R.; Rezapourian, M.; Rahmani, R.; Maurya, H.S.; Kamboj, N.; Hussainova, I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics 2024, 9, 209. [Google Scholar] [CrossRef]
- Yang, K.; Tang, J.; Huang, J.; Zhang, H.; Chen, H.; Xiong, Y.; Wang, R.; Wu, C.; Wang, M.; Chen, H. Hydrophobic and Tribological Properties of Biomimetic Interfaces. Coatings 2024, 14, 529. [Google Scholar] [CrossRef]
- Lima, A.C.; Mano, J.F. Micro-/Nano-Structured Superhydrophobic Surfaces in the Biomedical Field: Part I: Basic Concepts and Biomimetic Approaches. Nanomedicine 2015, 10, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Adibnia, V.; Mirbagheri, M.; Faivre, J.; Robert, J.; Lee, J.; Matyjaszewski, K.; Banquy, X. Bioinspired Polymers for Lubrication and Wear Resistance. Prog. Polym. Sci. 2020, 110, 101298. [Google Scholar] [CrossRef]
- Shafi, W.K.; Raina, A.; Ul Haq, M.I. Friction and Wear Characteristics of Vegetable Oils Using Nanoparticles for Sustainable Lubrication. Tribol.-Mater. Surf. Interfaces 2018, 12, 27–43. [Google Scholar] [CrossRef]
- Pichler, J.; Eder, R.M.; Besser, C.; Pisarova, L.; Dörr, N.; Marchetti-Deschmann, M.; Frauscher, M. A Comprehensive Review of Sustainable Approaches for Synthetic Lubricant Components. Green Chem. Lett. Rev. 2023, 16, 2185547. [Google Scholar] [CrossRef]
- Adibnia, V.; Mirbagheri, M.; Salimi, S.; De Crescenzo, G.; Banquy, X. Nonspecific Interactions in Biomedical Applications. Curr. Opin. Colloid Interface Sci. 2020, 47, 70–83. [Google Scholar] [CrossRef]
- Benetti, E.M.; Spencer, N.D. Using Polymers to Impart Lubricity and Biopassivity to Surfaces: Are These Properties Linked? Helvetica Chim. Acta 2019, 102, e1900071. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Liu, M.; Liu, Y.; Liu, Z.; Chu, H.; Cheng, Q.; Wang, J. Regulation Mechanism of Biomolecule Interaction Behaviors on the Superlubricity of Hydrophilic Polymer Coatings. Friction 2022, 10, 94–109. [Google Scholar] [CrossRef]
- Dėdinaitė, A. Biomimetic Lubrication. Soft Matter 2011, 8, 273–284. [Google Scholar] [CrossRef]
- Jay, G.D.; Waller, K.A. The Biology of Lubricin: Near Frictionless Joint Motion. Matrix Biol. 2014, 39, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Pradal, C.; Yakubov, G.E.; Williams, M.A.K.; McGuckin, M.A.; Stokes, J.R. Lubrication by Biomacromolecules: Mechanisms and Biomimetic Strategies. Bioinspir. Biomim. 2019, 14, 051001. [Google Scholar] [CrossRef] [PubMed]
- Anwer, A.H.; Ahtesham, A.; Shoeb, M.; Mashkoor, F.; Ansari, M.Z.; Zhu, S.; Jeong, C. State-of-the-Art Advances in Nanocomposite and Bio-Nanocomposite Polymeric Materials: A Comprehensive Review. Adv. Colloid Interface Sci. 2023, 318, 102955. [Google Scholar] [CrossRef] [PubMed]
- Chinta, M.L.; Velidandi, A.; Pabbathi, N.P.P.; Dahariya, S.; Parcha, S.R. Assessment of Properties, Applications and Limitations of Scaffolds Based on Cellulose and Its Derivatives for Cartilage Tissue Engineering: A Review. Int. J. Biol. Macromol. 2021, 175, 495–515. [Google Scholar] [CrossRef]
- Khan, S.; Iqbal, A. Organic Polymers Revolution: Applications and Formation Strategies, and Future Perspectives. J. Polym. Sci. Eng. 2023, 6, 3125. [Google Scholar] [CrossRef]
- Rana, A.K.; Gupta, V.K.; Hart, P.; Thakur, V.K. Cellulose-Alginate Hydrogels and Their Nanocomposites for Water Remediation and Biomedical Applications. Environ. Res. 2024, 243, 117889. [Google Scholar] [CrossRef]
- von Vacano, B.; Mangold, H.; Vandermeulen, G.W.M.; Battagliarin, G.; Hofmann, M.; Bean, J.; Künkel, A. Sustainable Design of Structural and Functional Polymers for a Circular Economy. Angew. Chem. Int. Ed. 2023, 62, e202210823. [Google Scholar] [CrossRef]
- Angolkar, M.; Paramshetti, S.; Gahtani, R.M.; Al Shahrani, M.; Hani, U.; Talath, S.; Osmani, R.A.M.; Spandana, A.; Gangadharappa, H.V.; Gundawar, R. Pioneering a Paradigm Shift in Tissue Engineering and Regeneration with Polysaccharides and Proteins-Based Scaffolds: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 265, 130643. [Google Scholar] [CrossRef] [PubMed]
- Findik, F. Latest Progress on Tribological Properties of Industrial Materials. Mater. Des. 2014, 57, 218–244. [Google Scholar] [CrossRef]
- Tung, S.C.; McMillan, M.L. Automotive Tribology Overview of Current Advances and Challenges for the Future. Tribol. Int. 2004, 37, 517–536. [Google Scholar] [CrossRef]
- Sen, B.; Mia, M.; Krolczyk, G.M.; Mandal, U.K.; Mondal, S.P. Eco-Friendly Cutting Fluids in Minimum Quantity Lubrication Assisted Machining: A Review on the Perception of Sustainable Manufacturing. Int. J. Precis. Eng. Manuf.-Green Tech. 2021, 8, 249–280. [Google Scholar] [CrossRef]
- Naleway, S.E.; Taylor JR, A.; Porter, M.M.; Meyers, M.A.; McKittrick, J. Structure and Mechanical Properties of Selected Protective Systems in Marine Organisms. Mater. Sci. Eng. C 2016, 59, 1143–1167. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, C. Armed on the Back: Hidden Biomineralized Scales in the Ventral Girdle of Chiton Acanthopleura Loochooana. Acta Biomater. 2024, 188, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Lian, M.; Xu, M.; Sun, Q.; Xu, B.B.; Thabet, H.K.; El-Bahy, S.M.; Ibrahim, M.M.; Huang, M.; Guo, Z. Advances in Triboelectric Nanogenerator Technology—Applications in Self-Powered Sensors, Internet of Things, Biomedicine, and Blue Energy. Adv. Compos. Hybrid Mater. 2023, 6, 57. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Yang, Z.; Gao, C.; Fu, L.; Liao, Z.; Zhao, T.; Cao, F.; Chen, W.; Peng, Y.; et al. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front. Cell Dev. Biol. 2021, 9, 661802. [Google Scholar] [CrossRef]
- Zhao, Y.; Mei, H.; Chang, P.; Chen, C.; Cheng, L.; Dassios, K.G. Infinite Approaching Superlubricity by Three-Dimensional Printed Structures. ACS Nano 2021, 15, 240–257. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Liu, C.; Zhang, J.; Shibata, Y.; Kong, N.; Corbo, C.; Harris, M.B.; Tao, W. Emerging Biomimetic Nanotechnology in Orthopedic Diseases: Progress, Challenges, and Opportunities. Trends Chem. 2022, 4, 420–436. [Google Scholar] [CrossRef]
- Huang, G.; Li, F.; Zhao, X.; Ma, Y.; Li, Y.; Lin, M.; Jin, G.; Lu, T.J.; Genin, G.M.; Xu, F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem. Rev. 2017, 117, 12764–12850. [Google Scholar] [CrossRef]
- Yadav, S.; Gangwar, S. A Critical Evaluation of Tribological Interaction for Restorative Materials in Dentistry. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 1525544. [Google Scholar] [CrossRef]
- Lam, M.; Migonney, V.; Falentin-Daudre, C. Review of Silicone Surface Modification Techniques and Coatings for Antibacterial/Antimicrobial Applications to Improve Breast Implant Surfaces. Acta Biomater. 2021, 121, 68–88. [Google Scholar] [CrossRef]
- Song, J.; Huang, H.; Wang, X.; Shi, W. Status and Prospects of Surface Texturing: Design, Manufacturing and Applications. Surf. Sci. Tech. 2023, 1, 21. [Google Scholar] [CrossRef]
- Luo, K.; Yan, L.; Zhu, Z.; Wang, Z.; Wang, H.; Jiang, F. Application of Bionic Technology in Marine Cruise Equipment: Research Progress and Development Trends. J. Bionic Eng. 2024, 21, 1117–1155. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, X.; Cheng, J.; Wang, S.; Duan, D.; Xiao, J.; Li, W. Optimization of Performance Parameters and Mechanism of Bionic Texture on Friction Surface. Coatings 2020, 10, 171. [Google Scholar] [CrossRef]
- Gao, H.; Shi, X.; Xue, Y.; Huang, Q.; Zhang, K.; Wu, C.; Tang, H. Coupling Effects of Biomimetic Texture with Solid Lubricants to Improve Tribological Properties of TC4 under Dry Sliding Conditions. J. Mater. Eng. Perform. 2024, 33, 8409–8424. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Y.; Zhao, H.; Li, S.; Li, X. Influence of Hardness of Nanoparticle Additive in PTFE Solid Lubricant on Tribological Properties of GCr15 Steel with Bionic Texture. Tribol. Int. 2023, 189, 108915. [Google Scholar] [CrossRef]
- Shan, Z.; Jia, X.; Qiu, Y.; Yang, J.; Song, H. High-Strength, Flexible and Self-Lubricating Wood-Plastic Composites Based on Synergistic Reinforcement of “Hard-Soft” Units. Tribol. Int. 2024, 199, 110016. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, S.; Wang, X.; Zhang, P.; Zhang, X. Progression from Graphene and Graphene Oxide to High-Performance Epoxy Resin-Based Composite. Polym. Degrad. Stab. 2024, 223, 110731. [Google Scholar] [CrossRef]
- Ren, Y.; Niu, Y.; Jia, J.; Cao, X.; Zhang, G. Design and Tribological Performance of CrN/Mo2N/MoSx Composite Coating in Wide Temperature Range Inspired by Oxidation Kinetics Principle. Tribol. Int. 2023, 180, 108229. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, Y.; Feng, X.; Hu, Y. Focus on Bioinspired Textured Surfaces toward Fluid Drag Reduction: Recent Progresses and Challenges. Adv. Eng. Mater. 2022, 24, 2100696. [Google Scholar] [CrossRef]
- Bhat, S.; Kumar, A. Biomaterials and Bioengineering Tomorrow’s Healthcare. Biomatter 2013, 3, e24717. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Sustaining the Healthcare Systems through the Conceptual of Biomedical Engineering: A Study with Recent and Future Potentials. Biomed. Technol. 2023, 1, 39–47. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.; Chen, Y. Two-Dimensional Biomaterials: Material Science, Biological Effect and Biomedical Engineering Applications. Chem. Soc. Rev. 2021, 50, 11381–11485. [Google Scholar] [CrossRef] [PubMed]
- Turczyńska, K.; Rahimi, M.; Charmi, G.; Pham, D.A.; Murata, H.; Kozanecki, M.; Filipczak, P.; Ulański, J.; Diem, T.; Matyjaszewski, K.; et al. Bottlebrush Polymers for Articular Joint Lubrication: Influence of Anchoring Group Chemistry on Lubrication Properties. ACS Appl. Mater. Interfaces 2024, 16, 38550–38563. [Google Scholar] [CrossRef]
- Zhang, M.; Peng, X.; Ding, Y.; Ke, X.; Ren, K.; Xin, Q.; Qin, M.; Xie, J.; Li, J. A Cyclic Brush Zwitterionic Polymer Based pH-Responsive Nanocarrier-Mediated Dual Drug Delivery System with Lubrication Maintenance for Osteoarthritis Treatment. Mater. Horiz. 2023, 10, 2554–2567. [Google Scholar] [CrossRef]
- Xie, R.; Yao, H.; Mao, A.S.; Zhu, Y.; Qi, D.; Jia, Y.; Gao, M.; Chen, Y.; Wang, L.; Wang, D.-A.; et al. Biomimetic Cartilage-Lubricating Polymers Regenerate Cartilage in Rats with Early Osteoarthritis. Nat. Biomed. Eng. 2021, 5, 1189–1201. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Z.; Li, N.; Wang, X.; Zhou, F.; Liu, W. Hairy Polyelectrolyte Brushes-Grafted Thermosensitive Microgels as Artificial Synovial Fluid for Simultaneous Biomimetic Lubrication and Arthritis Treatment. ACS Appl. Mater. Interfaces 2014, 6, 20452–20463. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H. Intra-Articular Injection of Nanomaterials for the Treatment of Osteoarthritis: From Lubrication Function Restoration to Cell and Gene Therapy. Adv. Funct. Mater. 2024, 34, 2401547. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, X.; Wang, S.; Zhang, Y.; Yang, A.; Cheng, Y.; Chen, X. Ultra-Durable Cell-Free Bioactive Hydrogel with Fast Shape Memory and on-Demand Drug Release for Cartilage Regeneration. Nat. Commun. 2023, 14, 7771. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, X.; Chen, K.; Feng, C.; Wang, D.; Qi, J.; Li, X.; Zhao, X.; Chai, Z.; Zhang, D. Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage. ACS Appl. Mater. Interfaces 2022, 14, 52347–52358. [Google Scholar] [CrossRef]
- Fu, X.-K.; Cao, H.-B.; An, Y.-L.; Zhou, H.-D.; Shi, Y.-P.; Hou, G.-L.; Ha, W. Bioinspired Hydroxyapatite Coating Infiltrated with a Graphene Oxide Hybrid Supramolecular Hydrogel Orchestrates Antibacterial and Self-Lubricating Performance. ACS Appl. Mater. Interfaces 2022, 14, 31702–31714. [Google Scholar] [CrossRef]
- Zhang, X.; Lou, Z.; Yang, X.; Chen, Q.; Chen, K.; Feng, C.; Qi, J.; Luo, Y.; Zhang, D. Fabrication and Characterization of a Multilayer Hydrogel as a Candidate for Artificial Cartilage. ACS Appl. Polym. Mater. 2021, 3, 5039–5050. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, F.; Zhang, Y.; Guo, H. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement. Langmuir 2023, 39, 2368–2379. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Li, Y.; Sun, H.; Ke, X.; Xing, J.; Zhao, Y.; Xu, X.; Qin, M.; Xie, J.; Li, J. Cartilage-Inspired Hydrogel with Mechanical Adaptability, Controllable Lubrication, and Inflammation Regulation Abilities. ACS Appl. Mater. Interfaces 2022, 14, 27360–27370. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, H.; Zeng, H.; Zhao, X.; Wang, R.; Ma, Z.; Fan, Z.; Liang, Y.; Ma, S.; Zhou, F. Biomimetic Chitosan Nanoparticles with Simultaneous Water Lubricant and Anti-Inflammatory. Carbohydr. Polym. 2023, 304, 120503. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Wang, Y.; Shen, J.; Cai, Z.; Zhao, C.; Chen, H.; Luo, X.; Hu, N.; Cui, W.; Huang, W. Injectable Hydrogel Microspheres with Self-Renewable Hydration Layers Alleviate Osteoarthritis. Sci. Adv. 2022, 8, eabl6449. [Google Scholar] [CrossRef]
- Mahmoud, H.; Hamza, A.; Nasser, M.S.; Hussein, I.A.; Ahmed, R.; Karami, H. Hole Cleaning and Drilling Fluid Sweeps in Horizontal and Deviated Wells: Comprehensive Review. J. Pet. Sci. Eng. 2020, 186, 106748. [Google Scholar] [CrossRef]
- Hölzer, K. Hydraulic Fracturing Chemicals: Structural Classification, Detections in Flowback Water and Analytical Challenges. Ph.D. Thesis, Universität Tübingen, Tübingen, Germany, 2016. [Google Scholar]
- Luo, X.; Jiang, G.; Wang, G.; Yang, L.; He, Y.; Cui, K.; Yang, J. Novel Approach to Improve Shale Stability Using Super-Amphiphobic Nanoscale Materials in Water-Based Drilling Fluids and Its Field Application. Rev. Adv. Mater. Sci. 2022, 61, 41–54. [Google Scholar] [CrossRef]
- Wang, Z.; Scheres, L.; Xia, H.; Zuilhof, H. Developments and Challenges in Self-Healing Antifouling Materials. Adv. Funct. Mater. 2020, 30, 1908098. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, G.; Liu, F.; He, Y.; Liu, R.; Dong, T. Lubricity and Mechanism of Catechol-Based Biomimetic Lubricant in Water-Based Drilling Fluid. Tribol. Int. 2023, 188, 108862. [Google Scholar] [CrossRef]
- Quan, X.; Jiang, G.; Luo, X.; He, Y.; Dong, T. Research and Application of New Technology of Bionic Enhanced Wellbore and Strong Lubrication Water-Based Drilling Fluid. Sustainability 2020, 12, 8387. [Google Scholar] [CrossRef]
- Yahya, M.N.; Norddin, M.N.A.M.; Ismail, I.; Rasol, A.A.A.; Salahudeen, N.; Oseh, J.O.; Muhammad, M.; Shahid, M.; Omar, S.B. Influence of Triton-Assisted Coconut Shell Derived Graphene Nanoplatelets in Water-Based Drilling Fluid Lubricity and Shale Inhibition Application. Pet. Res. 2024, in press. [CrossRef]
- Zhang, C.; Yang, Z.; Lu, Z.; Wang, X.; Jia, L.; Wang, J.; Gao, Q.; Li, L.; Zhou, C.; Chen, G.; et al. Synthesis and Tribological Properties of Bio-Inspired Green Dopamine Oil Soluble Additive. Tribol. Int. 2022, 174, 107697. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yang, S.; Li, Z.; Wang, J.; Han, M.; Hou, K. In-Situ Gelation Based on Rapid Crosslinking: A Versatile Bionic Water-Based Lubrication Strategy. Chem. Eng. J. 2023, 477, 146863. [Google Scholar] [CrossRef]
- Höfer, R.; Bigorra, J. Green Chemistry—A Sustainable Solution for Industrial Specialties Applications. Green Chem. 2007, 9, 203–212. [Google Scholar] [CrossRef]
- Marion, P.; Bernela, B.; Piccirilli, A.; Estrine, B.; Patouillard, N.; Guilbot, J.; Jérôme, F. Sustainable Chemistry: How to Produce Better and More from Less? Green Chem. 2017, 19, 4973–4989. [Google Scholar] [CrossRef]
- Eissen, M.; Metzger, J.O.; Schmidt, E.; Schneidewind, U. 10 Years after Rio—Concepts on the Contribution of Chemistry to a Sustainable Development. Angew. Chem. Int. Ed. 2002, 41, 414–436. [Google Scholar] [CrossRef]
- Mohan, S.V.; Katakojwala, R. The Circular Chemistry Conceptual Framework: A Way Forward to Sustainability in Industry 4.0. Curr. Opin. Green Sustain. Chem. 2021, 28, 100434. [Google Scholar] [CrossRef]
- Park, J.Y.; Salmeron, M. Fundamental Aspects of Energy Dissipation in Friction. Chem. Rev. 2014, 114, 677–711. [Google Scholar] [CrossRef]
- Blau, P.J. The Significance and Use of the Friction Coefficient. Tribol. Int. 2001, 34, 585–591. [Google Scholar] [CrossRef]
- Krim, J. Friction and Energy Dissipation Mechanisms in Adsorbed Molecules and Molecularly Thin Films. Adv. Phys. 2012, 61, 155–323. [Google Scholar] [CrossRef]
- Li, M.; Mao, A.; Guan, Q.; Saiz, E. Nature-Inspired Adhesive Systems. Chem. Soc. Rev. 2024, 53, 8240–8305. [Google Scholar] [CrossRef]
- Byrne, G.; Dimitrov, D.; Monostori, L.; Teti, R.; van Houten, F.; Wertheim, R. Biologicalisation: Biological Transformation in Manufacturing. CIRP J. Manuf. Sci. Technol. 2018, 21, 1–32. [Google Scholar] [CrossRef]
- Terzis, D.; Laloui, L. A Decade of Progress and Turning Points in the Understanding of Bio-Improved Soils: A Review. Geomech. Energy Environ. 2019, 19, 100116. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Peng, Y.; Shang, J.; Liu, C.; Zhao, S.; Huang, C.; Bai, Y.; Li, Y. A Universal Replica Molding Strategy Based on Natural Bio-Templates for Fabrication of Robust Superhydrophobic Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2023, 660, 130879. [Google Scholar] [CrossRef]
- Lu, Y. Fabrication of a Lotus Leaf-like Hierarchical Structure to Induce an Air Lubricant for Drag Reduction. Surf. Coat. Technol. 2017, 331, 48–56. [Google Scholar] [CrossRef]
- Rong, W.; Zhang, H.; Mao, Z.; Chen, L.; Liu, X. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays. ACS Omega 2022, 7, 2049–2063. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, S.; Wang, L.; Zheng, Y. Lotus Effect in Wetting and Self-Cleaning. Biotribology 2016, 5, 31–43. [Google Scholar] [CrossRef]
- Tong, J.; Liu, S.; Peng, R.; Sun, H.; Jiang, S. Development of a Micro/Nano Composite Super-Hydrophobic Silicon Surface with Nail-Shaped Texture/Dual Self-Assembly Monolayers and Its Wetting Behavior. Appl. Surf. Sci. 2021, 544, 148803. [Google Scholar] [CrossRef]
- Farzam, M.; Beitollahpoor, M.; Solomon, S.E.; Ashbaugh, H.S.; Pesika, N.S. Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf. Biomimetics 2022, 7, 196. [Google Scholar] [CrossRef]
- Zeng, X.; Guo, Z.; Liu, W. Recent Advances in Slippery Liquid-Infused Surfaces with Unique Properties Inspired by Nature. Bio-Des. Manuf. 2021, 4, 506–525. [Google Scholar] [CrossRef]
- Jing, X.; Guo, Z. Biomimetic Super Durable and Stable Surfaces with Superhydrophobicity. J. Mater. Chem. A 2018, 6, 16731–16768. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Q.; Zhang, S. Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles. Biomimetics 2024, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, H. Research Development on Fish Swimming. Chin. J. Mech. Eng. 2022, 35, 114. [Google Scholar] [CrossRef]
- Salazar, R.; Campos, A.; Fuentes, V.; Abdelkefi, A. A Review on the Modeling, Materials, and Actuators of Aquatic Unmanned Vehicles. Ocean Eng. 2019, 172, 257–285. [Google Scholar] [CrossRef]
- Fan, D.; Feng, X.; Tian, G.; Zhang, Y. Experimental Investigations of the Turbulent Boundary Layer for Biomimetic Protrusive Surfaces Inspired by Pufferfish Skin: Effects of Spinal Density and Diameter. Langmuir 2021, 37, 11804–11817. [Google Scholar] [CrossRef]
- Feng, X.; Fan, D.; Tian, G.; Zhang, Y. Coupled Bionic Drag-Reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin. ACS Appl. Mater. Interfaces 2022, 14, 32747–32760. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, K.; Chen, Q.; Khan, M.N.; Tu, C.; Ma, Z.; Wu, J.; Chen, J.; Dai, Z. Resistance Reduction of Patterned Surface Inspired by Cuticle Structure of Achalinus spinalis. Friction 2023, 11, 1359–1370. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, H.; Jia, Y.; Liu, J.; Zhang, H.; Wang, R.; Zhang, B.; Zhang, H.; Zhang, Q. Design and Preparation of Biomimetic Polydimethylsiloxane (PDMS) Films with Superhydrophobic, Self-Healing and Drag Reduction Properties via Replication of Shark Skin and SI-ATRP. Chem. Eng. J. 2019, 356, 318–328. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Wang, R.; Liu, J.; Lin, Z.; Li, G.; Liu, H.; Lei, Y.; Xiong, Y.; Zhao, Y.; et al. Fish Skin-Inspired Janus Hydrogel Coating for Drag Reduction. Chin. J. Chem. 2024, 42, 867–872. [Google Scholar]
- Kumar, S.; Pandey, K.M.; Sharma, K.K. Advances in Drag-Reduction Methods Related with Boundary Layer Control—A Review. Mater. Today Proc. 2021, 45, 6694–6701. [Google Scholar] [CrossRef]
- Tian, G.; Fan, D.; Feng, X.; Zhou, H. Thriving Artificial Underwater Drag-Reduction Materials Inspired from Aquatic Animals: Progresses and Challenges. RSC Adv. 2021, 11, 3399–3428. [Google Scholar] [CrossRef]
- Pan, D.; Xu, X.; Liu, B.; Xu, H.; Wang, X. A Review on Drag Reduction Technology: Focusing on Amphibious Vehicles. Ocean Eng. 2023, 280, 114618. [Google Scholar] [CrossRef]
- Luo, Y.; Yuan, L.; Li, J.; Wang, J. Boundary Layer Drag Reduction Research Hypotheses Derived from Bio-Inspired Surface and Recent Advanced Applications. Micron 2015, 79, 59–73. [Google Scholar] [CrossRef]
- Siddaiah, A.; Menezes, P.L. Advances in Bio-Inspired Tribology for Engineering Applications. J. Bio Tribo Corros. 2016, 2, 23. [Google Scholar] [CrossRef]
- Freschi, M.; Paniz, A.; Cerqueni, E.; Colella, G.; Dotelli, G. The Twelve Principles of Green Tribology: Studies, Research, and Case Studies—A Brief Anthology. Lubricants 2022, 10, 129. [Google Scholar] [CrossRef]
- Liu, D.; Shu, H.; Zhou, J.; Bai, X.; Cao, P. Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review. Biomimetics 2023, 8, 200. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Zhang, W.; Wang, Y.; Ai, E.; Liu, Z.; Wei, L.; Li, Q. Synthesis of an Eco-Friendly Xylooligosaccharides and Its Mechanistic Evaluation in Water-Based Drilling Fluids. Sustainability 2023, 15, 15993. [Google Scholar] [CrossRef]
- Zhu, Y.; McHale, G.; Dawson, J.; Armstrong, S.; Wells, G.; Han, R.; Liu, H.; Vollmer, W.; Stoodley, P.; Jakubovics, N.; et al. Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. ACS Appl. Mater. Interfaces 2022, 14, 6307–6319. [Google Scholar] [CrossRef]
- Wong, T.-S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, H.N.; Choi, W.; Yoon, G.Y.; Seo, E. A Nature-Inspired Lubricant-Infused Surface for Sustainable Drag Reduction. Soft Matter 2019, 15, 8459–8467. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cao, X.; Chen, Y.; Li, Y.; Liu, X. Blue-Ringed Octopus Inspired Slippery Coating with Physico-Chemical Synergistic Antifouling Properties. Chem. Eng. J. 2023, 477, 147177. [Google Scholar] [CrossRef]
- Tong, Z.; Song, L.; Chen, S.; Hu, J.; Hou, Y.; Liu, Q.; Ren, Y.; Zhan, X.; Zhang, Q. Hagfish-Inspired Smart SLIPS Marine Antifouling Coating Based on Supramolecular: Lubrication Modes Responsively Switching and Self-Healing Properties. Adv. Funct. Mater. 2022, 32, 2201290. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm-Inspired Rough Polymer Coatings with Self-Replenishing Lubrication for Adaptive Friction-Reduction and Antifouling Surfaces. Adv. Mater. 2018, 30, 1802141. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Guo, H.; Di, Z.; Sheng, Y.; Song, L.; Hu, J.; Zhang, Q. Squid Inspired Elastomer Marine Coating with Efficient Antifouling Strategies: Hydrophilized Defensive Surface and Lower Modulus. Colloids Surf. B Biointerfaces 2022, 213, 112392. [Google Scholar] [CrossRef]
- Scharf, T.W.; Prasad, S.V. Solid Lubricants: A Review. J. Mater. Sci. 2013, 48, 511–531. [Google Scholar] [CrossRef]
- Yang, K.; Ma, H.; Wang, L.; Cao, Z.; Zhang, C. Analysis of Self-Regulating Tribological Functions of the MgAl Microchannels Prepared in the Ti Alloys. Tribol. Int. 2021, 154, 106717. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, C.; Shi, X.; Xue, Y.; Huang, Q. Investigations of Tribological Performance of Slewing Bearing Raceway with Bionic Textured Composite Surface under Grease Lubrication. Tribol. Int. 2023, 184, 108469. [Google Scholar] [CrossRef]
- Qin, S.; Shi, X.; Xue, Y.; Zhang, K.; Huang, Q.; Wu, C.; Ma, J.; Shu, J. Coupling Effects of Bionic Textures with Composite Solid Lubricants to Improve Tribological Properties of TC4 Alloy. Tribol. Int. 2022, 173, 107691. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, X.; Ma, J. Tribological Behavior of Surface Bionic Rhombic-Textured M50 Steel Containing SnAgCu and MXene-Nb2C under Dry Sliding Conditions. J. Mater. Eng. Perform. 2021, 30, 9390–9402. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, X.; Xue, Y.; Zhang, K.; Wu, C. Optimization of Bionic Textured Parameter to Improve the Tribological Performance of AISI 4140 Self-Lubricating Composite through Response Surface Methodology. Tribol. Int. 2021, 161, 107104. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, T.; Zhou, H.; Chen, Z.; Yang, W.; Ren, L. Effects of Different Bionic Units Coupling on the Sliding Wear of Gray Cast Iron. Surf. Coat. Technol. 2017, 309, 96–105. [Google Scholar] [CrossRef]
- Cotton, J.D.; Briggs, R.D.; Boyer, R.R.; Tamirisakandala, S.; Russo, P.; Shchetnikov, N.; Fanning, J.C. State of the Art in Beta Titanium Alloys for Airframe Applications. JOM 2015, 67, 1281–1303. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J. High Temperature Solid-Lubricating Materials: A Review. Tribol. Int. 2019, 133, 206–223. [Google Scholar] [CrossRef]
Category | Materials | Fabrication | Characteristic | Application | Ref. |
---|---|---|---|---|---|
Chemistry | CPBDT, AIBN, BIBB, CuCl, CuCl2, bpy. | Reversible inactivation radical polymerization method | Reduce the friction coefficient of joints and effectively simulate the lubrication performance of cartilage surface. | Biological lubricant, drug delivery | [85] |
Poly-2-2-hydroxyethyl methacrylate. | One-pot method | It has lubrication maintenance function and can effectively slow down the progress of osteoarthritis. | Treating osteoarthritis, achieve accurate drug delivery | [86] | |
PAMPS, PMPC. | Covalent connection | It has the structural characteristics of natural joint lubrication compound nanofibers. | Treat early osteoarthritis, restore cartilage lubrication | [87] | |
HEMA, 2-bromoisobutyryl bromide, NIPAAm, MBA, triethylamine, aspirin. | 1H NMR | It shows good mechanical properties such as elastic recovery, creep resistance, fatigue resistance, and impact resistance. | Synthetic synovial fluid | [88] | |
PVA, HNO3, PAA. | One-step method | With layered structure, high strength and toughness and low friction coefficient. | Artificial cartilage | [91] | |
GO/PEG-NH2, α-CDs. | Vacuum infiltration method | It has good antibacterial and self-lubricating properties. | Artificial joint replacement surgery | [92] | |
UHMWPE, PVA, PEG, PEG-400 | Oxidative esterification | High tensile strength, excellent compressibility, thermal stability. | Artificial cartilage | [93] | |
SBMA, EGDMA, APS, TMEDA. | One-step method | Excellent mechanical properties, low friction coefficient, and good biocompatibility. | Articular cartilage substitute | [94] | |
AAc, potassium 3-sulfopropyl methacrylate, N, N′-methylenebis. | Ultraviolet irradiation, swelling method | Excellent mechanical adaptability, controllable lubrication performance, and anti-inflammatory adjustment ability. | Cartilage tissue engineering | [95] | |
CS, CHI, GA, EDC, NHS. | Coupling reaction | Excellent water retention, improving the lubricity of damaged cartilage. | Treat rheumatoid arthritis | [96] | |
RAPA@ Lipo@ HMs. | Microfluid technology and photopolymerization process | It can effectively reduce friction, delay the progress of osteoarthritis, and maintain cell homeostasis. | Relieve osteoarthritis and possibly treat friction-related diseases | [97] | |
Na-BT, p-toluenesulfonic acid, sodium bicarbonate, Oleanol, 3,4-dihydroxy benzoic acid. | One-step method | Excellent lubrication performance, good mechanical resistance, low friction, high load, and excellent wear resistance. | Water-based drilling fluid | [102] | |
Acrylic acid, polyvinyl alcohol, catechol. | Acylation reaction | Drilling fluid additive with super adhesion and excellent lubrication performance. | Water-based drilling fluid | [103] | |
Barite, Na2CO3, KCl, bentonite, PAC-UL, octyl phenol ethylene oxide condensate. | High temperature preparation | Thermal stability, good lubricity, enhanced shale inhibition effect, and environmental friendliness. | Water-based drilling fluid | [104] | |
PAO 10, dopamine hydrochloride. | One-step synthesis | It has good oil solubility, thermal stability, and tribological properties. | Lubricating oil of mechanical equipment | [105] | |
DMAC, PMDA, Borax. | Mixed preparation | Fast response, strong adaptability, and good lubrication effect. | Industrial processes and biomedical fields | [106] | |
Structure | PDMS, T3, Foncepi, rice bran wax ethyl acetate. | Hydrophobic modification method of “impregnation-drying-impregnation” | Has mechanical durability and repairability. | Oil–water separation, fluid transportation, anti-corrosion, anti-icing, and microfluidic equipment | [118] |
Copper, PdCl2, PEG. | Electroplate | It has low friction, high bearing capacity, and excellent wear resistance. | Microfluidic equipment and controllable oil transportation systems | [119] | |
Acetone, alcohol, oxalic acid solution. | Laser ablation | Friction resistance decreases steadily at high speed. | Marine ships and pipeline transportation | [120] | |
Si, N-[3-(trimethoxysilyl) propyl], DA-LA. | Etching method | It shows low friction, high load and excellent wear resistance. | The superhydrophobic surface has moisture resistance, which can reduce the adhesion of tiny droplets. In MEMS devices, mechanical failure or performance degradation caused by liquid adhesion is reduced. Self-cleaning surface, antifouling coating | [122] | |
White resin. | 3D printing | It has low friction, high bearing capacity and excellent wear resistance. | Underwater vehicle | [130] | |
SiO2, PDMS, CPPCS. | Mold finishing | Has excellent drag reduction performance and good mechanical stability. | Underwater vehicle or ship | [131] | |
Polyurethane acrylate. | Picosecond pulse laser engraving technology | The surface has regularly arranged quasi-rectangular microchannels. | Drilling machines and robots | [132] | |
PMDET, FMA, CuBr, BIB. | Imitation molding process | It has the characteristics of superhydrophobicity, self-repair and drag reduction. | Hull coatings, surface treatment of medical equipment, waterproof and antifouling coatings for textiles | [133] | |
PDMS, AA, CQAS. | 3D printing | It has many functions such as drag reduction, anti-pollution, anti-swelling. | Pipeline transportation, bioengineering and shipbuilding industry | [134] | |
Chemical–structural coupling | Polyvinyl alcohol, silicone oil, toluene, acetone. | Filling method | The surface is injected with lubricant with special surface morphology. | Marine coatings | [145] |
PDMS, Sylgard 184B, Al, hydroxyl silicone oil, APTES, capsaicin, ethyl acetate. | Impregnation preparation | Has physical and chemical synergistic antifouling performance. | Surface of ships and underwater facilities | [146] | |
AzoPU, AcCD, Azo(OH)2. | Mixed preparation | Can intelligently adjust the surface lubricity in response to external stimuli (such as visible light or heating). | Marine antifouling coatings | [147] | |
Urea, uPDMS, methyl-terminated uPDMS, silicone oil, THF. | Solution casting | Capable of responsively releasing lubricating oil through mechanical stimulation in a solid matrix environment. | Agricultural machinery, micro-robot equipment | [148] | |
MLCG, MXenes. | Laser carving technique | It has excellent antifriction and wear resistance, and can realize self-repair. | Engineering equipment and mechanical systems | [152] | |
TC4, SnAgCu-WS. | 3D printing | Excellent self-adaptive wear-resisting and antifriction performance. | Aviation, biomedicine, automobile manufacturing | [153] | |
M50, SnAgCu, MXene-Nb. | Laser marking technology | Reduce the friction coefficient and wear depth of M50 steel under dry sliding condition. | Aeroengine bearing | [154] | |
AISI 4140, solid lubricant SnAgCu. | Optical fiber laser marking | Decrease average friction coefficient, friction coefficient fluctuation, and wear rate of AISI 4140 steel. | Wind turbine bearing | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Lan, G.; Song, H.; Dong, X.; Li, M. Recent Advances in Biomimetic Related Lubrication. Lubricants 2024, 12, 377. https://doi.org/10.3390/lubricants12110377
Shao J, Lan G, Song H, Dong X, Li M. Recent Advances in Biomimetic Related Lubrication. Lubricants. 2024; 12(11):377. https://doi.org/10.3390/lubricants12110377
Chicago/Turabian StyleShao, Jinqiang, Guiyao Lan, Haoxin Song, Xiaoxiao Dong, and Ming Li. 2024. "Recent Advances in Biomimetic Related Lubrication" Lubricants 12, no. 11: 377. https://doi.org/10.3390/lubricants12110377
APA StyleShao, J., Lan, G., Song, H., Dong, X., & Li, M. (2024). Recent Advances in Biomimetic Related Lubrication. Lubricants, 12(11), 377. https://doi.org/10.3390/lubricants12110377