Hydrogels for Lubrication: Synthesis, Properties, Mechanism, and Challenges
Abstract
:1. Introduction
2. Polymeric Hydrogel Lubricant
2.1. Design Methods and Property of Polymeric Hydrogel Lubricants
2.1.1. Physically Cross-Linked Polymeric Hydrogel Lubricants
2.1.2. Chemically Cross-Linked Polymeric Hydrogel Lubricants
2.1.3. Dual-Network (DN) Polymeric Hydrogel Lubricants
2.2. Lubrication Mechanism and Bionic Design of Polymeric Hydrogel Lubricants
3. Polymeric-Inorganic Composite Hydrogel Lubricant
3.1. Synthesis Methods and Property of Polymeric-Inorganic Hydrogel Lubricants
3.2. Lubrication Mechanism and Intelligent Design of Polymeric-Inorganic Hydrogel Lubricants
4. Inorganic Hydrogel Lubricant
5. Conclusions and Outlooks
- (1)
- Regarding the preparation of hydrogel lubricants, it is still challenging to satisfy the requirements of practical applications owing to the limited production, as current methods typically generate products on a diminutive scale. It is essential to devote more effort to simplifying and optimizing the current synthetic strategies of hydrogel lubricants without degenerating their friction and wear properties.
- (2)
- The lubrication mechanism of hydrogel lubricants with different microstructures needs to be further studied. It is necessary to explore the atomic-level interaction of hydrogels with the surface of friction substrates, the dynamic mechanisms of friction processes, the synergistic lubrication effect of components, and so on.
- (3)
- At present, the evaporation and freezing of water make the most hydrogel lubricants that can only be used in humid environments and temperatures above zero, limiting their application, especially in extremely dry or cold weather. Moreover, the movement occurring between the hydrogel and the equipment during the process of running can also induce lubrication failure. Therefore, developing strong base-adhesion and environmentally robust hydrogel lubricants with effective anti-sliding, anti-dehydration, and anti-freezing properties to ensure the stable operation of mechanical devices is important.
- (4)
- Although the lubricity of inorganic hydrogel can be comparable to polymer hydrogels, the formation of inorganic hydrogel networks primarily depends on weak hydrogen bonding or van der Waals interactions, leading to their inherent mechanical limitations in tensile strength and deformation resistance. To expand the applications of inorganic hydrogel lubricants, it is important to break through the limit.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhai, W.; Zhou, K. Nanomaterials in Superlubricity. Adv. Funct. Mater. 2019, 29, 1806395. [Google Scholar] [CrossRef]
- Liu, G.; Feng, Y.; Zhao, N.; Chen, Z.; Shi, J.; Zhou, F. Polymer-based lubricating materials for functional hydration lubrication. Chem. Eng. J. 2022, 429, 132324. [Google Scholar] [CrossRef]
- Gong, H.; Yu, C.; Zhang, L.; Xie, G.; Guo, D.; Luo, J. Intelligent lubricating materials: A review. Compos. B Eng. 2020, 202, 108450. [Google Scholar] [CrossRef]
- Erdemir, A.; Ramirez, G.; Eryilmaz, O.L.; Narayanan, B.; Liao, Y.; Kamath, G.; Sankaranarayanan, S.K.R.S. Carbon-based tribofilms from lubricating oils. Nature 2016, 536, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Seror, J.; Zhu, L.; Goldberg, R.; Day, A.J.; Klein, J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015, 6, 6497. [Google Scholar] [CrossRef]
- Zhou, F.; Liang, Y.; Liu, W. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599. [Google Scholar] [CrossRef] [PubMed]
- Parrenin, A.; Liefferink, R.W.; Bonn, D. Dry ice hoverboard: Friction reduction by the Leidenfrost effect. Phys. Rev. E 2021, 103, 023002. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, S.; Du, F.; Ji, F.; Xu, Z.; Liu, J.; Zhang, Q.; Zhou, Y. Investigation into gas lubrication performance of porous gas bearing considering velocity slip boundary condition. Friction 2021, 10, 891–910. [Google Scholar] [CrossRef]
- Morstein, C.E.; Klemenz, A.; Dienwiebel, M.; Moseler, M. Humidity-dependent lubrication of highly loaded contacts by graphite and a structural transition to turbostratic carbon. Nat. Commun. 2022, 13, 5958. [Google Scholar] [CrossRef]
- Liu, X.; Yamaguchi, R.; Umehara, N.; Deng, X.; Kousaka, H.; Murashima, M. Clarification of high wear resistance mechanism of ta-CNx coating under poly alpha-olefin (PAO) lubrication. Tribol. Int. 2017, 105, 193–200. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, C.; Zhang, W.; Wang, W.; Yue, W.; Yu, X.; Peng, Z.; Lin, S.; Dai, M. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions. Mater. Des. 2013, 51, 775–779. [Google Scholar] [CrossRef]
- Mura, A.; Curà, F.; Adamo, F. Evaluation of graphene grease compound as lubricant for spline couplings. Tribol. Int. 2018, 117, 162–167. [Google Scholar] [CrossRef]
- Shetty, P.; Mu, L.; Shi, Y. Polyelectrolyte cellulose gel with PEG/water: Toward fully green lubricating grease. Carbohydr. Polym. 2020, 230, 115670. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Kumar, D.; Tandon, N. Development of lubricious environmentally friendly greases using synergistic natural resources: A potential alternative to mineral oil-based greases. J. Clean. Prod. 2022, 380, 135047. [Google Scholar] [CrossRef]
- Duan, L.; Li, J.; Duan, H. Nanomaterials for lubricating oil application: A review. Friction 2023, 11, 647–684. [Google Scholar] [CrossRef]
- Wu, Z.; Thoresen, P.P.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Shi, Y. Facile Synthesis of Lignin-Castor Oil-Based Oleogels as Green Lubricating Greases with Excellent Lubricating and Antioxidation Properties. ACS Sustain. Chem. Eng. 2023, 11, 12552–12561. [Google Scholar] [CrossRef]
- Lugt, P.M. Modern advancements in lubricating grease technology. Tribol. Int. 2016, 97, 467–477. [Google Scholar] [CrossRef]
- Sanchez, C.; Chen, Y.; Parkinson, D.Y.; Liang, H. In situ probing of stress-induced nanoparticle dispersion and friction reduction in lubricating grease. Tribol. Int. 2017, 111, 66–72. [Google Scholar] [CrossRef]
- Ren, G.; Sun, X.; Li, W.; Li, H.; Zhang, L.; Fan, X.; Li, D.; Zhu, M. Improving the lubrication and anti-corrosion performance of polyurea grease via ingredient optimization. Friction 2020, 9, 1077–1097. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2006, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, D.; Wang, D.; Yu, Q.; Bai, Y.; Cai, M.; Weng, L.; Zhou, F.; Liu, W. MoS2 Lubricating Film Meets Supramolecular Gel: A Novel Composite Lubricating System for Space Applications. ACS Appl. Mater. Interfaces 2021, 13, 58036–58047. [Google Scholar] [CrossRef]
- Xie, A.; Bai, Y.; Xu, H.; Dong, R.; Zhang, J.; Yu, Q.; Lv, W.; Zhang, M.; Liang, Y.; Wang, X.; et al. Supramolecular Gel Lubricants with Excellent Lubricity and Load-Carrying Performances Act Synergistically via Two Layers of Tribofilm. Adv. Mater. Interfaces 2022, 9, 2200683. [Google Scholar] [CrossRef]
- Ruan, H.; Shao, M.; Zhang, Y.; Wang, Q.; Wang, C.; Wang, T. Supramolecular Oleogel-Impregnated Macroporous Polyimide for High Capacity of Oil Storage and Recyclable Smart Lubrication. ACS Appl. Mater. Interfaces 2022, 14, 10936–10946. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, P.; Porwal, J.; Porwal, S.K. Evaluation of multifunctional green copolymer additives–doped waste cooking oil–extracted natural antioxidant in biolubricant formulation. Biomass Convers. Biorefin. 2024, 14, 761–770. [Google Scholar] [CrossRef]
- Li, J.; Lin, N.; Du, C.; Ge, Y.; Amann, T.; Feng, H.; Yuan, C.; Li, K. Tribological behavior of cellulose nanocrystal as an eco-friendly additive in lithium-based greases. Carbohydr. Polym. 2022, 290, 119478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, X.; Chen, K.; Wu, X.; Jiang, A.; Zhang, Y.; Liu, L. Layered Magnesium Phosphate as an Environmentally Friendly Solid Lubrication Additive: Morphology Control and Tribological Properties. ACS Sustain. Chem. Eng. 2023, 11, 8893–8900. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, P.; Porwal, S.K. Natural Antioxidant Extracted Waste Cooking Oil as Sustainable Biolubricant Formulation in Tribological and Rheological Applications. Waste Biomass Valorization 2022, 13, 3127–3137. [Google Scholar] [CrossRef]
- Lin, W.; Klein, J. Recent Progress in Cartilage Lubrication. Adv. Mater. 2021, 33, 2005513. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Lee, H.; Liang, Y.; Zhou, F. Astringent Mouthfeel as a Consequence of Lubrication Failure. Angew. Chem. Int. Ed. 2016, 55, 5793–5797. [Google Scholar] [CrossRef]
- Miao, K.; Wang, J.; Zhao, Q.; Wang, K.; Wen, M.; Zhang, K. Water-based lubrication of niobium nitride. Friction 2021, 10, 842–853. [Google Scholar] [CrossRef]
- Ma, L.; Gaisinskaya-Kipnis, A.; Kampf, N.; Klein, J. Origins of hydration lubrication. Nat. Commun. 2015, 6, 6060. [Google Scholar] [CrossRef]
- Raviv, U.; Giasson, S.; Kampf, N.; Gohy, J.; Jérôme, R.; Klein, J. Lubrication by charged polymers. Nature 2003, 425, 163–165. [Google Scholar] [CrossRef]
- Chen, M.; Briscoe, W.H.; Armes, S.P.; Klein, J. Lubrication at Physiological Pressures by Polyzwitterionic Brushes. Science 2009, 323, 1698–1701. [Google Scholar] [CrossRef]
- Nordgren, N.; Rutland, M.W. Tunable Nanolubrication between Dual-Responsive Polyionic Grafts. Nano Lett. 2009, 9, 2984–2990. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Xiao, S.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Zheng, J. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir 2015, 31, 9125–9133. [Google Scholar] [CrossRef]
- Adibnia, V.; Olszewski, M.; De Crescenzo, G.; Matyjaszewski, K.; Banquy, X. Superlubricity of Zwitterionic Bottlebrush Polymers in the Presence of Multivalent Ions. J. Am. Chem. Soc. 2020, 142, 14843–14847. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Cai, M.; Zhou, F.; Liu, W. Dramatically Tuning Friction Using Responsive Polyelectrolyte Brushes. Macromolecules 2013, 46, 9368–9379. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, Q.; Zhang, J.; Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. J. Mater. Chem. A 2019, 7, 7654–7663. [Google Scholar] [CrossRef]
- Chen, C.; Yang, W.; Bai, Y.; Zhou, Y.; Cao, X.; Ma, Z.; Cai, M.; Zhang, B.; Chen, Q.; Zhou, F.; et al. Dynamic oil gels constructed by 1,2-dithiolane-containing telechelic polymers: An efficient and versatile platform for fabricating polymer-inorganic composites toward tribological applications. Chem. Eng. J. 2022, 430, 133097. [Google Scholar] [CrossRef]
- Ru, Y.; Fang, R.; Gu, Z.; Jiang, L.; Liu, M. Reversibly Thermosecreting Organogels with Switchable Lubrication and Anti-Icing Performance. Angew. Chem. Int. Ed. 2020, 59, 11876–11880. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhang, S.; Kang, J.; Guo, Z.; Feng, B.; Zhao, H.; Luo, Z.; Yu, J.; Song, W.; et al. Semi-convertible Hydrogel Enabled Photoresponsive Lubrication. Matter 2021, 4, 675–687. [Google Scholar] [CrossRef]
- Wu, Y.; Pei, X.; Wang, X.; Liang, Y.; Liu, W.; Zhou, F. Biomimicking lubrication superior to fish skin using responsive hydrogels. NPG Asia Mater. 2014, 6, e136. [Google Scholar] [CrossRef]
- Wu, P.; Zeng, C.; Guo, J.; Liu, G.; Zhou, F.; Liu, W. Achieving near-infrared-light-mediated switchable friction regulation on MXene-based double network hydrogels. Friction 2023, 12, 39–51. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, H.; Zhang, B.; Hu, L.; Xu, L.; Hao, J. Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Res. 2022, 16, 1533–1544. [Google Scholar] [CrossRef]
- Hu, L.; Yang, Y.; Hao, J.; Xu, L. Dual-Driven Mechanically and Tribologically Adaptive Hydrogels Solely Constituted of Graphene Oxide and Water. Nano Lett. 2022, 22, 6004–6009. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yu, X.; Hao, J.; Xu, L. pH- and near-infrared light-responsive, biomimetic hydrogels from aqueous dispersions of carbon nanotubes. Nano Res. 2023, 17, 3120–3129. [Google Scholar] [CrossRef]
- Yu, W.; Liu, J.; Yang, Y.; Hao, J.; Xu, L. An ultralow-friction, low-temperature-lubrication, anti-volatilization and anti-corrosion organohydrogel merely containing nanosilica gelator. Tribol. Int. 2023, 180, 108302. [Google Scholar] [CrossRef]
- Yu, W.; Yang, Y.; Wang, Y.; Hu, L.; Hao, J.; Xu, L.; Liu, W. Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation. Nano-Micro Lett. 2024, 16, 94. [Google Scholar] [CrossRef]
- Zhu, T.; Mao, J.; Cheng, Y.; Liu, H.; Lv, L.; Ge, M.; Li, S.; Huang, J.; Chen, Z.; Li, H.; et al. Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces 2019, 6, 1900761. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Samanta, S.K. Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chem. Rev. 2016, 116, 11967–12028. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.-S.; Hsu, Y.-Y.; Lin, J.-H.; Jan, J.-S. Alkyl-poly(l-threonine)/Cyclodextrin Supramolecular Hydrogels with Different Molecular Assemblies and Gel Properties. ACS Macro Lett. 2016, 5, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Ha, W.; Hou, G.-L.; Qin, W.-J.; Fu, X.-K.; Zhao, X.-Q.; Wei, X.-D.; An, Y.-L.; Shi, Y.-P. Supramolecular hydrogel-infiltrated ceramics composite coating with combined antibacterial and self-lubricating performance. J. Mater. Chem. B 2021, 9, 9852–9862. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Yu, Q.; Zhang, J.; Ma, Z.; Zhang, M.; Zhang, L.; Bai, Y.; Cai, M.; Zhou, F.; et al. Significantly Reducing Friction and Wear of Water-Based Fluids with Shear Thinning Bicomponent Supramolecular Hydrogels. Adv. Mater. Interfaces 2020, 7, 2001084. [Google Scholar] [CrossRef]
- Gong, J.P. Friction and lubrication of hydrogels—Its richness and complexity. Soft Matter 2006, 2, 544–552. [Google Scholar] [CrossRef]
- Gong, J.; Higa, M.; Iwasaki, Y.; Katsuyama, Y.; Osada, Y. Friction of gels. J. Phys. Chem. B 1997, 101, 5487–5489. [Google Scholar] [CrossRef]
- Gong, J.; Iwasaki, Y.; Osada, Y.; Kurihara, K.; Hamai, Y. Friction of gels. 3. Friction on solid surfaces. J. Phys. Chem. B 1999, 103, 6001–6006. [Google Scholar] [CrossRef]
- Shoaib, T.; Heintz, J.; Lopez-Berganza, J.A.; Muro-Barrios, R.; Egner, S.A.; Espinosa-Marzal, R.M. Stick–Slip Friction Reveals Hydrogel Lubrication Mechanisms. Langmuir 2017, 34, 756–765. [Google Scholar] [CrossRef]
- Liang, L.; Feng, X.; Liu, J.; Rieke, P.C.; Fryxell, G.E. Reversible Surface Properties of Glass Plate and Capillary Tube Grafted by Photopolymerization of N-Isopropylacrylamide. Macromolecules 1998, 31, 7845–7850. [Google Scholar] [CrossRef]
- Chang, D.P.; Dolbow, J.E.; Zauscher, S. Switchable Friction of Stimulus-Responsive Hydrogels. Langmuir 2007, 23, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bao, Y.; Liu, Z.; Zheng, Q.; Dong, Y.; Song, R.; Yang, B. Temperature-sensitive tribological performance of titanium alloy lubricated with PNIPAM microgels. Appl. Surf. Sci. 2022, 572, 151392. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, G.; Shi, M.; Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021, 374, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Espinosa-Marzal, R.M. Intrinsic and Extrinsic Tunability of Double-Network Hydrogel Strength and Lubricity. ACS Appl. Mater. Interfaces 2023, 15, 20495–20507. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155–1158. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Jin, H.; Wang, S.; Song, W. Bioinspired Supramolecular Lubricating Hydrogel Induced by Shear Force. J. Am. Chem. Soc. 2018, 140, 3186–3189. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, X.; Yang, X.; Yang, X.; Wang, S.; Song, W. Mucosa-Inspired Electro-Responsive Lubricating Supramolecular-Covalent Hydrogel. Adv. Mater. 2023, 35, 2307705. [Google Scholar] [CrossRef]
- Rong, M.; Liu, H.; Scaraggi, M.; Bai, Y.; Bao, L.; Ma, S.; Ma, Z.; Cai, M.; Dini, D.; Zhou, F. High Lubricity Meets Load Capacity: Cartilage Mimicking Bilayer Structure by Brushing Up Stiff Hydrogels from Subsurface. Adv. Funct. Mater. 2020, 30, 2004062. [Google Scholar] [CrossRef]
- Shoaib, T.; Espinosa-Marzal, R.M. Advances in Understanding Hydrogel Lubrication. Colloids Interfaces 2020, 4, 54. [Google Scholar] [CrossRef]
- Wang, C.; Bai, X.; Dong, C.; Guo, Z.; Yuan, C. Friction properties of polyacrylamide hydrogel particle/HDPE composite under water lubrication. Polymer 2019, 180, 121703. [Google Scholar] [CrossRef]
- Klein, J. Polymers in living systems: From biological lubrication to tissue engineering and biomedical devices. Polym. Adv. Technol. 2012, 23, 729–735. [Google Scholar] [CrossRef]
- Lin, W.; Kluzek, M.; Iuster, N.; Shimoni, E.; Kampf, N.; Goldberg, R.; Klein, J. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 2020, 370, 335–338. [Google Scholar] [CrossRef]
- Mu, R.; Yang, J.; Wang, Y.; Wang, Z.; Chen, P.; Sheng, H.; Suo, Z. Polymer-filled macroporous hydrogel for low friction. Extreme Mech. Lett. 2020, 38, 100742. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, J.; Sun, Y.; Wang, Y.; Liang, J.; Luo, J.; Cui, W.; Deng, L.; Xu, X.; Wang, B.; et al. Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release. Friction 2021, 10, 232–246. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Zhao, W.; Wang, H.; Sun, Y.; Chen, Y.; Luo, J.; Deng, L.; Xu, X.; Cui, W.; et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact. Mater. 2021, 6, 3596–3607. [Google Scholar] [CrossRef]
- Zhong, M.; Liu, Y.-T.; Xie, X.-M. Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 2015, 3, 4001–4008. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, R.; Cheng, Y.; Fu, J. Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 2012, 8, 6048–6056. [Google Scholar] [CrossRef]
- Shin, M.K.; Spinks, G.M.; Shin, S.R.; Kim, S.I.; Kim, S.J. Nanocomposite Hydrogel with High Toughness for Bioactuators. Adv. Mater. 2009, 21, 1712–1715. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Z.; Luo, Y. Swelling, pH sensitivity, and mechanical properties of poly(acrylamide-co-sodium methacrylate) nanocomposite hydrogels impregnated with carboxyl-functionalized carbon nanotubes. Polym. Compos. 2012, 33, 665–674. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Xia, W.; Cheng, X.; He, A.; Yun, J.H.; Wang, L.; Huang, H.; Jiao, S.; Huang, L.; et al. Analysis of TiO2 nano-additive water-based lubricants in hot rolling of microalloyed steel. J. Manuf. Process. 2017, 27, 26–36. [Google Scholar] [CrossRef]
- Kim, D.; Archer, L.A. Nanoscale Organic−Inorganic Hybrid Lubricants. Langmuir 2011, 27, 3083–3094. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; He, B.; Xue, S.; Chen, Z.; Liu, S.; Ye, Q.; Zhou, F.; Liu, W. Fabrication of MXene@Fe3O4@PNA composite with photothermal effect as water-based lubricant additive. Chem. Eng. J. 2023, 469, 143880. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X. Effect of morphology on tribological properties of Fe3O4 as lubricant additive: Nanospheres, nanowires and nanosheets. Tribol. Int. 2024, 191, 109201. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, G.; Peng, R.; Cao, Y.; Dong, H.; Zhang, H. Thermosensitive PCEC hydrogel loaded with carbon nanotubes for slow-release lubrication effect. J. Polym. Res. 2021, 28, 239. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, Y.; Song, W.; Ma, Y.; Wu, J.; Fan, L. Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1398–1405. [Google Scholar] [CrossRef]
- Li, J.; Gao, L.; Xu, R.; Ma, S.; Ma, Z.; Liu, Y.; Wu, Y.; Feng, L.; Cai, M.; Zhou, F. Fibers reinforced composite hydrogels with improved lubrication and load-bearing capacity. Friction 2020, 10, 54–67. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Meng, Y.; Ye, L.; Coates, P.; Twigg, P. In Situ Cross-Linking of Poly(vinyl alcohol)/Graphene Oxide–Polyethylene Glycol Nanocomposite Hydrogels as Artificial Cartilage Replacement: Intercalation Structure, Unconfined Compressive Behavior, and Biotribological Behaviors. J. Phys. Chem. C 2018, 122, 3157–3167. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Jiang, L.; Xiao, S.; Liu, Y.; Luo, J. Zwitterionic Hydrogel Incorporated Graphene Oxide Nanosheets with Improved Strength and Lubricity. Langmuir 2019, 35, 11452–11462. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, K.; Gao, Y.; Han, S.; Ju, J.; Ren, T.; Zhao, X. Multifunctional GO-based hydrogel coating on Ti-6Al-4 V Alloy with enhanced bioactivity, anticorrosion and tribological properties against cortical bone. Tribol. Int. 2023, 184, 108423. [Google Scholar] [CrossRef]
- Miao, X.; Li, Z.; Hou, K.; Gao, Q.; Huang, Y.; Wang, J.; Yang, S. Bioinspired multi-crosslinking and solid–liquid composite lubricating MXene/PVA hydrogel based on salting out effect. Chem. Eng. J. 2023, 476, 146848. [Google Scholar] [CrossRef]
- Kumru, B.; Molinari, V.; Hilgart, M.; Rummel, F.; Schäffler, M.; Schmidt, B.V.K.J. Polymer grafted graphitic carbon nitrides as precursors for reinforced lubricant hydrogels. Polym. Chem. 2019, 10, 3647–3656. [Google Scholar] [CrossRef]
- Mostakhdemin, M.; Nand, A.; Ramezani, M. Tribological Evaluation of Silica Nanoparticle Enhanced Bilayer Hydrogels as A Candidate for Cartilage Replacement. Polymers 2022, 14, 3593. [Google Scholar] [CrossRef]
- Lu, H.; Lv, L.; Ma, J.; Ban, W.; Ren, S.; Dong, G.; Li, J.; Dang, X. Carbon dots intensified poly (ethylene glycol)/chitosan/sodium glycerophosphate hydrogel as artificial synovium tissue with slow-release lubricant. J. Mech. Behav. Biomed. Mater. 2018, 88, 261–269. [Google Scholar] [CrossRef]
- Fu, X.-K.; Cao, H.-B.; An, Y.-L.; Zhou, H.-D.; Shi, Y.-P.; Hou, G.-L.; Ha, W. Bioinspired Hydroxyapatite Coating Infiltrated with a Graphene Oxide Hybrid Supramolecular Hydrogel Orchestrates Antibacterial and Self-Lubricating Performance. ACS Appl. Mater. Interfaces 2022, 14, 31702–31714. [Google Scholar] [CrossRef] [PubMed]
- Yesilyurt, V.; Webber, M.J.; Appel, E.A.; Godwin, C.; Langer, R.; Anderson, D.G. Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties. Adv. Mater. 2015, 28, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.J.; Ko, D.Y.; Park, M.H.; Joo, M.K.; Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41, 4860–4883. [Google Scholar] [CrossRef]
- Liu, J.; Xie, C.; Kretzschmann, A.; Koynov, K.; Butt, H.J.; Wu, S. Metallopolymer Organohydrogels with Photo-Controlled Coordination Crosslinks Work Properly Below 0 °C. Adv. Mater. 2020, 32, e1908324. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Qin, M.; Wu, J.; Luo, D.; Jiang, Q.; Li, Y.; Cao, Y.; Wang, W. Electroresponsive Supramolecular Graphene Oxide Hydrogels for Active Bacteria Adsorption and Removal. ACS Appl. Mater. Interfaces 2016, 8, 15120–15127. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Chen, C.; Cheng, Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J. Control. Release 2021, 335, 541–556. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, M.; Pei, X.; Liang, Y.; Zhou, F. Switching Friction with Thermal- Responsive Gels. Macromol. Rapid Commun. 2013, 34, 1785–1790. [Google Scholar] [CrossRef]
- de Espinosa, L.M.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chem. Rev. 2017, 117, 12851–12892. [Google Scholar] [CrossRef]
- Tonazzini, A.; Mintchev, S.; Schubert, B.; Mazzolai, B.; Shintake, J.; Floreano, D. Variable Stiffness Fiber with Self-Healing Capability. Adv. Mater. 2016, 28, 10142–10148. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Cai, M.; Wang, X.; Zhou, F.; Liu, W. Magnetite-Loaded Thermosensitive Nanogels for Bioinspired Lubrication and Multimodal Friction Control. ACS Macro Lett. 2016, 5, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Feng, Y.; Zhao, N.; Liu, Y.; Liu, G.; Zhou, F.; Liu, W. Near-Infrared-Light-Modulated Lubricating Coating Enabled by Photothermal Microgels. ACS Appl. Mater. Interfaces 2021, 13, 49322–49330. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.; Zhang, Y.; Ma, S.; Ma, Z.; Pei, X.; Cai, M.; Zhou, F. Cartilage Mimics Adaptive Lubrication. ACS Appl. Mater. Interfaces 2020, 12, 51114–51121. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Ma, S.; Alsaid, Y.; Pei, X.; Cai, M.; He, X.; Zhou, F. Esophagus-Inspired Actuator for Solid Transportation via the Synergy of Lubrication and Contractile Deformation. Adv. Sci. 2021, 8, 2102800. [Google Scholar] [CrossRef]
- Xue, P.; Bisoyi, H.K.; Chen, Y.; Zeng, H.; Yang, J.; Yang, X.; Lv, P.; Zhang, X.; Priimagi, A.; Wang, L.; et al. Near-Infrared Light-Driven Shape-Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angew. Chem. Int. Ed. 2021, 60, 3390–3396. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Kouwer, P.H.J.; Koepf, M.; Le Sage, V.A.A.; Jaspers, M.; van Buul, A.M.; Eksteen-Akeroyd, Z.H.; Woltinge, T.; Schwartz, E.; Kitto, H.J.; Hoogenboom, R.; et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 2013, 493, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113–124. [Google Scholar] [CrossRef]
- de Almeida, P.; Jaspers, M.; Vaessen, S.; Tagit, O.; Portale, G.; Rowan, A.E.; Kouwer, P.H.J. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun. 2019, 10, 609. [Google Scholar] [CrossRef]
- Romera, M.F.-C.; Göstl, R.; Shaikh, H.; ter Huurne, G.; Schill, J.; Voets, I.K.; Storm, C.; Sijbesma, R.P. Mimicking Active Biopolymer Networks with a Synthetic Hydrogel. J. Am. Chem. Soc. 2019, 141, 1989–1997. [Google Scholar] [CrossRef]
- Kaneko, D.; Tada, T.; Kurokawa, T.; Gong, J.P.; Osada, Y. Mechanically Strong Hydrogels with Ultra-Low Frictional Coefficients. Adv. Mater. 2005, 17, 535–538. [Google Scholar] [CrossRef]
Hydrogels | Compositions | Properties | Refs. |
---|---|---|---|
Physically cross-linked polymeric hydrogel | PEG, AgNPs, α-CD | Antibacterial, self-lubrication and wear-resistance | [52] |
2-ethylhexylphosphoric acid mono-2-ethylhexyl ester, melamine | Shear thinning, extreme-pressure, and anti-wear | [53] | |
Chemically cross-linked polymeric hydrogel | NIPAM, MBAM, AP, TEMED | temperature-responsive lubrication | [59] |
Dual-network polymeric hydrogel | FT, PAM/PVA | Outstanding mechanical capacity, shear-responsive lubrication | [64] |
Silk fibroin, PAM/PVA | Electro-responsive tribological behavior | [65] | |
Poly(AM–AA–BrMA), polymer brush | Load-bearing capacity, stable low-friction | [66] | |
PVA/PAM, α-CD/PEG, AzoPB | Photo-responsive lubricating and mechanical properties | [41] | |
Polymeric-inorganic hydrogel | PVA, GO/PEG | Splendid mechanical strength and toughness, good lubricity | [86] |
GO, PSBMA | High mechanical strength and excellent lubrication | [87] | |
GO, PNIPAM, AM | thermal-responsive lubrication | [99] | |
NIPAM, NaMA, DMAEMA, BIS, GO | pH- and thermal-responsive lubricity | [42] | |
PVA, PAA, GO, PDA | Lubrication and corrosion resistance | [88] | |
MXene, PVA | Long-term lubrication, load-bearing capacity | [89] | |
Graphitic carbon nitrides, polydimethylsiloxane | High mechanical strength and lubricity | [90] | |
SiO2 NPs, AM, AA, alginate | Anti-friction and anti-wear, high mechanical strength | [91] | |
CDs, PEG, CS, GP | Slow-release lubrication capability, good rheological and mechanical properties, biocompatibility | [92] | |
PCEC, CNT | Release-lubrication effect, shear and strain resistance, thermo-sensitivity | [82] | |
Fe3O4 NPs, PNIPAM | Photothermal-responsive lubrication | [102] | |
Fe3O4 NPs, PNA | Photothermal-responsive lubrication | [103] | |
Fe3O4 NPs, polyelectrolyte brush, poly(NIPAM-co-AA-co-initiator/Fe3+) | Load-bearing capacity, in situ lubrication-improvement | [104] | |
MXene, PNIPAM | Photothermal-responsive lubrication | [43] | |
Inorganic hydrogel | SiO2, glycerol | Low-temperature lubrication, anti-dehydration, and corrosive inhibition | [47] |
MXene | Tunable rheological and tribological performance | [48] | |
AHNSs | Mechanical robustness, self-healing, controlled lubrication and anti-corrosion | [44] | |
GO | pH-responsive friction and mechanical properties, long-term lubrication, biocompatibility and biodegradability | [45] | |
CNT | pH- and light-responsive friction and mechanical properties | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Yang, Y.; Yu, W.; Xu, L. Hydrogels for Lubrication: Synthesis, Properties, Mechanism, and Challenges. Lubricants 2024, 12, 186. https://doi.org/10.3390/lubricants12060186
Hu L, Yang Y, Yu W, Xu L. Hydrogels for Lubrication: Synthesis, Properties, Mechanism, and Challenges. Lubricants. 2024; 12(6):186. https://doi.org/10.3390/lubricants12060186
Chicago/Turabian StyleHu, Lulin, Yi Yang, Weiyan Yu, and Lu Xu. 2024. "Hydrogels for Lubrication: Synthesis, Properties, Mechanism, and Challenges" Lubricants 12, no. 6: 186. https://doi.org/10.3390/lubricants12060186
APA StyleHu, L., Yang, Y., Yu, W., & Xu, L. (2024). Hydrogels for Lubrication: Synthesis, Properties, Mechanism, and Challenges. Lubricants, 12(6), 186. https://doi.org/10.3390/lubricants12060186