Hydrophilized MoS2 as Lubricant Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization
2.3. Tribotesting
2.4. DFT Simulation
3. Results and Discussion
3.1. Morphology of Urea-MoS2
3.2. Tribological Performance
3.3. Crystal Structure of U-MoS2
3.4. Roles of Layered Structure in Tribo-Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of Tribology on Global Energy Consumption, Costs and Emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Lugt, P.M. Modern Advancements in Lubricating Grease Technology. Tribol. Int. 2016, 97, 467–477. [Google Scholar] [CrossRef]
- Mu, L.; Shi, Y.; Ji, T.; Chen, L.; Yuan, R.; Wang, H.; Zhu, J. Ionic Grease Lubricants: Protic [Triethanolamine][Oleic Acid] and Aprotic [Choline][Oleic Acid]. ACS Appl. Mater. Interfaces 2016, 8, 4977–4984. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Tribological Properties of Novel Imidazolium Ionic Liquids Bearing Benzotriazole Group as the Antiwear/Anticorrosion Additive in Poly(Ethylene Glycol) and Polyurea Grease for Steel/Steel Contacts. ACS Appl. Mater. Interfaces 2011, 3, 4580–4592. [Google Scholar] [CrossRef] [PubMed]
- Arole, K.; Tajedini, M.; Sarmah, A.; Athavale, S.; Green, M.J.; Liang, H. Effects of Ti3C2Tz MXene Nanoparticle Additive on Fluidic Properties and Tribological Performance. J. Mol. Liq. 2023, 386, 122435. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Han, Z.; Sinyukov, A.; Clearfield, A.; Liang, H. Amphiphilic Zirconium Phosphate Nanoparticles as Tribo-Catalytic Additives of Multi- Performance Lubricants. J. Tribol. 2022, 144, 071901. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, N.; Liu, M.; Han, S.; Yan, J. Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride. Lubricants 2023, 11, 198. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, B.; Xiong, C.; Liu, Y.; Zhao, Q. Study on the Lubricating Characteristics of Graphene Lubricants. Lubricants 2023, 11, 506. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, D.H.; Park, B.H.; Choi, J.S. Nanotribology of 2D Materials and Their Macroscopic Applications. J. Phys. D Appl. Phys. 2020, 53, 393001. [Google Scholar] [CrossRef]
- Liu, J.; Qi, Y.; Li, Q.; Duan, T.; Yue, W.; Vadakkepatt, A.; Ye, C.; Dong, Y. Vacancy-Controlled Friction on 2D Materials: Roughness, Flexibility, and Chemical Reaction. Carbon 2019, 142, 363–372. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, X.; Lee, K.; Yoon, H.C.; Xu, Q.; Wang, D. Recent Development in Friction of 2D Materials: From Mechanisms to Applications. Nanotechnology 2021, 32, 312002. [Google Scholar] [CrossRef] [PubMed]
- Rejhon, M.; Lavini, F.; Khosravi, A.; Shestopalov, M.; Kunc, J.; Tosatti, E.; Riedo, E. Relation between Interfacial Shear and Friction Force in 2D Materials. Nat. Nanotechnol. 2022, 17, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, A.; Ponomarev, I.; Muydinov, R.; Polcar, T. Friend or Foe? Revising the Role of Oxygen in the Tribological Performance of Solid Lubricant MoS2. ACS Appl. Mater. Interfaces 2022, 14, 55051–55061. [Google Scholar] [CrossRef] [PubMed]
- Baş, H.; Özen, O.; Beşirbeyoğlu, M.A. Tribological Properties of MoS2 and CaF2 Particles as Grease Additives on the Performance of Block-on-Ring Surface Contact. Tribol. Int. 2022, 168, 107433. [Google Scholar] [CrossRef]
- Wu, P.R.; Kong, Y.C.; Ma, Z.S.; Ge, T.; Feng, Y.M.; Liu, Z.; Cheng, Z.L. Preparation and Tribological Properties of Novel Zinc Borate/MoS2 Nanocomposites in Grease. J. Alloys Compd. 2018, 740, 823–829. [Google Scholar] [CrossRef]
- Hu, E.Z.; Xu, Y.; Hu, K.H.; Hu, X.G. Tribological Properties of 3 Types of MoS2 Additives in Different Base Greases. Lubr. Sci. 2017, 29, 541–555. [Google Scholar] [CrossRef]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid Lubrication with MoS2: A Review. Lubricants 2019, 7, 57. [Google Scholar] [CrossRef]
- Xu, D.; Wang, C.; Espejo, C.; Wang, J.; Neville, A.; Morina, A. Understanding the Friction Reduction Mechanism Based on Molybdenum Disulfide Tribofilm Formation and Removal. Langmuir 2018, 34, 13523–13533. [Google Scholar] [CrossRef]
- Bagi, S.D.; Aswath, P.B. Mechanism of Friction and Wear in MoS2 and ZDDP/F-PTFE Greases under Spectrum Loading Conditions. Lubricants 2015, 3, 687–711. [Google Scholar] [CrossRef]
- Afanasiev, P.; Lorentz, C. Oxidation of Nanodispersed MoS2 in Ambient Air: The Products and the Mechanistic Steps. J. Phys. Chem. C 2019, 123, 7486–7494. [Google Scholar] [CrossRef]
- Spychalski, W.L.; Pisarek, M.; Szoszkiewicz, R. Microscale Insight into Oxidation of Single MoS2 Crystals in Air. J. Phys. Chem. C 2017, 121, 26027–26033. [Google Scholar] [CrossRef]
- Kozbial, A.; Gong, X.; Liu, H.; Li, L. Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2). Langmuir 2015, 31, 8429–8435. [Google Scholar] [CrossRef] [PubMed]
- Stella, M.; Lorenz, C.D.; Clelia Righi, M. Effects of Intercalated Water on the Lubricity of Sliding Layers under Load: A Theoretical Investigation on MoS2. 2D Mater. 2021, 8, 035052. [Google Scholar] [CrossRef]
- Levita, G.; Righi, M.C. Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation. ChemPhysChem 2017, 18, 1475–1480. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Deng, J.; Wang, Z. Friction Reduction of Water Based Lubricant with Highly Dispersed Functional MoS2 Nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2019, 562, 321–328. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. A Review of Current Understanding in Tribochemical Reactions Involving Lubricant Additives. Friction 2023, 11, 489–512. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, Z.; Yuan, C. Effects of MoS2 Microencapsulation on the Tribological Properties of a Composite Material in a Water-Lubricated Condition. Wear 2019, 432–433, 102919. [Google Scholar] [CrossRef]
- Rasamani, K.D.; Alimohammadi, F.; Sun, Y. Interlayer-Expanded MoS2. Mater. Today 2017, 20, 83–91. [Google Scholar] [CrossRef]
- Xiao, H.; Dai, W.; Kan, Y.; Clearfield, A.; Liang, H. Amine-Intercalated α-Zirconium Phosphates as Lubricant Additives. Appl. Surf. Sci. 2015, 329, 384–389. [Google Scholar] [CrossRef]
- Dappe, Y.J.; Basanta, M.A.; Flores, F.; Ortega, J. Weak Chemical Interaction and van Der Waals Forces between Graphene Layers: A Combined Density Functional and Intermolecular Perturbation Theory Approach. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 205434. [Google Scholar] [CrossRef]
- Chermahini, A.N.; Teimouri, A.; Farrokhpour, H. Theoretical Studies of Urea Adsorption on Single Wall Boron-Nitride Nanotubes. Appl. Surf. Sci. 2014, 320, 231–236. [Google Scholar] [CrossRef]
- Singh, R.; Paily, R. Adsorption of Urea over Transition Metal-Doped Graphene: A DFT Study. J. Electron. Mater. 2019, 48, 6940–6948. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Liu, D.; Zhang, K.; Dong, C. Urea Modified Fluorinated Carbon Nanotubes: Unique Self-Dispersed Characteristic in Water and High Tribological Performance as Water-Based Lubricant Additives. New J. Chem. 2019, 43, 14684–14693. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Al-Temimy, A.; Anasori, B.; Mazzio, K.A.; Kronast, F.; Seredych, M.; Kurra, N.; Mawass, M.A.; Raoux, S.; Gogotsi, Y.; Petit, T. Enhancement of Ti3C2 MXene Pseudocapacitance after Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy. J. Phys. Chem. C 2020, 124, 5079–5086. [Google Scholar] [CrossRef]
- Baheri, Y.T.; Maleki, M.; Karimian, H.; Javadpoor, J.; Masoudpanah, S.M. Well-Distributed 1T/2H MoS2 Nanocrystals in the N-Doped Nanoporous Carbon Framework by Direct Pyrolysis. Sci. Rep. 2023, 13, 7492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L. Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2: Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Small 2015, 11, 5556–5564. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, X.; Choi, P.; Xu, Z.; Liu, Q. Contributions of van Der Waals Interactions and Hydrophobic Attraction to Molecular Adhesions on a Hydrophobic MoS2 Surface in Water. Langmuir 2018, 34, 14196–14203. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.K.; Singh, K.A.; Lokhande, G.; Gaharwar, A.K. Superhydrophobic States of 2D Nanomaterials Controlled by Atomic Defects Can Modulate Cell Adhesion. Chem. Commun. 2019, 55, 8772–8775. [Google Scholar] [CrossRef]
- Koh, E.; Lee, Y.T. Development of Hybrid Hydrophobic Molybdenum Disulfide (MoS2) Nanoparticles for Super Water Repellent Self-Cleaning. Prog. Org. Coat. 2021, 153, 106161. [Google Scholar] [CrossRef]
- Ye, X.; Ma, L.; Yang, Z.; Wang, J.; Wang, H.; Yang, S. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-Based Lubricant Additive. ACS Appl. Mater. Interfaces 2016, 8, 7483–7488. [Google Scholar] [CrossRef] [PubMed]
- Vaitkunaite, G.; Espejo, C.; Wang, C.; Thiébaut, B.; Charrin, C.; Neville, A.; Morina, A. MoS2 Tribofilm Distribution from Low Viscosity Lubricants and Its Effect on Friction. Tribol. Int. 2020, 151, 106531. [Google Scholar] [CrossRef]
- Rai, Y.; Neville, A.; Morina, A. Transient Processes of MoS2 Tribofilm Formation under Boundary Lubrication. Lubr. Sci. 2016, 28, 449–471. [Google Scholar] [CrossRef]
- Dai, W.; Kheireddin, B.; Gao, H.; Kan, Y.; Clearfield, A.; Liang, H. Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives. Lubricants 2016, 4, 28. [Google Scholar] [CrossRef]
- Barboza, A.P.M.; Chacham, H.; Oliveira, C.K.; Fernandes, T.F.D.; Ferreira, E.H.M.; Archanjo, B.S.; Batista, R.J.C.; De Oliveira, A.B.; Neves, B.R.A. Dynamic Negative Compressibility of Few-Layer Graphene, h-BN, and MoS2. Nano Lett. 2012, 12, 2313–2317. [Google Scholar] [CrossRef]
- Nehme, G.; Mourhatch, R.; Aswath, P.B. Effect of Contact Load and Lubricant Volume on the Properties of Tribofilms Formed under Boundary Lubrication in a Fully Formulated Oil under Extreme Load Conditions. Wear 2010, 268, 1129–1147. [Google Scholar] [CrossRef]
- Morina, A.; Neville, A. Tribofilms: Aspects of Formation, Stability and Removal. J. Phys. D Appl. Phys. 2007, 40, 5476–5487. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Pan, J.; Fang, Y.; Che, X.; Wang, D.; Bu, K.; Huang, F. Metastable MoS2: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chem. A Eur. J. 2018, 24, 15942–15954. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Liu, Q.L. Study of the Layer-Dependent Properties of MoS2 Nanosheets with Different Crystal Structures by DFT Calculations. Catal. Sci. Technol. 2018, 8, 1867–1879. [Google Scholar] [CrossRef]
- Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A Synoptic Review of MoS2: Synthesis to Applications. Superlattices Microstruct. 2019, 128, 274–297. [Google Scholar] [CrossRef]
- Meng, F.; Seredych, M.; Chen, C.; Gura, V.; Mikhalovsky, S.; Sandeman, S.; Ingavle, G.; Ozulumba, T.; Miao, L.; Anasori, B.; et al. MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. ACS Nano 2018, 12, 10518–10528. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.J.; Wang, Y.; Wang, X.L.; Li, S.L.; Huang, W.; Dong, L.Z.; Liu, C.H.; Li, Y.F.; Lan, Y.Q. Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016, 6, 1600116. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, X.; Yu, H.; Chen, Y.; Gao, P.; Li, C.; Zhu, C. Growth of Ultrathin MoS2 Nanosheets with Expanded Spacing of (002) Plane on Carbon Nanotubes for High-Performance Sodium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2014, 6, 21880–21885. [Google Scholar] [CrossRef]
- Godfrey, P.D.; Brown, R.D.; Hunter, A.N. The Shape of Urea. J. Mol. Struct. 1997, 413–414, 405–414. [Google Scholar] [CrossRef]
- Lu, N.; Guo, H.; Zhuo, Z.; Wang, L.; Wu, X.; Zeng, X.C. Twisted MX2/MoS2 Heterobilayers: Effect of van Der Waals Interaction on the Electronic Structure. Nanoscale 2017, 9, 19131–19138. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yin, J.; Liu, X.; Wu, H.; Li, J.; Li, X.; Guo, W. Probing van Der Waals Interactions at Two-Dimensional Heterointerfaces. Nat. Nanotechnol. 2019, 14, 567–572. [Google Scholar] [CrossRef]
- Gómez-Santos, G. Thermal van Der Waals Interaction between Graphene Layers. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 245424. [Google Scholar] [CrossRef]
Compounds | Energy (Ry) | Lattice Parameters | Volume (Å3) | Density (g/cm3) | |
---|---|---|---|---|---|
a(Å) | c(Å) | ||||
MoS2 | −2890.48 | 3.183 | 13.494 | 118.734 | 4.477 |
U-MoS2 | −2978.23 | 3.179 | 15.838 | 138.954 | 3.916 |
Bond Lengths (Å) | Bond Angles (°) | ||||||
---|---|---|---|---|---|---|---|
C=O | C-N | N-H | O-C-N | N-C-N | C-N-H | H-N-H | |
This Study | 1.242 | 1.374 | 1.007 | 122.495 | 113.576 | 118.642 | 118.695 |
Reference [57] | 1.221 | 1.378 | 1.021 | 122.64 | 114.71 | 119.21 | 118.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, M.H.; Dias, D.; Arole, K.; Bahrami, R.; Sue, H.-J.; Liang, H. Hydrophilized MoS2 as Lubricant Additive. Lubricants 2024, 12, 80. https://doi.org/10.3390/lubricants12030080
Kabir MH, Dias D, Arole K, Bahrami R, Sue H-J, Liang H. Hydrophilized MoS2 as Lubricant Additive. Lubricants. 2024; 12(3):80. https://doi.org/10.3390/lubricants12030080
Chicago/Turabian StyleKabir, M. Humaun, Darrius Dias, Kailash Arole, Reza Bahrami, Hung-Jue Sue, and Hong Liang. 2024. "Hydrophilized MoS2 as Lubricant Additive" Lubricants 12, no. 3: 80. https://doi.org/10.3390/lubricants12030080
APA StyleKabir, M. H., Dias, D., Arole, K., Bahrami, R., Sue, H. -J., & Liang, H. (2024). Hydrophilized MoS2 as Lubricant Additive. Lubricants, 12(3), 80. https://doi.org/10.3390/lubricants12030080