Transformation from D022 to L12 in Al3Ti by Fe Addition for Enhanced Wear Resistance
Abstract
:1. Introduction
- (a)
- Fe was selected as a representative third element to be alloyed into Al3Ti, turning the D022-structured Al3Ti to a ductile L12 structure (Al, M)3Ti. Fe was selected for this study based on the consideration of its abundant resource, low cost, and the industrial relevance or interest in ferrous alloys. It should be indicated that adding Fe would not affect the alloy’s resistance to corrosion, since the alloy contains passive elements Al and Ti of high concentrations, which generate a protective passive film that can prevent continuous corrosion when used in corrosive environments;
- (b)
- The wear resistances of the two fabricated alloys were evaluated, in comparison to that of a well-known 30 wt.% SiC particle-reinforced Al-matrix composite as a reference material;
- (c)
- Corresponding changes in the microstructure, mechanical properties, and wear behavior were analyzed in detail in order to elucidate the underlying wear mechanisms for further improvement or optimization.
2. Materials and Methods
3. Results
3.1. Microstructure Characterization
3.2. Wear Behavior
4. Discussion
5. Conclusions
- (a)
- Alloying Al3Ti with Fe, which may partially substitute Al, successfully transformed the D022 Al3Ti to L12 (Al, Fe)3Ti, leading to improved ductility or toughness at the expense of hardness;
- (b)
- S-Al3Ti experienced oxide scale spallation and surface fragmentation due to its brittleness, resulting in higher wear volume loss;
- (c)
- S-Al67Ti25Fe8 exhibited lowered abrasive wear due to a reasonable combination of hardness and ductility/toughness, thus increasing its wear resistance;
- (d)
- Both the S-Al3Ti and S-Al67Ti25Fe8 alloys exhibited higher wear resistances than the commercial S-Al/SiCp composite. The (Al, M)3Ti alloy series can be further optimized and is promising as lightweight materials for tribological applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Z.Y.; Wang, Z.X.; Liu, X.P.; Han, P.D. Preparation of TiAl–Cr surface alloy by plasma-surface alloying technique. Vacuum 2013, 89, 280–284. [Google Scholar] [CrossRef]
- Uenishi, K.; Kobayashi, K.F. Processing of intermetallic compounds for structural applications at high temperature. Intermetallics 1996, 4, S95–S101. [Google Scholar] [CrossRef]
- Wei, N.; Han, X.; Zhang, X.; Cao, Y.; Guo, C.; Lu, Z.; Jiang, F. Characterization and properties of intermetallic Al3Ti alloy synthesized by reactive foil sintering in vacuum. J. Mater. Res. 2016, 31, 2706–2713. [Google Scholar] [CrossRef]
- Russell, A.M. Ductility in Intermetallic Compounds. Adv. Eng. Mater. 2003, 5, 629–639. [Google Scholar] [CrossRef]
- Bochenek, K.; Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 2015, 79, 136–146. [Google Scholar] [CrossRef]
- Li, Z.; Gao, W. High temperature corrosion of intermetallics. In Intermetallics Research Progress; Nova Science Publisher: Hauppauge, NY, USA, 2008; pp. 1–64. [Google Scholar]
- Nayak, S.S.; Murty, B.S. Synthesis and stability of L12–Al3Ti by mechanical alloying. Mater. Sci. Eng. A 2004, 367, 218–224. [Google Scholar] [CrossRef]
- Schoenitz, M.; Zhu, X.; Dreizin, E.L. Mechanical alloys in the Al-rich part of the Al-Ti binary system. J. Metastable Nanocryst. Mater. 2004, 20, 455–461. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Umakoshi, Y.; Yamane, T. Plastic deformation of the intermetallic compound Al3Ti. Philos. Mag. A 1987, 55, 301–315. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, J. A Critical Review of von Mises Criterion for Compatible Deformation of Polycrystalline Materials. Crystals 2023, 13, 244. [Google Scholar] [CrossRef]
- Schwarz, R.B.; Desch, P.B.; Srinivasan, S. Phase Stability of Al3X Alloys (X = Ti, Zr, Hf). In Statics and Dynamics of Alloy Phase Transformations; Turchi, P.E.A., Gonis, A., Eds.; Springer: Boston, MA, USA, 1994; pp. 81–101. [Google Scholar]
- Hussain, A.; Mehmood, S.; Rasool, N.; Li, N.; Dharmawardhana, C.C. Electronic structure, mechanical and optical properties of TiAl3 (L12 & D022) via first-principles calculations. Chin. J. Phys. 2016, 54, 319–328. [Google Scholar] [CrossRef]
- Nakayama, Y.; Mabuchi, H. Formation of ternary L12 compounds in Al3Ti-base alloys. Intermetallics 1993, 1, 41–48. [Google Scholar] [CrossRef]
- Mabuchi, H.; Kito, A.; Nakamoto, M.; Tsuda, H.; Nakayama, Y. Effects of manganese on the L12 compound formation in Al3Ti-based alloys. Intermetallics 1996, 4, S193–S199. [Google Scholar] [CrossRef]
- Gengxiang, H.; Shipu, C.; Xiaohua, W.; Xiaofu, C. Plastic deformation and fracture behavior of a Fe-modified Al3Ti-base L12 intermetallic alloy. J. Mater. Res. 2011, 6, 957–963. [Google Scholar] [CrossRef]
- Mabuchi, H.; Tsuda, H.; Matsui, T.; Morii, K. Microstructure and mechanical properties of ternary L12 intermetallic compound in Al–Ti–Cr system. Mater. Trans. JIM 1997, 38, 560–565. [Google Scholar] [CrossRef]
- Prakash, U.; Buckley, R.A.; Jones, H.; Sellars, C.M. DO22 to L12 transition in intermetallic systems. J. Mater. Sci. 1992, 27, 2001–2004. [Google Scholar] [CrossRef]
- Varin, R.A.; Zbroniec, L.; Chiu, C. Observations of crack tip process zones in cubic titanium trialuminide intermetallics. Intermetallics 2001, 9, 937–941. [Google Scholar] [CrossRef]
- Tian, W.H.; Nemoto, M. Phase decomposition and hardening of Ag-modified L12 Al3Ti. Intermetallics 1998, 6, 193–200. [Google Scholar] [CrossRef]
- Heilmaier, M.; Handtrack, D.; Varin, R.A. Creep properties of boron-doped dual-phase Ti-rich L12-based trialuminide intermetallics. Scr. Mater. 2003, 48, 1409–1414. [Google Scholar] [CrossRef]
- Varin, R.A.; Zbroniec, L.; Wang, Z.G. Fracture toughness and yield strength of boron-doped, high (Ti+Mn) L12 titanium trialuminides. Intermetallics 2001, 9, 195–207. [Google Scholar] [CrossRef]
- George, E.P.; Pope, D.P.; Fu, C.L.; Schneibel, J.H. Deformation and Fracture of L12 Trialuminides. ISIJ Int. 1991, 31, 1063–1075. [Google Scholar] [CrossRef]
- Ghosh, G.; van de Walle, A.; Asta, M. First-Principles Phase Stability Calculations of Pseudobinary Alloys of (Al,Zn)3Ti with L12, D022, and D023 Structures. J. Phase Equilibria Diffus. 2007, 28, 9–22. [Google Scholar] [CrossRef]
- Xu, X.; Xu, W.; Ederveen, F.H.; van der Zwaag, S. Design of low hardness abrasion resistant steels. Wear 2013, 301, 89–93. [Google Scholar] [CrossRef]
- Boulechfar, R.; Sayad, D.; Khenioui, Y.; Meradji, H.; Ghemid, S.; Khenata, R.; Bin-Omran, S.; Bouhemadou, A.; Goumri-Said, S. Theoretical investigations of Zr-concentration influence on the thermodynamic, elastic, electronic, and structural stability of D022/L12-Al3Ti. Eur. Phys. J. B 2024, 97, 1. [Google Scholar] [CrossRef]
- Milman, Y.V.; Miracle, D.B.; Chugunova, S.I.; Voskoboinik, I.V.; Korzhova, N.P.; Legkaya, T.N.; Podrezov, Y.N. Mechanical behaviour of Al3Ti intermetallic and L12 phases on its basis. Intermetallics 2001, 9, 839–845. [Google Scholar] [CrossRef]
- Luo, J.; Liu, M.; Ma, L. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 2021, 86, 106092. [Google Scholar] [CrossRef]
- Xu, Z.; Li, D.Y.; Chen, D.L. Effect of Ti on the wear behavior of AlCoCrFeNi high-entropy alloy during unidirectional and bi-directional sliding wear processes. Wear 2021, 476, 203650. [Google Scholar] [CrossRef]
- Akonko, S.; Li, D.Y.; Ziomek-Moroz, M. Effects of cathodic protection on corrosive wear of 304 stainless steel. Tribol. Lett. 2005, 18, 405–410. [Google Scholar] [CrossRef]
- Yin, S.; Li, D.Y. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions. Mater. Sci. Eng. A 2005, 394, 266–276. [Google Scholar] [CrossRef]
- Faghihi, S.; Li, D.; Szpunar, J.A. Tribocorrosion behaviour of nanostructured titanium substrates processed by high-pressuretorsion. Nanotechnology 2010, 21, 485703. [Google Scholar] [CrossRef]
- Hutchings, I.; Shipway, P. Tribology: Friction and Wear of Engineering Materials; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- He, H.-B.; Han, W.-Q.; Li, H.-Y.; Li, D.-Y.; Yang, J.; Gu, T.; Deng, T. Effect of deep cryogenic treatment on machinability and wear mechanism of TiAlN coated tools during dry turning. Int. J. Precis. Eng. Manuf. 2014, 15, 655–660. [Google Scholar] [CrossRef]
- Budinski, K.G.; Budinski, S.T. Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications; ASM International: Almere, The Netherlands, 2021. [Google Scholar]
- Tong, X.; Zhang, H.; Li, D.Y. Effect of annealing treatment on mechanical properties of nanocrystalline α-iron: An atomistic study. Sci. Rep. 2015, 5, 8459. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Szpunar, J.A. A possible role for surface packing density in the formation of {111} texture in solidified FCC metals. J. Mater. Sci. Lett. 1994, 13, 1521–1523. [Google Scholar] [CrossRef]
- Bunge, H.J. Texture Analysis in Materials Science: Mathematical Methods; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Knothe, K.; Liebelt, S. Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear 1995, 189, 91–99. [Google Scholar] [CrossRef]
- Quinn, T.F.J. Oxidational wear modelling: I. Wear 1992, 153, 179–200. [Google Scholar] [CrossRef]
- Garza-Montes-de-Oca, N.F.; Rainforth, W.M. Wear mechanisms experienced by a work roll grade high speed steel under different environmental conditions. Wear 2009, 267, 441–448. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, Z.; Wei, D.; Wu, H.; Jiang, L. Adhesion, friction and wear analysis of a chromium oxide scale on a ferritic stainless steel. Wear 2019, 426–427, 1212–1221. [Google Scholar] [CrossRef]
- Majumdar, A.; Muddle, B.C. Microstructure in rapidly solidified Al-Ti alloys. Mater. Sci. Eng. A 1993, 169, 135–147. [Google Scholar] [CrossRef]
- Guo, J.Q.; Ohtera, K.; Kita, K.; Shibata, T.; Inoue, A.; Masumoto, T. New metastable phases in rapidly solidified Al-Zr and Al-Ti alloys with high solute contents. Mater. Sci. Eng. A 1994, 181–182, 1397–1404. [Google Scholar] [CrossRef]
- Srinivasan, S.; Desch, P.B.; Schwarz, R.B. Metastable phases in the Al3X (X = Ti, Zr, and Hf) intermetallic system. Scr. Metall. Mater. 1991, 25, 2513–2516. [Google Scholar] [CrossRef]
- Klassen, T.; Oehring, M.; Bormann, R. Microscopic mechanisms of metastable phase formation during ball milling of intermetallic TiAl phases. Acta Mater. 1997, 45, 3935–3948. [Google Scholar] [CrossRef]
- Colinet, C.; Pasturel, A. Ab initio calculation of the formation energies of L12, D022, D023 and one dimensional long period structures in TiAl3 compound. Intermetallics 2002, 10, 751–764. [Google Scholar] [CrossRef]
- Carlsson, A.E.; Meschter, P.J. Relative stability of LI2, DO22, and DO23 structures in MAl3 compounds. J. Mater. Res. 1989, 4, 1060–1063. [Google Scholar] [CrossRef]
- Qiu, X.W.; Zhang, Y.P.; Liu, C.G. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings. J. Alloys Compd. 2014, 585, 282–286. [Google Scholar] [CrossRef]
- Li, Y.; Liang, H.; Nie, Q.; Qi, Z.; Deng, D.; Jiang, H.; Cao, Z. Microstructures and Wear Resistance of CoCrFeNi2V0.5Tix High-Entropy Alloy Coatings Prepared by Laser Cladding. Crystals 2020, 10, 352. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diao, G.; Yuan, J.; He, A.; Zhang, D.; Kumar, A.; Fang, R.; Vorobyev, A.; Chen, W.; Li, D. Transformation from D022 to L12 in Al3Ti by Fe Addition for Enhanced Wear Resistance. Lubricants 2024, 12, 398. https://doi.org/10.3390/lubricants12110398
Diao G, Yuan J, He A, Zhang D, Kumar A, Fang R, Vorobyev A, Chen W, Li D. Transformation from D022 to L12 in Al3Ti by Fe Addition for Enhanced Wear Resistance. Lubricants. 2024; 12(11):398. https://doi.org/10.3390/lubricants12110398
Chicago/Turabian StyleDiao, Guijiang, Junfeng Yuan, Anqiang He, Dong Zhang, Aakash Kumar, Ranran Fang, Anatoliy Vorobyev, Wengang Chen, and Dongyang Li. 2024. "Transformation from D022 to L12 in Al3Ti by Fe Addition for Enhanced Wear Resistance" Lubricants 12, no. 11: 398. https://doi.org/10.3390/lubricants12110398
APA StyleDiao, G., Yuan, J., He, A., Zhang, D., Kumar, A., Fang, R., Vorobyev, A., Chen, W., & Li, D. (2024). Transformation from D022 to L12 in Al3Ti by Fe Addition for Enhanced Wear Resistance. Lubricants, 12(11), 398. https://doi.org/10.3390/lubricants12110398