Comparison of Friction Properties of GI Steel Plates with Various Surface Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials—Substrate and Coatings
2.2. Mechanical Properties of Substrate
2.3. Cup Test
2.4. Surface Microgeometry
2.5. Corrosion Resistance according to ISO 9227
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Čada, R. Formability of Deep-Drawing Steel Sheets. In Proceedings of the 5th European Conference on Advanced Materials and Processes and Applications (EUROMAT 97): Materials, Functionality Design: Volume 4-Characterization and Production/Design, Maastricht, The Netherlands, 21–23 April 1997; Netherlands Society for Materials Science: Maastricht, The Netherlands, 1997; pp. 463–466, ISBN 90-803513-4-2. [Google Scholar]
- Liewald, M.; Wagne, S.; Becker, D. Influence of surface topography on the tribological behaviour of aluminium alloy 5182 with EDT surface. Tribol. Lett. 2010, 39, 135–142. [Google Scholar] [CrossRef]
- Do, T.T.; Minh, P.S.; Le, N. Effect of Tool Geometry Parameters on the Formability of a Camera Cover in the Deep Drawing Process. Materials 2021, 14, 3993. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, J.; Stein, P.; Kramer, P.; van den Boogaard, A.H. Tool Texturing for Deep Drawing Applications. IOP Conf. Ser. Mater. Sci. Eng. 2018, 418, 012095. [Google Scholar] [CrossRef]
- Šugárová, J.; Šugár, P.; Frnčík, M.; Necpal, M.; Moravčíková, J.; Kusý, M. The influence of the tool surface texture on friction and the surface layers properties of formed component. Adv. Sci. Technol. Res. J. 2018, 12, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Deng, P.; Wang, S.; Xu, H.; Shi, Y. Study on formability and microstructure evolution of hot deep drawing manufactured 7005 aluminum alloy sheet metal. Mater. Today Commun. 2023, 36, 106794. [Google Scholar] [CrossRef]
- Mihaliková, M.; Zgodavová, K.; Bober, P.; Špegárová, A. The Performance of CR180IF and DP600 Laser Welded Steel Sheets under Different Strain Rates. Materials 2021, 14, 1553. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Hong, Z.; Gao, Y.; Lu, R.; Wang, Y.; Tan, J. Optimization of variable blank holder force in deep drawing based on support vector regression model and trust region. Int. J. Adv. Manuf. Technol. 2019, 105, 4265–4278. [Google Scholar] [CrossRef]
- Kirkhorn, L.; Bushlya, V.; Andersson, M.; Stahl, J.-E. The influence of tool microstructure on friction in sheet metal forming. Wear 2013, 302, 1268–1278. [Google Scholar] [CrossRef]
- Thipprakmas, S.; Sriborwornmongkol, J.; Jankree, R.; Phanitwong, W. Application of an Oleophobic Coating to Improve Formability in the Deep-Drawing Process. Lubricants 2023, 11, 104. [Google Scholar] [CrossRef]
- Lange, K. Handbook of Metal Forming, 2nd ed.; Society of Manufacturing Engineers: Millersville, PA, USA, 1995. [Google Scholar]
- Hrivnak, A.; Evin, E. Formability of Steel Sheets, 1st ed.; Elfa: Košice, Slovakia, 2004. [Google Scholar]
- Chen, D.; Zhao, C.; Chen, X.; Li, H.; Zhang, X. Research on the active pressurized forced lubrication deep drawing process and evaluation of the lubrication effect. Int. J. Adv. Manuf. Technol. 2022, 120, 2815–2826. [Google Scholar] [CrossRef]
- Bay, N.; Azushima, A.; Groche, P.; Ishibashi, I.; Merklein, M.; Morishita, M.; Nakamura, T.; Schmid, S.; Yoshida, M. Environmentally benign tribo-systems for metal forming. CIRP Ann. 2010, 59, 760–780. [Google Scholar] [CrossRef]
- Reichardt, G.; Henn, M.; Reichle, P.; Umlauf, G.; Riedmüller, K.; Weber, R.; Barz, J.; Liewald, M.; Graf, T.; Tovar, G.E.M. Friction and wear behavior of deep drawing tools using volatile lubricants injected through laser-drilled micro-holes. JOM 2022, 74, 826–836. [Google Scholar] [CrossRef]
- Jivan, R.; Eskandarzade, M.; Bewsher, S.; Leighton, M.; Mohammadpour, M.; Saremi-Yarahmadi, S. Application of solid lubricant for enhanced frictional efficiency of deep drawing process. Proceedings of the Institution of Mechanical Engineers. Part C J. Mech. Eng. Sci. 2022, 236, 624–634. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research and Innovation; Ferrari, V., Nicolle, R., Eds.; New surface treatment to improve adhesion of organic coatings and corrosion—In situ methods for the characterisation of Zn polymer coatings—Final report; Publications Office: Luxembourg, 2002. [Google Scholar]
- European Commission. Directorate-General for Research and Innovation; Hardy, Y., Wormuth, R., Barranco Asensio, V., Eds.; New chromium-free thin organic coatings for Z, ZA and ZF—Final report; Publications Office: Luxembourg, 2003. [Google Scholar]
- Trzepiecinski, T. A Study of the Coefficient of Friction in Steel Sheets Forming. Metals 2019, 9, 988. [Google Scholar] [CrossRef]
- Padmanabhan, R.; Oliveira, M.C.; Alves, J.L.; Menezes, L.F. Influence of Process Parameters on the Deep Drawing of Stainless Steel. Finite Elem. Anal. Des. 2007, 43, 1062–1067. [Google Scholar] [CrossRef]
- Zhao, H.; Cao, L.; Wan, Y.; Yang, S.; Gao, J.; Pu, J. Enhanced lubricity of zinc phosphate coating by stearic acid. Lubr. Sci. 2018, 30, 331–337. [Google Scholar] [CrossRef]
- Bexell, U.; Carlsson, P.; Olsson, A. Tribological characterisation of an organic coating by the use of ToF-SIMS. Appl. Surf. Sci. 2003, 203, 596–599. [Google Scholar] [CrossRef]
- Ma, I.A.W.; Ammar, S.; Kumar, S.S.A.; Ramesh, K.; Ramesh, A. A concise review on corrosion inhibitors: Types, mechanisms and electrochemical evaluation studies. J. Coat. Technol. Res. 2022, 19, 241–268. [Google Scholar] [CrossRef]
- Lessa, R.C.d.S. Synthetic Organic Molecules as Metallic Corrosion Inhibitors: General Aspects and Trends. Organics 2023, 4, 232–250. [Google Scholar] [CrossRef]
- Bammel, B.D.; Comoford, J.; Donaldson, G.T.; McGee, J.D.; Smith, T.S., II; Zimmerman, J. Novel Non-Chrome Thin Organic Hybrid Coating for Coil Steels. In Proceedings of the 38th Annual Waterborne Symposium, New Orleans, LA, USA, 28 February–4 March 2011; pp. 44–58. [Google Scholar]
- Roos, O. Brugal® thin organic coatings: Effective and gainful alternative to traditional methods of protection of steels from corrosion. Met. Sci. Heat Treat. 2011, 53, 350–352. [Google Scholar] [CrossRef]
- Thin Organic Coating. Available online: https://www.usske.sk/en/products/hot-dip-galvanized/thin-organic-coating (accessed on 3 March 2024).
- Multiface®. Available online: https://www.voestalpine.com/surface-treatments/en/Products/Surface-treatments/multiface-R (accessed on 3 March 2024).
- Easyfilm®. Available online: https://industry.arcelormittal.com/catalogue/E80/EN (accessed on 3 March 2024).
- Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Available online: http://data.europa.eu/eli/dir/2011/65/oj (accessed on 1 April 2024).
- Carlsson, P.; Bexel, U.; Olsson, M. Friction and wear mechanisms of thin organic permanent coatings deposited on hot-dip coated steel. Wear 2001, 247, 88–99. [Google Scholar] [CrossRef]
- Barletta, M.; Gisario, A.; Puopolo, M.; Vesco, S. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier. Mater. Des. 2015, 69, 130–140. [Google Scholar] [CrossRef]
- Tsai, P.-Y.; Chen, T.-E.; Lee, Y.-L. Development and Characterization of Anticorrosion and Antifriction Properties for High Performance Polyurethane/Graphene Composite Coatings. Coatings 2018, 8, 250. [Google Scholar] [CrossRef]
- Ying, L.; Wu, Y.; Nie, C.; Wu, C.; Wang, G. Improvement of the Tribological Properties and Corrosion Resistance of Epoxy–PTFE Composite Coating by Nanoparticle Modification. Coatings 2021, 11, 10. [Google Scholar] [CrossRef]
- Trzepiecinski, T.; Lemu, H.G. Effect of Lubrication on Friction in Bending under Tension Test-Experimental and Numerical Approach. Metals 2020, 10, 544. [Google Scholar] [CrossRef]
- Evin, E.; Daneshjo, N.; Mareš, A.; Tomáš, M.; Petrovčiková, K. Experimental Assessment of Friction Coefficient in Deep Drawing and Its Verification by Numerical Simulation. Appl. Sci. 2021, 11, 2756. [Google Scholar] [CrossRef]
- Heinzel, H.; Ramezani, M.; Neitzert, T. Experimental Investigation of the Formability of Organic Coated Steel Sheet Metal. Procedia Manuf. 2015, 1, 854–865. [Google Scholar] [CrossRef]
- Evin, E.; Tomáš, M. Influence of Friction on the Formability of Fe-Zn-Coated IF Steels for Car Body Parts. Lubricants 2022, 10, 297. [Google Scholar] [CrossRef]
- Xia, J.; Zhao, J.; Dou, S.; Shen, X. A Novel Method for Friction Coefficient Calculation in Metal Sheet Forming of Axis-Symmetric Deep Drawing Parts. Symmetry 2022, 14, 414. [Google Scholar] [CrossRef]
- Evin, E.; Németh, S.; Výrostek, M. Evaluation of Friction Coefficient of Stamping. Acta Mech. Slovaca 2014, 18, 20–27. [Google Scholar] [CrossRef]
- EN 10346:2015; Continuously hot-dip coated steel flat products—Technical delivery conditions. CEN-CENELEC Management Centre: Brussels, Belgium, 2015.
- ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 10113:2020; Metallic Materials—Sheet and Strip—Determination of Plastic Strain Ratio. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 10275:2020; Metallic Materials—Sheet and Strip—Determination of Tensile Strain Hardening Exponent. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 9227:2022; Corrosion Tests in Artificial Atmospheres—Salt Spray Test. International Organization for Standardization: Geneva, Switzerland, 2022.
- Popic, J.P.; Jegdic, B.V.; Bajat, J.B.; Veljovic, D.; Stevanovic, S.I.; Miskovic-Stankovic, V.B. The effect of deposition temperature on the surface coverage and morphology of iron-phosphate coatings on low carbon steel. Appl. Surf. Sci. 2011, 257, 10855–10862. [Google Scholar] [CrossRef]
- Hara, A.; Kazimierczak, H.; Bigos, A.; Świątek, Z.; Ozga, P. Effect of different organic additives on surface morphology and microstructure of Zn-Mo coatings electrodeposited from citrate baths. Arch. Metall. Mater. 2019, 64, 207–220. [Google Scholar] [CrossRef]
- Liu, X.; Yu, W.; Zhang, Q.; Jiang, S. Influence of Surface Roughness of Galvanized Steel Sheet on Self-lubricated Coating. J. Iron Steel Res. Int. 2014, 21, 342–347. [Google Scholar] [CrossRef]
- Sankara Narayanan, T.S.N. Surface Pretreatment by Phosphate Conversion Coatings—A Review. Rev. Adv. Mater. Sci. 2005, 9, 130–177. [Google Scholar]
- Shih, H. Friction and Die Wear in Stamping Prephospated Advanced High Strength Steels. SAE Int. J. Mater. Manf. 2016, 9, 481–487. [Google Scholar] [CrossRef]
- Saffarzade, P.; Ali Amadeh, A.; Agahi, N. Study of tribological and friction behavior of magnesium phosphate coating and comparison with traditional zinc phosphate coating under dry and lubricated conditions. Tribol. Int. 2020, 144, 106122. [Google Scholar] [CrossRef]
- Carlsson, P.; Bexel, U.; Olsson, M. Tribological behaviour of thin organic permanent coatings deposited on hot-dip coated steel sheet—A laboratory study. Surf. Coat. Technol. 2000, 132, 169–180. [Google Scholar] [CrossRef]
- Podjuklová, J.; Laník, T.; Hrabovská, K.; Bártek, V.; Suchánková, K.; Kopaňáková, S.; Šrubař, P.; Dvorský, R. Study on thin organic coatings for short-term anticorrosive protection of metallurgical materials production. In Proceedings of the 20th Anniversary International Conference on Metallurgy and materials, Brno, Czech Republic, 18–20 May 2011. [Google Scholar]
- Sarli, A.R.D.; Elsner, C.I.; Tomachuk, C.R. Characterization and Corrosion Resistance of Galvanized Steel/Passivation Composite/Polyurethane Paint Systems. Curr. J. Appl. Sci. Technol. 2013, 4, 853–878. [Google Scholar] [CrossRef]
- Gao, F.; Du, A.; Ma, R.; Lv, C.; Yang, H.; Fan, Y.; Zhao, X.; Wu, J.; Cao, X. Improved corrosion resistance of acrylic coatings prepared with modified MoS2 nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2020, 587, 124318. [Google Scholar] [CrossRef]
- Li, H.; Sun, L.; Li, W. Application of organosilanes in titanium-containing organic–inorganic hybrid coatings. J. Mater. Sci. 2022, 57, 13845–13870. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Redkina, G.V. Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media. Coatings 2022, 12, 149. [Google Scholar] [CrossRef]
C | Mn | Si | P | S | Ti |
---|---|---|---|---|---|
0.12 | 0.6 | 0.5 | 0.1 | 0.045 | 0.3 |
Rp0.2 (YS) [MPa] | Rm (UTS) [MPa] | A80 [%] | r [−] | n [−] | |
---|---|---|---|---|---|
Measured | 175 ± 1.3 | 301 ± 1.1 | 43.5 ± 0.9 | 2.30 ± 0.03 | 0.23 ± 0.005 |
Required | 120–180 | 260–350 | 39% min. | 1.9 min. | 0.21 min. |
Title 1 | Title 2 | Ra [μm] | Rz [μm] | RPc [cm−1] | |||
---|---|---|---|---|---|---|---|
A Side | B Side | A Side | B Side | A Side | B Side | ||
GI coating | Average | 1.286 | 1.020 | 7.646 | 6.410 | 54.6 | 46.8 |
St.dev | 0.111 | 0.091 | 0.610 | 0.640 | 13.0 | 4.3 | |
1.153 ± 0.170 | 7.028 ± 0.878 | 50.7 ± 10.0 | |||||
Passivated GI coating | Average | 1.162 | 0.938 | 7.132 | 6.376 | 53.0 | 45.4 |
St.dev | 0.058 | 0.066 | 0.141 | 0.290 | 3.9 | 4.3 | |
1.050 ± 0.132 | 6.754 ± 0.453 | 49.2 ± 5.6 | |||||
GI coating with TOC | Average | 1.022 | 0.846 | 6.332 | 5.582 | 49.6 | 47.4 |
St.dev | 0.038 | 0.045 | 0.179 | 0.436 | 4.3 | 4.1 | |
0.934 ± 0.101 | 5.957 ± 0.505 | 48.5 ± 5.681 |
Blank Folder Force FN [kN] | Deep Drawing Force Ft [kN] | ||
---|---|---|---|
GI | GI Passivated | GI + TOC | |
10 | 60.3 ± 0.9 | 52.1 ± 0.9 | 41.7 ± 2.0 |
20 | 62.7 ± 1.1 | 53.8 ± 0.7 | 43.1 ± 2.0 |
30 | 65.4 ± 1.3 | 55.6 ± 1.0 | 44.1 ± 2.3 |
40 | 67.5 ± 1.1 | 57.7 ± 0.8 | 44.9 ± 2.1 |
50 | 69.8 ± 0.9 | 59.2 ± 0.9 | 46.1 ± 2.0 |
Slope | 0.238 | 0.182 | 0.105 |
Friction coefficient | 0.119 | 0.091 | 0.053 |
R2 | 0.9989 | 0.9985 | 0.9893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomáš, M.; Németh, S.; Evin, E.; Hollý, F.; Kundracik, V.; Kulya, J.M.; Buber, M. Comparison of Friction Properties of GI Steel Plates with Various Surface Treatments. Lubricants 2024, 12, 198. https://doi.org/10.3390/lubricants12060198
Tomáš M, Németh S, Evin E, Hollý F, Kundracik V, Kulya JM, Buber M. Comparison of Friction Properties of GI Steel Plates with Various Surface Treatments. Lubricants. 2024; 12(6):198. https://doi.org/10.3390/lubricants12060198
Chicago/Turabian StyleTomáš, Miroslav, Stanislav Németh, Emil Evin, František Hollý, Vladimír Kundracik, Juliy Martyn Kulya, and Marek Buber. 2024. "Comparison of Friction Properties of GI Steel Plates with Various Surface Treatments" Lubricants 12, no. 6: 198. https://doi.org/10.3390/lubricants12060198
APA StyleTomáš, M., Németh, S., Evin, E., Hollý, F., Kundracik, V., Kulya, J. M., & Buber, M. (2024). Comparison of Friction Properties of GI Steel Plates with Various Surface Treatments. Lubricants, 12(6), 198. https://doi.org/10.3390/lubricants12060198