Ester-Based Lubricant and Anti-Leidenfrost Additive Solutions on Aluminum High-Pressure Die-Casting Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lubricants
2.2. Experimental Methology
2.2.1. Adhesion Force
2.2.2. Contact Angle
2.3. Pilot Plant Validation
- Short series of 30 test parts: This analysis is aimed to assess the temperature extraction capability of the lubricants compared to the reference commercial lubricant.
- Series of 1200 test parts: This analysis is aimed to assess the improvements in die wear mechanisms with the newly lubricant formulations. The findings can be interpretated considering the conclusions drawn from the short series.
3. Results
3.1. Laboratory Test: Lubricant Heat-Transfer Capability
3.2. Laboratory Tests: Adhesion Force and Contact Angle Evaluation
3.3. Pilot Plant: Lubricant Validation
4. Discussion
5. Conclusions
- A laboratory methodolgy has been established to assess the heat-transfer capability of new formulated lubricants. The methodology has been validated through recorded curves temperatures during pilot plant aluminum die-castings.
- There exists a correlation between heat-transfer capability (linked with the LFP) and aluminum adhesion, while the CA does not directly influence the lubricant performance.
- A pilot plant methodoloy for testing newly formulated lubricants has been established. This methodology validates the efficiency of different formulated lubricants in terms of aluminum adhesion.
- The efficiency of the ester-based lubricant for high-temperature applications, such as HPDC, has been demonstrated. Moreover, the combination of ester-based lubricants with tailored additives to maximize Leidenfrost point has been assessed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cecchel, S. Materials and Technologies for lightweightening of structural parts for automotive applications: A review. SAE Int. J. Mater. Manuf. 2021, 14, 81–97. [Google Scholar] [CrossRef]
- Nunes, H.; Emadinia, O.; Vieira, M.F.; Reis, A. Low- and High-Pressure casting aluminum alloys: A review. In Recent Advancements in Aluminum Alloys; IntechOpen: London, UK, 2023. [Google Scholar]
- Bonollo, F.; Gramegna, N.; Timelli, G. High-pressure die-casting: Contradictions and Challenges. JOM 2015, 67, 901–908. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, S. Research progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys. Metals 2024, 14, 370. [Google Scholar] [CrossRef]
- Zabala, B.; Igartua, A.; Raone, C.; Timelli, G.; Bonollo, F.; Scarpis, V.; Peggiato, M.; Girot, F. Evaluation HPDC lubricant spraying for improved cooling and die protection. In Proceedings of the Conference LUBMAT, Bilbao, Spain, 7–8 June 2016. [Google Scholar]
- Bhaskar, M.; Anand, G.; Nalluswamy, T.; Suresh, P. Die Life in aluminium high-pressure die casting industries. J. Inst. Eng. India Ser. D 2022, 103, 117–123. [Google Scholar] [CrossRef]
- Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M. Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites. J. Mater. Eng. Perform. 2006, 15, 668–674. [Google Scholar] [CrossRef]
- Elrefaey, A.; Gouda, M.; Takahashi, M.; Ikeuchi, K. Characterization of aluminum/steel lap joint by friction stir welding. J. Mater. Eng. Perform. 2005, 14, 10–17. [Google Scholar] [CrossRef]
- Cantú-Fernández, D.S.; Taha-Tijerina, J.J.; González, A.; Hernández, P.G.; Quinn, B. Mechanical Properties of a Structural Component Processed in High-Pressure Die Casting (HPDC) with a Non-Heat-Treated Aluminum Alloy. Metals 2024, 14, 369. [Google Scholar] [CrossRef]
- Natesh, G.; Colori, A. Innovative technologies in mould release agents. Metalli Leggeri 2009, 101, 1–4. [Google Scholar]
- Lequeu, P.; Smith, K.P.; Daniélou, A. Aluminium-copper lithium alloy 2050 developed for medium to thick plate. J. Mater. Eng. Perform. 2010, 19, 841–847. [Google Scholar] [CrossRef]
- Hawryluk, M.; Dudkiewicz, L.; Marzec, J.; Rychlik, M.; Tkocz, R. Selected Aspects of Lubrication in Die Forging Processes at Elevated Temperatures—A Review. Lubricants 2023, 11, 206. [Google Scholar] [CrossRef]
- Vilaseca, M.; Molas, S.; Casellas, D. High temperatura tribological behaviour of tool steels during sliding against aluminium. Wear 2011, 272, 105–109. [Google Scholar] [CrossRef]
- Zhu, Y.; Schwam, D.; Wallace, J.F.; Birceanu, S. Evaluation of soldering, washout and thermal fatigue resistance of advanced metal materials for aluminum die-casting dies. Mater. Sci. Eng. A 2004, 379, 420–431. [Google Scholar] [CrossRef]
- Aluminum Content in Passenger Vehicles (Europe) Assessment 2022 and Outlook 2026, 2030. Ducker Carlisle for European Aluminium Public Summary April, 2023. Available online: https://european-aluminium.eu/wp-content/uploads/2023/05/2023_04_Aluminum-Content_Ducker-Study_EA-Public-Summary_190423.pdf (accessed on 11 November 2024).
- Dalai, B.; Jonsson, S.; da Silva, M.; Yu, L.; Kajberg, J. Inhomogeneous Skin Formation and Its Effect on the Tensile Behaviour of a High Pressure Die Cast Recycled Secondary AlSi10MnMg(Fe). Alloy. Met. Mater. Trans. A 2024, 56, 196–218. [Google Scholar] [CrossRef]
- Shankar, D.S. A study of the Interface Reaction Mechanism Between Molten Aluminium and Ferrous Die Material. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2000. [Google Scholar]
- Sabau, A.S.; Dinwiddie, R.B. Characterization of spray lubricants for the high pressure die casting processes. J. Mater. Process. Technol. 2008, 195, 267–274. [Google Scholar] [CrossRef]
- Niklas, A.; Bakedano, A.; Orden, S.; da Silva, M.; Nogués, E.; Fernández-Calvo, A.I. Microstructure and Mechanical Properties of a New Secondary AlSi10MnMg(Fe) Alloy for Ductile High Pressure Die Casting Parts for the Automotive Industry. Key Eng. Mater. 2016, 710, 244. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, Z. Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale 2017, 9, 6219. [Google Scholar] [CrossRef]
- Cai, C.; Mudawar, I. Review of the dynamic Leidenfrost point temperature for droplet impact on heated solid surface. Int. J. Heat. Mass. Transf. 2023, 217, 124639. [Google Scholar] [CrossRef]
- Agrawal, P.; McHale, G. Leidenfrost effect and surface wettability. In The Surface Wettability Effect on Phase Change; Springer: Cham, Switzerland, 2022; pp. 189–233. [Google Scholar] [CrossRef]
- Zabala, B.; Igartua, A.; Scarpis, V.; Timelli, G.; Girot, F. Multiparametric study of Leidenfrost point and wettability of lubricants on high-pressure die-casting dies. Int. J. Therm. Sci. 2018, 125, 66–73. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, L.; Du, X. Critical contact angle for triggering dynamic Leidenfrost phenomenon at different surface wettability: A molecular dynamics study. J. Mol. Liq. 2023, 382, 121982. [Google Scholar] [CrossRef]
- Fox, N.; Stachowiak, G.W. Vegetable oil-based lubricants—A review of oxidation. Tribol. Int. 2007, 40, 1035–1046. [Google Scholar] [CrossRef]
- Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 2018, 82, 80–102. [Google Scholar] [CrossRef]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Pujante, J.; Vilaseca, M.; Casellas, D.; Riera, M.F. The role of adhesive forces and mechanical interaction on material transfer in hot forming of aluminium. Tribol. Lett. 2015, 59, 10. [Google Scholar] [CrossRef]
- ISO 4287:1997; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parametres. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 25178; Geometric Product Specifications (GPS)—Surface Texture: Areal Standard. International Organization for Standardization: Geneva, Switzerland, 2012.
Lubrication | Nomenclature | Description |
---|---|---|
Dry | D | - |
Reference lubricant | R | PAO-based commercial lubricant |
Lubricant 1 | LUB 1 | Ester-based lubricant |
Lubricant 2 | LUB 2 | Lubricant 1 + Leidenfrost reduction additive |
Industrial Parameters | Value |
---|---|
Die temperature (lubricant application) | 450 °C |
Lubricant-spraying time | 6 s |
Spraying distance | 25 cm |
Die material | 1.2344 |
Test Parameters | Value |
---|---|
Temperature | 450 °C |
Lubricant-spraying time | 6 s |
Spraying distance | 25 cm |
Bore nozzle | 0.8 mm |
Air pressure | 2 × 105 Pa |
Disc material | 1.2344 |
Ball material | Al 99% |
Lubricant | ΔT/Δt [°C/s] | t1/12 |
---|---|---|
R | −48 ± 5.5 | 1.8 ± 0.1 |
LUB 1 | −78 ± 54 | 0.8 ± 0.1 |
LUB 2 | −61 ± 49 | 0.8 ± 0.1 |
Lubricant | Adhesion Force [N] | Contact Angle [θ] |
---|---|---|
D | 1.5 ± 0.1 | |
R | 0.8 ± 0.4 | 49 ± 5 |
LUB 1 | 0.5 ± 0.3 | 52 ± 3 |
LUB 2 | 0.3 ± 0.1 | 58 ± 5 |
Lubricant | Zone | Ra [µm] | Sa [µm] | Sdr [%] | |
---|---|---|---|---|---|
Reference | Polished | Bottom center | 0.10 ± 0.02 | 0.12 ± 0.02 | 0.23 ± 0.15 |
Top center | 0.10 ± 0.02 | 0.12 ± 0.02 | 0.23 ± 0.15 | ||
900 casting parts | Bottom center | 0.24 ± 0.11 | 0.43 ± 0.31 | 0.45 ± 0.10 | |
Top center | 0.47 ± 0.03 | 0.50 ± 0.03 | 1.02 ± 0.28 | ||
1200 casting parts | Bottom center | 0.16 ± 0.01 | 0.22 ± 0.01 | 0.58± 0.05 | |
Top center | 0.68 ± 0.09 | 0.69 ± 0.10 | 3.97 ± 0.06 | ||
LUB 2 | Polished | Bottom center | 0.08 ± 0.01 | 0.12 ± 0.02 | 0.23 ± 0.15 |
Top center | 0.08 ± 0.01 | 0.12 ± 0.02 | 0.23 ± 0.15 | ||
900 casting parts | Bottom center | 0.08 ± 0.01 | 0,12 ± 0.02 | 0.05 ± 0.01 | |
Top center | 0.06 ± 0.01 | 0.12 ± 0.01 | 0.02 ± 0.01 | ||
1200 casting parts | Bottom center | 0.10 ± 0.01 | 0.13 ± 0.04 | 0.05 ± 0.02 | |
Top center | 0.09 ± 0.04 | 0.10 ± 0.02 | 0.18 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuadrado, N.; Vidales, E.; da Silva, M.; Wajana, W.; Muntada, L.; Navarro, A.; Beltran, L.; Vilaseca, M. Ester-Based Lubricant and Anti-Leidenfrost Additive Solutions on Aluminum High-Pressure Die-Casting Applications. Lubricants 2025, 13, 32. https://doi.org/10.3390/lubricants13010032
Cuadrado N, Vidales E, da Silva M, Wajana W, Muntada L, Navarro A, Beltran L, Vilaseca M. Ester-Based Lubricant and Anti-Leidenfrost Additive Solutions on Aluminum High-Pressure Die-Casting Applications. Lubricants. 2025; 13(1):32. https://doi.org/10.3390/lubricants13010032
Chicago/Turabian StyleCuadrado, Nuria, Eduard Vidales, Manel da Silva, Wadi Wajana, Leandre Muntada, Angel Navarro, Lluis Beltran, and Montserrat Vilaseca. 2025. "Ester-Based Lubricant and Anti-Leidenfrost Additive Solutions on Aluminum High-Pressure Die-Casting Applications" Lubricants 13, no. 1: 32. https://doi.org/10.3390/lubricants13010032
APA StyleCuadrado, N., Vidales, E., da Silva, M., Wajana, W., Muntada, L., Navarro, A., Beltran, L., & Vilaseca, M. (2025). Ester-Based Lubricant and Anti-Leidenfrost Additive Solutions on Aluminum High-Pressure Die-Casting Applications. Lubricants, 13(1), 32. https://doi.org/10.3390/lubricants13010032