Optimizing Railway Tribology: A Systematic Review and Predictive Modeling of Twin-Disc Testing Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Paper | Nationality | Year | Contact Pressure [MPa] | [%] | Contact Condition |
---|---|---|---|---|---|
[47] | IT | 2008 | 700, 900, 1100, 1300 | 0, 0.03, 0.06 | D, W |
[41] | IT | 2015 | 1100, 1300, 1500 | 0.24, 1 | D |
[48] | IT | 2017 | 1100 | 1 | D, W |
[49] | IT | 2017 | 1100 | 0.24, 1 | W |
[36] | IT | 2018 | 1100 | 1 | D, S |
[45] | IT JP | 2023 | 1100 | 0.05 | D |
[37] | IT | 2024 | 900, 1100, 1300 | 0, 1, 3 | D |
[42] | CN | 2016 | 800, 950, 1000, 1070 | 2.38 | D |
[50] | BR COL | 2017 | 1100 | 5 | D |
[51] | CN | 2016 | 567 | 0.17, 0.91, 2.38, 3.83, 9.43 | D |
[33] | CN | 2019 | 1430 | 2 | D |
[20] | BR | 2022 | 3000 | 0.75 | D |
[52] | UK CN | 2023 | 1160 | 0.5, 1, 2, 5 | D |
[53] | CN | 2018 | 570 | 0 | D |
[54] | ZA | 2022 | 552, 740 | 2, 5, 10, 20, 27 | D |
[55] | CN IT | 2021 | 1100 | 1 | D, S |
[56] | CN UK IT | 2021 | 1500 | 1 | D |
[17] | CN UK IT | 2020 | 1500 | 0.2, 1, 5 | D |
[57] | CN IT | 2022 | 1100 | 0.4, 1, 3, 5 , 9 | D, S |
[58] | KR | 2016 | 1100 | 0, 0.1, 0.3, 0.5, 1, 1.5 | D |
[59] | CN | 2018 | 1500 | 0.5, 1.5, 3, 6, 12, 18, 25 | D |
[60] | UK | 2019 | 1500 | 1, 10, 20 | D |
[29] | UK CA | 2014 | 1500 | 0, 0.1, 0.3, 0.5, 1, 2, 5, 10, 15, 20 | D, W |
[61] | KR | 2022 | 1500 | 1.5 | D |
[62] | KR | 2019 | 1100 | 1 | D |
[63] | SP | 2019 | 690, 920, 1150, 1385 | 0.1 0.25, 0.5, 0.75, 1, 2, 5 | D |
[43] | CN | 2014 | 1230 | 1.95 | W, W + S, W + Al, W + Ab O, O + S, O + Al, O + Ab L, L + S, L + Al, L + Ab |
[28] | CR | 2015 | 1000 | 1, 3, 5, 8 | D, W |
[44] | CN | 2016 | 1274, 1415, 1465 | 2, 2.38 | D |
[64] | UK NL | 2011 | 1200 | 1, 5, 10 | L + S |
[65] | UK CO | 2019 | 1300 | 0, 0.5, 1, 1.5, 2, 3, 5, 7, 10, 15, 20 | D |
4. Statistical Investigation
5. Conclusions
- The study successfully consolidated and analyzed a vast array of experimental data, providing a unified resource for understanding the complex interactions in wheel–rail tribology.
- Contaminant type and flow rate significantly influence wear mechanisms, with combinations like sand and leaves causing particularly high wear rates.
- For sand contamination, larger grain sizes and higher flow rates were found to correlate with distinct wear behaviors, highlighting the importance of considering particle characteristics in wear predictions.
- A predictive model developed from the collated data demonstrated good accuracy (R2adj = 0.650) in forecasting wear rates under diverse conditions, offering a valuable tool for railway engineers.
- The study revealed gaps in reporting practices, particularly regarding the mechanical properties of test specimens, highlighting areas for improvement in future research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Environment Agency. Transport and Environment Report 2020: Train or Plane? Publications Office: Luxembourg, 2021. [Google Scholar]
- Lewis, R.; Olofsson, U. Wheel—Rail Interface Handbook; Woodhead Publishing Limited: Cambridge, UK, 2009; ISBN 978-1-84569-412-8. [Google Scholar]
- Handa, K.; Ikeuchi, K.; Morimoto, F. Temperature-Dependent Wear of Tread-Braked Railway Wheels. Wear 2020, 452–453, 203265. [Google Scholar] [CrossRef]
- Landström, E.V.; Vernersson, T.; Lundén, R. Analysis and Testing of Tread Braked Railway Wheel—Effects of Hot Spots on Wheel Performance. Int. J. Fatigue 2024, 180, 108116. [Google Scholar] [CrossRef]
- Oldknow, K.; Stock, R.; Vollebregt, E. Effects of Rail Hardness on Transverse Profile Evolution and Computed Contact Conditions in a Full-Scale Wheel-Rail Test Rig Evaluation. Wear 2024, 560–561, 205589. [Google Scholar] [CrossRef]
- Zhou, K.; Ding, H.; Wang, W.; Guo, J.; Liu, Q. Surface Integrity during Rail Grinding under Wet Conditions: Full-Scale Experiment and Multi-Grain Grinding Simulation. Tribol. Int. 2022, 165, 107327. [Google Scholar] [CrossRef]
- Wen, J.; Marteau, J.; Bouvier, S.; Risbet, M.; Cristofari, F.; Secordel, P. Comparison of Microstructure Changes Induced in Two Pearlitic Rail Steels Subjected to a Full-Scale Wheel/Rail Contact Rig Test. Wear 2020, 456–457, 203354. [Google Scholar] [CrossRef]
- Buckley-Johnstone, L.E.; Trummer, G.; Voltr, P.; Six, K.; Lewis, R. Full-Scale Testing of Low Adhesion Effects with Small Amounts of Water in the Wheel/Rail Interface. Tribol. Int. 2020, 141, 105907. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Liu, M.; Jin, X.; Hu, X.; Xiao, X.; Wen, Z. Polygonal Wear Mechanism of High-Speed Wheels Based on Full-Size Wheel-Rail Roller Test Rig. Wear 2022, 494–495, 204234. [Google Scholar] [CrossRef]
- Mädler, K.; Geburtig, T.; Ullrich, D. An Experimental Approach to Determining the Residual Lifetimes of Wheelset Axles on a Full-Scale Wheel-Rail Roller Test Rig. Int. J. Fatigue 2016, 86, 58–63. [Google Scholar] [CrossRef]
- Lyu, Y.; Bergseth, E.; Wahlström, J.; Olofsson, U. A Pin-on-Disc Study on the Tribology of Cast Iron, Sinter and Composite Railway Brake Blocks at Low Temperatures. Wear 2019, 424–425, 48–52. [Google Scholar] [CrossRef]
- Zhu, Y.; Olofsson, U.; Chen, H. Friction Between Wheel and Rail: A Pin-On-Disc Study of Environmental Conditions and Iron Oxides. Tribol Lett 2013, 52, 327–339. [Google Scholar] [CrossRef]
- Ali, N.; Olofsson, U.; Dizdar, S. Friction, Wear, and Airborne Particle Emissions from Rail-Wheel Contact with Laser Cladded Overlays—A Pin-Disc Tribometer Simulation. Wear 2023, 518–519, 204635. [Google Scholar] [CrossRef]
- Mesa, G.D.H.; Vásquez-Chacón, I.A.; Gómez–Guarneros, M.A.; Sanchez-Tizapantzi, P.; Gallardo-Hernández, E.A. A Pin-on-Disk Wear Map of Rail and Wheel Materials from Different Standards. Mater. Lett. 2022, 307, 131021. [Google Scholar] [CrossRef]
- Vásquez-Chacón, I.A.; Sanchez-Tizapantzi, P.; Gómez-Guarneros, M.A.; Enciso-Aguilar, M.A.; Gallardo-Hernández, E.A. Running-in Evaluation after a Rail Grinding Process Using a Pin-on-Disk Tribometer. Wear 2023, 522, 204686. [Google Scholar] [CrossRef]
- Faccoli, M.; Zani, N.; Ghidini, A.; Petrogalli, C. Experimental and Numerical Investigation on the Wear Behavior of High Performance Railway Wheel Steels Paired with Various Brake Block Materials under Dry Sliding Conditions. Wear 2022, 506–507, 204456. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, L.C.; Maiorino, M.; Liu, J.P.; Ding, H.H.; Lewis, R.; Meli, E.; Rindi, A.; Liu, Q.Y.; Wang, W.J. Comparison of Wear and Rolling Contact Fatigue Behaviours of Bainitic and Pearlitic Rails under Various Rolling-Sliding Conditions. Wear 2020, 460–461, 203455. [Google Scholar] [CrossRef]
- Zani, N.; Chaise, T.; Ghidini, A.; Faccoli, M.; Mazzù, A. Numerical study about the effect of bainitic traces on plasticity in ferritic-pearlitic railway wheels. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2020, 235, 726–740. [Google Scholar] [CrossRef]
- Zani, N.; Petrogalli, C. Predictive Maps for the Rolling Contact Fatigue and Wear Interaction in Railway Wheel Steels. Wear 2022, 510–511, 204513. [Google Scholar] [CrossRef]
- Miranda, R.S.; Rezende, A.B.; Fonseca, S.T.; Fernandes, F.M.; Sinatora, A.; Mei, P.R. Fatigue and Wear Behavior of Pearlitic and Bainitic Microstructures with the Same Chemical Composition and Hardness Using Twin-Disc Tests. Wear 2022, 494–495, 204253. [Google Scholar] [CrossRef]
- Zeng, D.; Qiao, S.; Chen, X.; Gong, Y.; Jiang, B.; Zhao, H.; Zhang, J.; Lu, L. Rolling Contact Fatigue and Wear Behavior of a Vanadium Microalloyed Railway Wheel Steel under Dry Rolling/Sliding Condition. Int. J. Fatigue 2024, 182, 108207. [Google Scholar] [CrossRef]
- Fu, Z.K.; Ding, H.H.; Wang, W.J.; Liu, Q.Y.; Guo, J.; Zhu, M.H. Investigation on Microstructure and Wear Characteristic of Laser Cladding Fe-Based Alloy on Wheel/Rail Materials. Wear 2015, 330–331, 592–599. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Q.; Wang, W.; Guo, J.; Liu, Q.; Zhu, M. Investigation on Wear and Damage Performance of Laser Cladding Co-Based Alloy on Single Wheel or Rail Material. Wear 2015, 328–329, 329–337. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X. Martensite Transformation Characteristics in the Heat Affected Zone of Laser Cladding on Rail. Mater. Lett. 2024, 367, 136615. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Zhao, Y.; Hu, Z.; Li, X. Macroscopic Morphology and Properties of Cobalt-Based Laser Cladding Layers on Rail Steel Based on Pulse Shaping. Opt. Laser Technol. 2024, 168, 109940. [Google Scholar] [CrossRef]
- Tomlinson, K.; Fletcher, D.I.; Lewis, R. Evaluation of Laser Cladding as an In-Situ Repair Method on Rail Steel. Tribol. Int. 2023, 180, 108210. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, B.; Xian, C.; Zeng, X.; Hu, Q.; Wang, D. Comparison on the Wear Properties and Rolling Contact Fatigue Damage Behaviors of Rails by Laser Cladding and Laser-Induction Hybrid Cladding. Wear 2020, 458–459, 203421. [Google Scholar] [CrossRef]
- Omasta, M.; Machatka, M.; Smejkal, D.; Hartl, M.; Křupka, I. Influence of Sanding Parameters on Adhesion Recovery in Contaminated Wheel–Rail Contact. Wear 2015, 322–323, 218–225. [Google Scholar] [CrossRef]
- Hardwick, C.; Lewis, R.; Eadie, D.T. Wheel and Rail Wear—Understanding the Effects of Water and Grease. Wear 2014, 314, 198–204. [Google Scholar] [CrossRef]
- Makino, T.; Kato, T.; Hirakawa, K. The Effect of Slip Ratio on the Rolling Contact Fatigue Property of Railway Wheel Steel. Int. J. Fatigue 2012, 36, 68–79. [Google Scholar] [CrossRef]
- Zani, N.; Shu, K.; Ghidini, L.; Petrogalli, C.; Mazzù, A. Impact of Sand Feed Rate on the Damage of Railway Wheel Steels. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1306, 012036. [Google Scholar] [CrossRef]
- Wang, X.; Hua, H.; Peng, K.; Wu, B.; Tang, Z. Study on the Wheel/Rail Adhesion Characteristic under Water and Oil Conditions by Using Mixed Lubrication Model. Wear 2024, 544–545, 205279. [Google Scholar] [CrossRef]
- Liu, J.P.; Li, Y.Q.; Zhou, Q.Y.; Zhang, Y.H.; Hu, Y.; Shi, L.B.; Wang, W.J.; Liu, F.S.; Zhou, S.B.; Tian, C.H. New Insight into the Dry Rolling-Sliding Wear Mechanism of Carbide-Free Bainitic and Pearlitic Steel. Wear 2019, 432–433, 202943. [Google Scholar] [CrossRef]
- Fang, C.; Ding, Y.; Yan, H.; Chen, J.; Zhou, W.; Meng, X. Prediction and Analysis of Wheel Flange Wear on Small Curved Track Considering Wheel-Rail Conformal and Lubricated Contact. Wear 2024, 558–559, 205569. [Google Scholar] [CrossRef]
- Lewis, R.; Olofsson, U. Mapping Rail Wear Regimes and Transitions. Wear 2004, 257, 721–729. [Google Scholar] [CrossRef]
- Faccoli, M.; Petrogalli, C.; Lancini, M.; Ghidini, A.; Mazzù, A. Effect of Desert Sand on Wear and Rolling Contact Fatigue Behaviour of Various Railway Wheel Steels. Wear 2018, 396–397, 146–161. [Google Scholar] [CrossRef]
- Zani, N.; Mazzù, A.; Solazzi, L.; Petrogalli, C. Examining Wear Mechanisms in Railway Wheel Steels: Experimental Insights and Predictive Mapping. Lubricants 2024, 12, 93. [Google Scholar] [CrossRef]
- Bolton, P.J.; Clayton, P. Rolling—Sliding Wear Damage in Rail and Tyre Steels. Wear 1984, 93, 145–165. [Google Scholar] [CrossRef]
- Rocha, R.C.; Ewald, H.; Rezende, A.B.; Fonseca, S.T.; Mei, P.R. Using Twin Disc for Applications in the Railway: A Systematic Review. J Braz. Soc. Mech. Sci. Eng. 2023, 45, 191. [Google Scholar] [CrossRef]
- Rohatgi, A. Webplotdigitizer: Version 4.6 2022. Available online: http://automeris.io/WebPlotDigitizer (accessed on 15 September 2024).
- Mazzù, A.; Petrogalli, C.; Faccoli, M. An Integrated Model for Competitive Damage Mechanisms Assessment in Railway Wheel Steels. Wear 2015, 322–323, 181–191. [Google Scholar] [CrossRef]
- Ding, H.H.; He, C.G.; Ma, L.; Guo, J.; Liu, Q.Y.; Wang, W.J. Wear Mapping and Transitions in Wheel and Rail Materials under Different Contact Pressure and Sliding Velocity Conditions. Wear 2016, 352–353, 1–8. [Google Scholar] [CrossRef]
- Wang, W.J.; Liu, T.F.; Wang, H.Y.; Liu, Q.Y.; Zhu, M.H.; Jin, X.S. Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail under Low Adhesion Conditions. Tribol. Int. 2014, 75, 16–23. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, W.; Chen, S.; Liu, Q. Effects of Rail Materials and Axle Loads on the Wear Behavior of Wheel/Rail Steels. Adv. Mech. Eng. 2016, 8, 168781401665725. [Google Scholar] [CrossRef]
- Bodini, I.; Zani, N.; Petrogalli, C.; Mazzù, A.; Kato, T.; Makino, T. Damage Assessment in a Wheel Steel under Alternated Dry-Lubricated Contact by an Innovative Vision System. Wear 2023, 530–531, 205064. [Google Scholar] [CrossRef]
- Fletcher, D.I.; Beynon, J.H. Equilibrium of Crack Growth and Wear Rates during Unlubricated Rolling-Sliding Contact of Pearlitic Rail Steel. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2000, 214, 93–105. [Google Scholar] [CrossRef]
- Donzella, G.; Faccoli, M.; Ghidini, A.; Mazzù, A.; Roberti, R. The Competitive Role of Wear and RCF in a Rail Steel. Eng. Fract. Mech. 2005, 72, 287–308. [Google Scholar] [CrossRef]
- Faccoli, M.; Petrogalli, C.; Lancini, M.; Ghidini, A.; Mazzù, A. Rolling Contact Fatigue and Wear Behavior of High-Performance Railway Wheel Steels Under Various Rolling-Sliding Contact Conditions. J. Mater. Eng Perform 2017, 26, 3271–3284. [Google Scholar] [CrossRef]
- Mazzù, A.; Petrogalli, C.; Lancini, M.; Ghidini, A.; Faccoli, M. Effect of Wear on Surface Crack Propagation in Rail–Wheel Wet Contact. J. Mater. Eng Perform 2018, 27, 630–639. [Google Scholar] [CrossRef]
- Maya-Johnson, S.; Felipe Santa, J.; Toro, A. Dry and Lubricated Wear of Rail Steel under Rolling Contact Fatigue—Wear Mechanisms and Crack Growth. Wear 2017, 380–381, 240–250. [Google Scholar] [CrossRef]
- Ma, L.; He, C.G.; Zhao, X.J.; Guo, J.; Zhu, Y.; Wang, W.J.; Liu, Q.Y.; Jin, X.S. Study on Wear and Rolling Contact Fatigue Behaviors of Wheel/Rail Materials under Different Slip Ratio Conditions. Wear 2016, 366–367, 13–26. [Google Scholar] [CrossRef]
- Wang, H.H.; Wang, W.J.; Han, Z.Y.; Wang, Y.; Ding, H.H.; Lewis, R.; Lin, Q.; Liu, Q.Y.; Zhou, Z.R. Wear and Rolling Contact Fatigue Competition Mechanism of Different Types of Rail Steels under Various Slip Ratios. Wear 2023, 522, 204721. [Google Scholar] [CrossRef]
- Huang, Y.B.; Shi, L.B.; Zhao, X.J.; Cai, Z.B.; Liu, Q.Y.; Wang, W.J. On the Formation and Damage Mechanism of Rolling Contact Fatigue Surface Cracks of Wheel/Rail under the Dry Condition. Wear 2018, 400–401, 62–73. [Google Scholar] [CrossRef]
- Leso, T.P.; Siyasiya, C.W.; Mostert, R.J.; Moema, J. Study of Rolling Contact Fatigue, Rolling and Sliding Wear of Class B Wheel Steels against R350HT and R260 Rail Steels under Dry Contact Conditions Using the Twin Disc Setup. Tribol. Int. 2022, 174, 107711. [Google Scholar] [CrossRef]
- Shu, K.; Wang, W.; Ding, H.; Lin, Q.; Meli, E.; Guo, J.; Mazzù, A.; Liu, Q. Influence of Sand Transport Rate on Rolling Wear and Damage Behaviors of Wheel/Rail in Gobi and Desert Windblown Sand Environments. Tribol. Int. 2022, 172, 107584. [Google Scholar] [CrossRef]
- Hu, Y.; Watson, M.; Maiorino, M.; Zhou, L.; Wang, W.J.; Ding, H.H.; Lewis, R.; Meli, E.; Rindi, A.; Liu, Q.Y.; et al. Experimental Study on Wear Properties of Wheel and Rail Materials with Different Hardness Values. Wear 2021, 477, 203831. [Google Scholar] [CrossRef]
- Shu, K.; Ding, H.H.; Mazzù, A.; Lin, Q.; Guo, J.; Meli, E.; Liu, Q.Y.; Wang, W.J. Effect of Dynamic Windblown Sand Environments on the Wear and Damage of Wheel-Rail under Different Slip Ratios. Wear 2022, 500–501, 204349. [Google Scholar] [CrossRef]
- Seo, J.-W.; Jun, H.-K.; Kwon, S.-J.; Lee, D.-H. Rolling Contact Fatigue and Wear of Two Different Rail Steels under Rolling–Sliding Contact. Int. J. Fatigue 2016, 83, 184–194. [Google Scholar] [CrossRef]
- Zhu, W.T.; Guo, L.C.; Shi, L.B.; Cai, Z.B.; Li, Q.L.; Liu, Q.Y.; Wang, W.J. Wear and Damage Transitions of Two Kinds of Wheel Materials in the Rolling-Sliding Contact. Wear 2018, 398–399, 79–89. [Google Scholar] [CrossRef]
- Christoforou, P.; Fletcher, D.I.; Lewis, R. Benchmarking of Premium Rail Material Wear. Wear 2019, 436–437, 202990. [Google Scholar] [CrossRef]
- Seo, J.-W.; Hur, H.-M.; Kwon, S.-J. Effect of Mechanical Properties of Rail and Wheel on Wear and Rolling Contact Fatigue. Metals 2022, 12, 630. [Google Scholar] [CrossRef]
- Seo, J.; Kwon, S.; Jun, H.; Lee, C. Effects of Wheel Materials on Wear and Fatigue Damage Behaviors of Wheels/Rails. Tribol. Trans. 2019, 62, 635–649. [Google Scholar] [CrossRef]
- Salas Vicente, F.; Pascual Guillamón, M. Use of the Fatigue Index to Study Rolling Contact Wear. Wear 2019, 436–437, 203036. [Google Scholar] [CrossRef]
- Arias-Cuevas, O.; Li, Z.; Lewis, R. A Laboratory Investigation on the Influence of the Particle Size and Slip during Sanding on the Adhesion and Wear in the Wheel–Rail Contact. Wear 2011, 271, 14–24. [Google Scholar] [CrossRef]
- Santa, J.F.; Cuervo, P.; Christoforou, P.; Harmon, M.; Beagles, A.; Toro, A.; Lewis, R. Twin Disc Assessment of Wear Regime Transitions and Rolling Contact Fatigue in R400HT–E8 Pairs. Wear 2019, 432–433, 102916. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, W.; Guo, J.; An, B.; Chen, R.; Wu, Q.; Bernal, E.; Ding, H.; Spiryagin, M. Rail Rolling Contact Fatigue Response Diagram Construction and Shakedown Map Optimization. Wear 2023, 528–529, 204964. [Google Scholar] [CrossRef]
- Conrado, E.; Foletti, S.; Gorla, C.; Papadopoulos, I.V. Use of Multiaxial Fatigue Criteria and Shakedown Theorems in Thermo-Elastic Rolling–Sliding Contact Problems. Wear 2011, 270, 344–354. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985; ISBN 978-1-139-17173-1. [Google Scholar]
- Ekberg, A.; Kabo, E. Fatigue of Railway Wheels and Rails under Rolling Contact and Thermal Loading—An Overview. Wear 2005, 258, 1288–1300. [Google Scholar] [CrossRef]
- Grieve, D.G.; Dwyer-Joyce, R.S.; Beynon, J.H. Abrasive Wear of Railway Track by Solid Contaminants. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2001, 215, 193–205. [Google Scholar] [CrossRef]
- Li, Q.; Wu, B.; Ding, H.; Galas, R.; Kvarda, D.; Liu, Q.; Zhou, Z.; Omasta, M.; Wang, W. Numerical Prediction on the Effect of Friction Modifiers on Adhesion Behaviours in the Wheel-Rail Starved EHL Contact. Tribol. Int. 2022, 170, 107519. [Google Scholar] [CrossRef]
- Skurka, S.; Galas, R.; Omasta, M.; Wu, B.; Ding, H.; Wang, W.-J.; Krupka, I.; Hartl, M. The Performance of Top-of-Rail Products under Water Contamination. Tribol. Int. 2023, 188, 108872. [Google Scholar] [CrossRef]
- Shi, L.B.; Wang, C.; Ding, H.H.; Kvarda, D.; Galas, R.; Omasta, M.; Wang, W.J.; Liu, Q.Y.; Hartl, M. Laboratory Investigation on the Particle-Size Effects in Railway Sanding: Comparisons between Standard Sand and Its Micro Fragments. Tribol. Int. 2020, 146, 106259. [Google Scholar] [CrossRef]
- Mazzù, A.; Battini, D.; Zani, N. Computational Assessment of Ratcheting in Rail-Wheel Contact with Solid Contaminant. Wear 2024, 546–547, 205346. [Google Scholar] [CrossRef]
Paper | Contaminant | Flow Rate | Average Dimension [μm] | Type of Sand |
---|---|---|---|---|
[64] | LS | 441 | 180, 450, 825, 1225 | SiO2 max 96% (pit South Germany, river in the Netherlands) |
[36] | S | 9 | 27.5 | max 86% (commercial sand) |
[57] | S | 0.96 | 35, 270 | Gobi sand, desert sand |
[55] | S | 0.012, 0.06, 0.12, 0,18, 0.24 | 24, 210 | Gobi sand, desert sand |
[43] | W S, O S, L S | 10 | 900 | Quartz |
Parameter Name | Estimate | Standard Deviation |
---|---|---|
0.508 | 0.030 | |
0.531 | 0.035 | |
−0.91 | 0.26 | |
1.74 | 0.10 | |
0.239 | 0.079 | |
−0.64 | 0.13 |
Parameter Name | Estimate | Standard Deviation |
---|---|---|
0.511 | 0.029 | |
2.62 | 0.41 | |
1.31 | 0.48 | |
3.97 | 0.42 | |
2.31 | 0.41 | |
1.43 | 0.42 | |
−0.012 | 0.002 | |
16.2 × 10−6 | 2.5 × 10−6 |
Parameter Name | Estimate | Standard Deviation |
---|---|---|
0.533 | 0.03 | |
0 | 0 | |
−1.22 | 0.24 | |
2.02 | 0.15 | |
−0.375 | 0.069 | |
−1.14 | 0.12 | |
0 | 0 | |
−0.44 | 0.10 | |
−10.7 | 1.5 | |
2.17 | 0.31 | |
0.0233 | 0.0034 | |
−0.00440 | 0.00067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zani, N.; Petrogalli, C.; Battini, D. Optimizing Railway Tribology: A Systematic Review and Predictive Modeling of Twin-Disc Testing Parameters. Lubricants 2024, 12, 382. https://doi.org/10.3390/lubricants12110382
Zani N, Petrogalli C, Battini D. Optimizing Railway Tribology: A Systematic Review and Predictive Modeling of Twin-Disc Testing Parameters. Lubricants. 2024; 12(11):382. https://doi.org/10.3390/lubricants12110382
Chicago/Turabian StyleZani, Nicola, Candida Petrogalli, and Davide Battini. 2024. "Optimizing Railway Tribology: A Systematic Review and Predictive Modeling of Twin-Disc Testing Parameters" Lubricants 12, no. 11: 382. https://doi.org/10.3390/lubricants12110382
APA StyleZani, N., Petrogalli, C., & Battini, D. (2024). Optimizing Railway Tribology: A Systematic Review and Predictive Modeling of Twin-Disc Testing Parameters. Lubricants, 12(11), 382. https://doi.org/10.3390/lubricants12110382