Viscoelastic Hertzian Impact
Abstract
:1. Introduction
2. Hunter’s Model of the Spherical Viscoelastic Impact
2.1. Viscoelastic Hertzian Impact
2.2. Impact for a Maxwell Solid
2.3. Asymptotic Solution for the Loading Stage
2.4. Asymptotic Solution for the Unloading Stage
3. Comparison with the FEM Solution
3.1. Impact for a Maxwell Solid
3.2. Impact for a Standard Linear Solid
4. Material Parameter Identification via Impact Testing
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
contact radius | |
maximum contact radius | |
monomial gap function coefficient | |
first-order correction coefficient for | |
first-order correction coefficient for | |
first-order correction coefficient for | |
first-order correction coefficient for | |
first-order correction coefficient for | |
compliance coefficient | |
E | Young’s elastic modulus |
effective elastic modulus | |
e | coefficient of restitution |
k | Hertzian stiffness coefficient |
stiffness coefficient | |
m | impactor (equivalent) mass |
F | contact reaction |
maximum contact force | |
Hertzian maximum contact force | |
R | impactor (equivalent) radius |
t | time variable |
time to the maximum contact force | |
time to the maximum contact penetration | |
Hertzian impact half-duration | |
impact duration | |
Hertzian impact duration | |
Hunter’s auxiliary function | |
rebound impact velocity | |
initial impact velocity | |
impact governing parameter | |
w | contact approach |
relative squared contact radius | |
impact velocity | |
maximum contact approach (penetration) | |
Hertzian maximum contact approach | |
relative shear moduli difference | |
monomial gap function exponent | |
dimensionless small parameter | |
shear strain | |
shear strain rate | |
loss factor | |
instantaneous shear modulus | |
shear relaxation modulus | |
shear creep compliance | |
viscoelastic relaxation kernel | |
Poisson’s ratio | |
inverse relaxation time | |
shear stress | |
dimensionless time variable | |
dimensionless contact time | |
dimensionless time to the maximum contact penetration | |
dimensionless Hertzian time to the maximum penetration | |
characteristic relaxation time in the Maxwell model | |
characteristic relaxation time in the standard solid model | |
dimensionless impact velocity | |
gap function | |
dimensionless relative squared contact radius | |
dimensionless maximum contact penetration | |
dimensionless Hertzian relative squared contact radius | |
first-order correction coefficient to |
References
- Goldsmith, W. Impact—The Theory and Physical Behaviour of Colliding Solids; Edward Arnold Ltd.: London, UK, 1960. [Google Scholar]
- Stronge, W.J. Impact Mechanics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Christensen, R.M. Theory of Viscoelasticity; Academic Press: New York, NY, USA, 2003. [Google Scholar]
- Mijailovic, A.S.; Qing, B.; Fortunato, D.; Van Vliet, K.J. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation. Acta Biomater. 2018, 71, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Shang, H. Accurate contact law for surface motions of small-body exploration rovers. J. Guid. Control. Dyn. 2021, 44, 938–953. [Google Scholar] [CrossRef]
- Kafashan, J.; Wiacek, J.; Ramon, H.; Mouazen, A.M. Modelling and simulation of fruit drop tests by discrete element method. Biosyst. Eng. 2021, 212, 228–240. [Google Scholar] [CrossRef]
- Korayem, M.H.; Khaksar, H. Nanomanipulation of elliptic and cubic nanoparticles with consideration of the impact theories. Appl. Math. Model. 2021, 90, 101–113. [Google Scholar] [CrossRef]
- Chatterjee, A.; James, G.; Brogliato, B. Approximate coefficient of restitution for nonlinear viscoelastic contact with external load. Granul. Matter 2022, 24, 124. [Google Scholar] [CrossRef]
- Jaradat, Y.; Far, H.; Mortazavi, M. Experimental evaluation of theoretical impact models for seismic pounding. J. Earthq. Eng. 2023, 27, 3269–3289. [Google Scholar] [CrossRef]
- Chen, X.d.; Wang, L.W.; Yu, Q.h.; Zhang, F.; Mo, K.; Ming, S.L.; Cai, Z.B. Experimental and Numerical Analysis on the Impact Wear Behavior of TP316H Steel. Materials 2022, 15, 2881. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Pan, H.; Chen, S.; Xiao, H. A theoretical model for impact protection of flexible polymer material. Theor. Appl. Mech. Lett. 2024, 14, 100506. [Google Scholar] [CrossRef]
- Zheng, P.; Tang, X.; Zhang, K. On constitutive modelling of linear poroviscoelastic solids. Int. J. Eng. Sci. 2022, 178, 103728. [Google Scholar] [CrossRef]
- Eremeyev, V.A. Surface finite viscoelasticity and surface anti-plane waves. Int. J. Eng. Sci. 2024, 196, 104029. [Google Scholar] [CrossRef]
- Chen, C.P.; Lakes, R.S. Design of viscoelastic impact absorbers: Optimal material properties. Int. J. Solids Struct. 1990, 26, 1313–1328. [Google Scholar] [CrossRef]
- Sherif, H.A.; Almufadi, F.A. Polymer modulus of elasticity and hardness from impact data. J. Eng. Mater. Technol. 2018, 141, 011010. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Hertz, H. Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 1882, 92, 156–171. [Google Scholar] [CrossRef]
- Argatov, I.; Kachanov, M.; Mishuris, G. On the concept of “far points” in Hertz contact problems. Int. J. Eng. Sci. 2017, 113, 20–36. [Google Scholar] [CrossRef]
- Willis, J.R. Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids 1966, 14, 163–176. [Google Scholar] [CrossRef]
- Bondareva, V.F. Contact problems for an elastic sphere. J. Appl. Math. Mech. 1971, 35, 37–45. [Google Scholar] [CrossRef]
- Villaggio, P. The rebound of an elastic sphere against a rigid wall. J. Appl. Mech. 1996, 63, 259–263. [Google Scholar] [CrossRef]
- Hunter, S.C. Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids 1957, 5, 162–171. [Google Scholar] [CrossRef]
- Wu, C.Y.; Li, L.Y.; Thornton, C. Energy dissipation during normal impact of elastic and elastic–plastic spheres. Int. J. Impact Eng. 2005, 32, 593–604. [Google Scholar] [CrossRef]
- Argatov, I.I. Asymptotic modeling of the impact of a spherical indenter on an elastic half-space. Int. J. Solids Struct. 2008, 45, 5035–5048. [Google Scholar] [CrossRef]
- Miller, G.F.; Pursey, H. On the partition of energy between elastic waves in a semi-infinite solid. Proc. R. Soc. London Ser. A 1955, 233, 55–69. [Google Scholar]
- Argatov, I.I.; Fadin, Y.A. Excitation of the elastic half-space surface by normal rebounding impact of an indenter. J. Frict. Wear 2009, 30, 1–6. [Google Scholar] [CrossRef]
- Deresiewicz, H. A note on Hertz’s theory of impact. Acta Mech. 1968, 6, 110–112. [Google Scholar] [CrossRef]
- Borodich, F. The Hertz frictional contact between nonlinear elastic anisotropic bodies (the similarity approach). Int. J. Solids Struct. 1993, 30, 1513–1526. [Google Scholar] [CrossRef]
- Willert, E. Ratio of loss and storage moduli determines restitution coefficient in low-velocity viscoelastic impacts. Front. Mech. Eng. 2020, 6, 3. [Google Scholar] [CrossRef]
- Jaeger, J. Analytical solutions of contact impact problems. Appl. Mech. Rev. 1994, 47, 35–54. [Google Scholar] [CrossRef]
- Lyashenko, I.A.; Popov, V.L. Impact of an elastic sphere with an elastic half space revisited: Numerical analysis based on the method of dimensionality reduction. Sci. Rep. 2015, 5, 8479. [Google Scholar] [CrossRef] [PubMed]
- Willert, E.; Popov, V.L. Impact of an elastic sphere with an elastic half space with a constant coefficient of friction: Numerical analysis based on the method of dimensionality reduction. Z. Angew. Math. Mech. 2016, 96, 1089–1095. [Google Scholar] [CrossRef]
- Johnson, K.L.; Pollock, H.M. The role of adhesion in the impact of elastic spheres. J. Adhes. Sci. Technol. 1994, 8, 1323–1332. [Google Scholar] [CrossRef]
- Barquins, M.; Charmet, J.C. Influence of surface properties on the rebound of a rigid ball on a rubber surface. J. Adhes. 1996, 57, 5–19. [Google Scholar] [CrossRef]
- Lyashenko, I.A.; Willert, E.; Popov, V.L. Adhesive impact of an elastic sphere with an elastic half space: Numerical analysis based on the method of dimensionality reduction. Mech. Mater. 2016, 92, 155–163. [Google Scholar] [CrossRef]
- Love, A.E.H. Mathematical Theory of Elasticity; Dover Publications: New York, NY, USA, 1944. [Google Scholar]
- Reed, J. Energy losses due to elastic wave propagation during an elastic impact. J. Phys. D Appl. Phys. 1985, 18, 2329–2337. [Google Scholar] [CrossRef]
- Machado, M.; Moreira, P.; Flores, P.; Lankarani, H.M. Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mech. Mach. Theory 2012, 53, 99–121. [Google Scholar] [CrossRef]
- Boettcher, R.; Eichmann, S.; Mueller, P. Influence of viscous damping and elastic waves on energy dissipation during impacts. Chem. Eng. Sci. 2019, 199, 571–587. [Google Scholar] [CrossRef]
- Da Silva, M.R.; Marques, F.; da Silva, M.T.; Flores, P. A compendium of contact force models inspired by Hunt and Crossley’s cornerstone work. Mech. Mach. Theory 2022, 167, 104501. [Google Scholar] [CrossRef]
- Alves, J.; Peixinho, N.; da Silva, M.T.; Flores, P.; Lankarani, H.M. A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 2015, 85, 172–188. [Google Scholar] [CrossRef]
- Goldobin, D.S.; Susloparov, E.A.; Pimenova, A.V.; Brilliantov, N.V. Collision of viscoelastic bodies: Rigorous derivation of dissipative force. Eur. Phys. J. E 2015, 38, 55. [Google Scholar] [CrossRef] [PubMed]
- He, A.; Wettlaufer, J.S. Hertz beyond belief. Soft Matter 2014, 10, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, H.; Kuninaka, H. Theory of the inelastic impact of elastic materials. Phase Transitions 2004, 77, 889–909. [Google Scholar] [CrossRef]
- Argatov, I.I.; Selyutina, N.S.; Mishuris, G.S. Impact problem for the quasi-linear viscoelastic standard solid model. J. Strain Anal. Eng. Des. 2016, 51, 294–303. [Google Scholar] [CrossRef]
- Argatov, I.I. Mathematical modeling of linear viscoelastic impact: Application to drop impact testing of articular cartilage. Tribol. Int. 2013, 63, 213–225. [Google Scholar] [CrossRef]
- Li, J.; Xie, Y.X. Analysis of bounce of viscoelastic spheres on rigid surfaces. Int. J. Mech. Sci. 2024, 265, 108882. [Google Scholar] [CrossRef]
- Hunter, S.C. The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 1960, 8, 219–234. [Google Scholar] [CrossRef]
- Lee, E.H.; Radok, J.R.M. The contact problem for viscoelastic bodies. J. Appl. Mech. 1960, 27, 438–444. [Google Scholar] [CrossRef]
- Forney, L.J. On the duration of contact for the Hertzian impact of a spherical indenter on a Maxwell solid. Int. J. Solids Struct. 1974, 10, 621–624. [Google Scholar] [CrossRef]
- Khusid, B.M. Collision of polymer particle with rigid barrier. J. Eng. Phys. 1986, 51, 1387–1393. [Google Scholar] [CrossRef]
- Wang, D.; de Boer, G.; Neville, A.; Ghanbarzadeh, A. A review on modelling of viscoelastic contact problems. Lubricants 2022, 10, 358. [Google Scholar] [CrossRef]
- Aksel, N. On the impact of a rigid sphere on a viscoelastic half-space. Ingenieur-Archiv 1986, 56, 38–54. [Google Scholar] [CrossRef]
- Calvit, H.H. Experiments on rebound of steel balls from blocks of polymer. J. Mech. Phys. Solids 1967, 15, 141–150. [Google Scholar] [CrossRef]
- Southern, E.; Thomas, A.G. The impact of rigid spheres on rubber. J. Appl. Polym. Sci. 1972, 16, 1641–1651. [Google Scholar] [CrossRef]
- Pouyet, J.; Lataillade, J.L. Dynamic investigation of hard viscoelastic materials by ball bouncing experiments. J. Mater. Sci. 1975, 10, 2112–2116. [Google Scholar] [CrossRef]
- Diani, J.; Gilormini, P.; Agbobada, G. Experimental study and numerical simulation of the vertical bounce of a polymer ball over a wide temperature range. J. Mater. Sci. 2014, 49, 2154–2163. [Google Scholar] [CrossRef]
- Kren, A.P.; Naumov, A.O. Determination of the relaxation function for viscoelastic materials at low velocity impact. Int. J. Impact Eng. 2010, 37, 170–176. [Google Scholar] [CrossRef]
- Kuwabara, G.; Kono, K. Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 1987, 26, 1230. [Google Scholar] [CrossRef]
- Willert, E. Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen; Springer Vieweg: Berlin, Germany, 2020. [Google Scholar]
- Pao, Y.H. Extension of the Hertz theory of impact to the viscoelastic case. J. Appl. Phys. 1955, 26, 1083–1088. [Google Scholar] [CrossRef]
- Calvit, H.H. Numerical solution of the problem of impact of a rigid sphere onto a linear viscoelastic half-space and comparison with experiment. Int. J. Solids Struct. 1967, 3, 951–966. [Google Scholar] [CrossRef]
- Aboudi, J. The dynamic indentation and impact of a viscoelastic half-space by an axisymmetric rigid body. Comput. Methods Appl. Mech. Eng. 1979, 20, 135–150. [Google Scholar] [CrossRef]
- Sabin, G.C.W. The impact of a rigid axisymmetric indentor on a viscoelastic half-space. Int. J. Eng. Sci. 1987, 25, 235–251. [Google Scholar] [CrossRef]
- Herrenbrück, M.; Duddeck, F.; Lackner, R. Multifunctional optimization of viscoelastic materials subjected to spherical impact. J. Appl. Mech. 2015, 82, 121009. [Google Scholar] [CrossRef]
- Andrianov, I.V.; Awrejcewicz, J. New trends in asymptotic approaches: Summation and interpolation methods. Appl. Mech. Rev. 2001, 54, 69–92. [Google Scholar] [CrossRef]
- Maruoka, H. A framework for crossover of scaling law as a self-similar solution: Dynamical impact of viscoelastic board. Eur. Phys. J. E 2023, 46, 35. [Google Scholar] [CrossRef] [PubMed]
- Barenblatt, G.I. Scaling; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Shtaerman, I.Y. On the Hertz theory of local deformations resulting from the pressure of elastic solids. Dokl. Akad. Nauk SSSR 1939, 25, 360–362. (In Russian) [Google Scholar]
- Galin, L.A. Spatial contact problems of the theory of elasticity for punches of circular shape in planar projection [in Russian]. PMM J. Appl. Math. Mech. 1946, 10, 425–448. [Google Scholar]
- Love, A.E.H. Boussinesq’s problem for a rigid cone. Q. J. Math. 1939, 10, 161–175. [Google Scholar] [CrossRef]
- Kilchevsky, N.A. The Theory of Solid Bodies Collision; Naukova Dumka: Kiev, Ukraine, 1969. (In Russian) [Google Scholar]
- Graham, G.A.C. A contribution to Hertz’s theory of elastic impact. Int. J. Eng. Sci. 1973, 11, 409–413. [Google Scholar] [CrossRef]
- Argatov, I.; Daniels, A.U.; Mishuris, G.; Ronken, S.; Wirz, D. Accounting for the thickness effect in dynamic spherical indentation of a viscoelastic layer: Application to non-destructive testing of articular cartilage. Eur. J. Mech.-A/Solids 2013, 37, 304–317. [Google Scholar] [CrossRef]
- Argatov, I.I. Asymptotic Models of Elastic Contact; Nauka: St. Petersburg, Russia, 2005. (In Russian) [Google Scholar]
- Butcher, E.A.; Segalman, D.J. Characterizing damping and restitution in compliant impacts via modified KV and higher-order linear viscoelastic models. J. Appl. Mech. 2000, 67, 831–834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argatov, I. Viscoelastic Hertzian Impact. Lubricants 2024, 12, 193. https://doi.org/10.3390/lubricants12060193
Argatov I. Viscoelastic Hertzian Impact. Lubricants. 2024; 12(6):193. https://doi.org/10.3390/lubricants12060193
Chicago/Turabian StyleArgatov, Ivan. 2024. "Viscoelastic Hertzian Impact" Lubricants 12, no. 6: 193. https://doi.org/10.3390/lubricants12060193
APA StyleArgatov, I. (2024). Viscoelastic Hertzian Impact. Lubricants, 12(6), 193. https://doi.org/10.3390/lubricants12060193