Carbonaceous Decomposition Products at High Temperatures and Their Interfacial Role in the Friction Behaviour of Composite Brake Material
Abstract
:1. Introduction
2. Experimental Details
2.1. Friction Material
2.2. High-Temperature Pin-on-Disc Test Setup
2.3. Characterization Tools
3. Results and Discussion
3.1. The Evolution of Friction and Wear with Test Temperature
3.2. X-Ray Diffraction of the Worn Pin Surfaces
3.3. Raman Spectroscopy
3.4. Wear Mechanism
4. Conclusions
- These stable friction characteristics were associated with the carbonaceous products that provide the necessary lubrication effect. Raman spectroscopy was used to identify the main carbonaceous compounds in the friction plateaus of worn pin surfaces at high temperatures.
- The phenolic binder resin in the pin friction material degrades thermally, producing these carbonaceous byproducts. The relative sliding motion between the pin and the disc causes the carbonaceous products to spread over on plateaus on the worn pins, which considerably helps the friction curve’s smooth growth.
- High temperatures govern the properties of the friction material and determine the increased wear seen at 300 °C.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, D.; Stachowiak, G.W. Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Liew, K.W.; Nirmal, U. Frictional performance evaluation of newly designed brake pad materials. Mater. Des. 2013, 48, 25–33. [Google Scholar] [CrossRef]
- Mulani, S.M.; Kumar, A.; Shaikh, H.N.E.A.; Saurabh, A.; Singh, P.K.; Verma, P.C. A review on recent development and challenges in automotive brake pad-disc system. Mater. Today Proc. 2022, 56, 447–454. [Google Scholar] [CrossRef]
- Gurunath, P.V.; Bijwe, J. Friction and wear studies on brake-pad materials based on newly developed resin. Wear 2007, 263, 1212–1219. [Google Scholar] [CrossRef]
- Křístková, M.; Filip, P.; Weiss, Z.; Peter, R. Influence of metals on the phenol–formaldehyde resin degradation in friction composites. Polym. Degrad. Stab. 2004, 84, 49–60. [Google Scholar] [CrossRef]
- Kim, S.J.; Jang, H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribol. Int. 2000, 33, 477–484. [Google Scholar] [CrossRef]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J.; Laroo, C.; Parr, G.A. Brake Wear Particulate Matter Emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Gasser, M.; Riediker, M.; Mueller, L.; Perrenoud, A.; Blank, F.; Gehr, P.; Rothen-Rutishauser, B. Toxic effects of brake wear particles on epithelial lung cells in vitro. Part. Fibre Toxicol. 2009, 6, 30. [Google Scholar] [CrossRef]
- Perricone, G.; Alemani, M.; Metinöz, I.; Matějka, V.; Wahlström, J.; Olofsson, U. Towards the ranking of airborne particle emissions from car brakes—A system approach. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 781–797. [Google Scholar] [CrossRef]
- Kukutschová, J.; Roubíček, V.; Malachová, K.; Pavlíčková, Z.; Holuša, R.; Kubačková, J.; Mička, V.; MacCrimmon, D.; Filip, P. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear 2009, 267, 807–817. [Google Scholar] [CrossRef]
- Peikertova, P.; Filip, P. Influence of the Automotive Brake Wear Debris on the Environment—A Review of Recent Research. SAE Int. J. Mater. Manuf. 2016, 9, 133–146. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Alves, D.D.; Riegel, R.P.; Klauck, C.R.; Ceratti, A.M.; Hansen, J.; Cansi, L.M.; Pozza, S.A.; de Quevedo, D.M.; Osório, D.M.M. Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity. Environ. Sci. Pollut. Res. 2020, 27, 12202–12214. [Google Scholar] [CrossRef]
- Saurabh, A.; Verma, P.C.; Dhir, A.; Sikder, J.; Saravanan, P.; Tiwari, S.K.; Das, R. Enhanced tribological performance of MoS2 and hBN-based composite friction materials: Design of tribo-pair for automotive brake pad-disc systems. Tribol. Int. 2024, 199, 110001. [Google Scholar] [CrossRef]
- Jiang, J.; Stott, F.H.; Stack, M. The role of triboparticulates in dry sliding wear. Tribol. Int. 1998, 31, 245–256. [Google Scholar] [CrossRef]
- Ingo, G.M.; D’Uffizi, M.; Falso, G.; Bultrini, G.; Padeletti, G. Thermal and microchemical investigation of automotive brake pad wear residues. Thermochim. Acta 2004, 418, 61–68. [Google Scholar] [CrossRef]
- Verma, P.C.; Ciudin, R.; Bonfanti, A.; Aswath, P.; Straffelini, G.; Gialanella, S. Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear 2016, 346–347, 56–65. [Google Scholar] [CrossRef]
- Straffelini, G.; Verlinski, S.; Verma, P.C.; Valota, G.; Gialanella, S. Wear and Contact Temperature Evolution in Pin-on-Disc Tribotesting of Low-Metallic Friction Material Sliding Against Pearlitic Cast Iron. Tribol. Lett. 2016, 62, 36. [Google Scholar] [CrossRef]
- Manoj, A.; Saurabh, A.; Narala, S.K.R.; Saravanan, P.; Natu, H.P.; Verma, P.C. Surface modification of grey cast iron by laser cladding for automotive brake disc application. Wear 2023, 532–533, 205099. [Google Scholar] [CrossRef]
- Österle, W.; Urban, I. Third body formation on brake pads and rotors. Tribol. Int. 2006, 39, 401–408. [Google Scholar] [CrossRef]
- Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 334–340. [Google Scholar] [CrossRef]
- Patel, M.; Azanza Ricardo, C.L.; Scardi, P.; Aswath, P.B. Morphology, structure and chemistry of extracted diesel soot—Part I: Transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and synchrotron X-ray diffraction study. Tribol. Int. 2012, 52, 29–39. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Wang, Q.; Jiang, S.; Yang, Y.; Luo, W.; Wang, X. Apatite in Hamipterus tianshanensis eggshell: Advances in understanding the structure of pterosaur eggs by Raman spectroscopy. Herit. Sci. 2022, 10, 84. [Google Scholar] [CrossRef]
- Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Hayakawa, Y.; Loganathan, A.; Ravi, G. Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+ and Mg2+) under visible light irradiation. Appl. Phys. A 2020, 126, 265. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef]
- Zhang, C.C.; Hartlaub, S.; Petrovic, I.; Yilmaz, B. Raman spectroscopy characterization of amorphous coke generated in industrial processes. ACS Omega 2022, 7, 2565–2570. [Google Scholar] [CrossRef]
- Parlinski, K.; Piekarz, P. Ab initio determination of Raman spectra of Mg2SiO4 and Ca2MgSi2O7 showing mixed modes related to LO/TO splitting. J. Raman Spectrosc. 2021, 52, 1346–1359. [Google Scholar] [CrossRef]
(a) Elements | Zn | Mg | Al | Sn | Fe | Si | Cu | S | Ca | Cr | K | Ti | Zr | P | Bal |
Wt % | 12.5 | 10.4 | 9.1 | 8.7 | 7.1 | 5.8 | 5.4 | 5.2 | 5.0 | 3.6 | 0.6 | 0.2 | 0.05 | 0.05 | ND |
(b) Components | Magnesium oxide (MgO) | Tin Sulphide (SnS) | Alumina (Al2O3) | Vermiculite (Mg,Fe2+,Fe3+)3[(Al,Si)4O10] | Zinc Oxide (ZnO) | Calcium Phosphate (Ca3P2O8) | Pyrite (FeS) | Graphite fibres, organic resin, and carbon | |||||||
Wt % | 14.1 | 9.3 | 5.7 | 13.6 | 13.8 | 2.8 | 9.4 | Bal. |
Temperature | Specific Wear Volume [mm3/mm] × 10−7 | Specific Wear Coefficients [m2/N] × 10−15 | Coefficient of Friction (μ) Range |
---|---|---|---|
155 °C | 30.7 | 61.2 | 0.4–0.6 |
200 °C | 43.2 | 86.1 | 0.4–0.6 |
250 °C | 65.0 | 130.4 | 0.5–0.6 |
300 °C | 102.5 | 204.6 | 0.4–0.6 |
Phase W%/Sample | 155 °C | 200 °C | 250 °C | 300 °C |
---|---|---|---|---|
Carbon/Graphite (C) | 18.22 | 20.46 | 23.39 | 23.19 |
Iron (Fe) | 0.84 | 0.17 | 0.81 | 0.41 |
Hematite (Fe2O3) | 0.78 | 0.23 | 0.21 | 0.13 |
Magnetite (Fe3O4) | 3.10 | 2.63 | 4.79 | 4.48 |
Zincite (ZnO) | 3.03 | 0.32 | 2.53 | 1.13 |
Periclase (MgO) | 6.30 | 3.06 | 11.54 | 5.68 |
Copper (Cu) | 31.79 | 50.03 | 42.11 | 48.67 |
Zinc (Zn) | 35.57 | 22.18 | 13.41 | 15.92 |
Tenorite (CuO) | 0.37 | 0.92 | 1.21 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, P.C.; Aswath, P.; Straffelini, G.; Gialanella, S. Carbonaceous Decomposition Products at High Temperatures and Their Interfacial Role in the Friction Behaviour of Composite Brake Material. Lubricants 2024, 12, 399. https://doi.org/10.3390/lubricants12110399
Verma PC, Aswath P, Straffelini G, Gialanella S. Carbonaceous Decomposition Products at High Temperatures and Their Interfacial Role in the Friction Behaviour of Composite Brake Material. Lubricants. 2024; 12(11):399. https://doi.org/10.3390/lubricants12110399
Chicago/Turabian StyleVerma, Piyush Chandra, Pranesh Aswath, Giovanni Straffelini, and Stefano Gialanella. 2024. "Carbonaceous Decomposition Products at High Temperatures and Their Interfacial Role in the Friction Behaviour of Composite Brake Material" Lubricants 12, no. 11: 399. https://doi.org/10.3390/lubricants12110399
APA StyleVerma, P. C., Aswath, P., Straffelini, G., & Gialanella, S. (2024). Carbonaceous Decomposition Products at High Temperatures and Their Interfacial Role in the Friction Behaviour of Composite Brake Material. Lubricants, 12(11), 399. https://doi.org/10.3390/lubricants12110399