Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol
Abstract
:1. Introduction
2. Testing
2.1. The Dynamometer
2.2. The Tested Lubricants
2.3. The Engine under Test
3. Results
3.1. Motored Engine Friction Tests
3.2. Engine Friction Tests under Load
3.3. Main Bearing Temperatures
3.4. Lubricant Outflow Temperature
4. Discussion and Conclusions
4.1. Fully Synthetic Low-Viscosity Lubricant
4.2. Polyalkylene Glycol-Based Ultra-Low-Viscosity Lubricant
4.3. Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
VI | Viscosity index |
PG | Polyalkylene glycol |
ICE | Internal combustion engine |
HTHS | High temperature high shear (viscosity) |
IMEP | Indicated mean effective pressure |
BMEP | Brake mean effective pressure |
FMEP | Friction mean effective pressure |
TDC | Top dead center |
DOHC | Double over head camshafts |
DLC | Diamond-like carbon |
References
- Fontaras, G.; Samaras, Z. On the way to 130g CO2/km—Estimating the future characteristics of the average European passenger car. Energy Policy 2010, 38, 1826–1833. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Okrent, E.H. The Effect of Lubricant Viscosity and Composition on Engine Friction and Bearing Wear. ASLE Trans. 1961, 4, 97–108. [Google Scholar] [CrossRef]
- Davison, E.D.; Haviland, M.L. Lubricant Viscosity Effects on Passenger Car Fuel Economy; SAE Technical Paper 750675; SAE International: Warrendale, PA, USA, 1975. [Google Scholar]
- Gjerde, H.B.; Younghouse, E.C. A Diesel Engine Test to Evaluate Fuel Consumption Effects of Lubricants; SAE Technical Paper 841368; SAE International: Warrendale, PA, USA, 1984. [Google Scholar]
- Taylor, R.I.; Coy, R.C. Improved fuel efficiency by lubricant design: A review. Proc. Inst. Mech. Eng. J 2000, 214, 1–15. [Google Scholar] [CrossRef]
- Carden, P.; Pisani, C.; Andersson, J.; Field, I.; Lainé, E.; Bansal, J.; Devine, M. The effect of low viscosity oil on the wear, friction and fuel consumption of a heavy duty truck engine. SAE Int. J. Fuels Lubr. 2013, 6, 311–319. [Google Scholar] [CrossRef]
- Plumley, M.J.; Wong, V.W.; Martins, T.V. Demonstrating Improved Fuel Economy Using Subsystem Specific Lubricants on a Modified Diesel Engine. Tribol. Trans. 2016. [Google Scholar] [CrossRef]
- Young, A. Fuel economy drives change for passenger car oil formulations. Lube-Tech 2015, 99, 25–28. [Google Scholar]
- Qu, J.; Blau, P.J.; Dai, S.; Luo, H.; Meyer, H.M. Ionic liquids as novel lubricants and additives for Diesel engine applications. Tribol. Lett. 2009, 35, 181–189. [Google Scholar] [CrossRef]
- Woydt, M. Polyalkyleneglycols as next generation engine oils. J. ASTM Int. 2012, 8, 1–15. [Google Scholar]
- Igartua, A.; Fernández, X.; Areitioaurtena, O.; Luther, R.; Seyfert, C.; Rausch, J.; Illarramendi, I.; Berg, M.; Schultheiß, H.; Duffau, B.; et al. Biolubricants and triboreactive materials for automotive applications. Tribol. Int. 2009, 42, 561–568. [Google Scholar] [CrossRef]
- Tormos, B.; Ramírez, L.; Johansson, J.; Björling, M.; Larsson, R. Fuel consumption and friction benefits of low viscosity engine oils for heavy duty applications. Tribol. Int. 2017, 110, 23–34. [Google Scholar] [CrossRef]
- Knauder, C.; Allmaier, H.; Sander, D.E.; Salhofer, S.; Reich, F.M.; Sams, T. Analysis of the journal bearing friction losses in a heavy-duty Diesel engine. Lubricants 2015, 3, 142–154. [Google Scholar] [CrossRef]
- Skjoedt, M.; Butts, R.; Assanis, D.N.; Bohac, S.V. Effects of oil properties on spark-ignition gasoline engine friction. Tribol. Int. 2008, 41, 556–563. [Google Scholar] [CrossRef]
- Cuthbert, J.; Gangopadhyay, A.; Elie, L.; Liu, Z.; Mcwatt, D.; Hock, E.D.; Erdemir, A. Engine Friction and Wear Performances with Polyalkylene Glycol Engine Oils; SAE Technical Paper 2016-01-2271; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Merryweather, S.; Zweifel, D.; Woydt, M. Polyglycol-based engine oils—Has the industry to adapt to this lubricant class? In Proceedings of the 5th World Tribology Conference, Torino, Italy, 8–13 September 2013. [Google Scholar]
- Allmaier, H.; Knauder, C.; Sander, D.E.; Reich, F. Combination of Measurement and Simulation to Analyse Engine Friction. MTZ Worldw. 2016, 77, 66–71. [Google Scholar] [CrossRef]
- Allmaier, H.; Knauder, C.; Salhofer, S.; Reich, F.; Schalk, E.; Ofner, H.; Wagner, A. An experimental study of the load and heat influence from combustion on engine friction. Int. J. Engine Res. 2016, 17, 347–353. [Google Scholar] [CrossRef]
- Sander, D.E.; Allmaier, H.; Reich, F.M. Determination of friction losses in combustion engines—Combination of measurement and validated EHD journal bearing simulation. In Proceedings of the VDI-Berichte 2202, Schweinfurt, Germany, 23–24 April 2013; pp. 165–175. [Google Scholar]
- Allmaier, H.; Priestner, C.; Sander, D.E.; Reich, F.M. Friction in automotive engines. In Tribology in Engineering; Pihtili, H., Ed.; InTech: Rijeka, Croatia, 2013; pp. 149–184. [Google Scholar]
- Allmaier, H.; Sander, D.E.; Priebsch, H.; Witt, M.; Füllenbach, T.; Skiadas, A. Non-Newtonian and running-in wear effects in journal bearings operating under mixed lubrication. Proc. Inst. Mech. Eng. J. 2016, 230, 135–142. [Google Scholar] [CrossRef]
- Sander, D.E.; Allmaier, H.; Priebsch, H.; Reich, F.; Witt, M.; Füllenbach, T.; Skiadas, A.; Brouwer, L.; Schwarze, H. Impact of high pressure and shear thinning on journal bearing friction. Tribol. Int. 2015, 81, 29–37. [Google Scholar] [CrossRef]
- Sander, D.E.; Allmaier, H.; Priebsch, H. Friction and Wear in Automotive Journal Bearings Operating in Today’s Severe Conditions. In Advances in Tribology; Darji, P.P.H., Ed.; InTech: Rijeka, Croatia, 2016; pp. 143–172. [Google Scholar]
- De Carvalho, M.J.S.; Seidl, P.R.; Belchior, C.R.P.; Sodré, J.R. Lubricant viscosity and viscosity improver additive effects on Diesel fuel economy. Tribol. Int. 2010, 43, 2298–2302. [Google Scholar] [CrossRef]
- Blanchard, E.; Visconti, J.; Coblence, P.; Legrand, F.; Gautier, F.; Chevrot, M.; Clautet, M.; Trochu, F. The new Renault dCi 130 1.6 l Diesel engine. In Proceedings of the Aachener Kolloquium Fahrzeug-und Motortechnik 2010, Aachen, Germany, 4–6 October 2010. [Google Scholar]
- Schreer, K.; Roth, I.; Schneider, S.; Ehnis, H. Analysis of Aluminum and Steel Pistons—Comparison of Friction, Piston Temperature, and Combustion. J. Eng. Gas Turbines Power 2014, 136, 101506. [Google Scholar] [CrossRef]
- Schneider, S.; Schreer, K.; Ehnis, H.; Spangenberg, S. System Comparison of Aluminium and Steel Pistons for PC Diesel Engines. MTZ Worldw. 2013, 74, 32–37. [Google Scholar] [CrossRef]
- Allmaier, H.; Priestner, C.; Reich, F.; Priebsch, H.; Novotny-Farkas, F. Predicting friction reliably and accurately in journal bearings—Extending the EHD simulation model to TEHD. Tribol. Int. 2013, 58, 20–28. [Google Scholar] [CrossRef]
- Sander, D.E.; Allmaier, H.; Priebsch, H.; Witt, M.; Skiadas, A. Simulation of journal bearing friction in severe mixed lubrication—Validation and effect of surface smoothing due to running-in. Tribol. Int. 2016, 96, 173–183. [Google Scholar] [CrossRef]
Parameter | Shell 0W30 | Shell 0W20 | Dow E72 (PG) |
---|---|---|---|
Kin. viscosity at 40 C [mm/s] | 51.2 | 37.8 | 21.0 |
Kin. viscosity at 100 C [mm/s] | 10.4 | 7.6 | 5.6 |
HTHS Viscosity [mPa·s] | 3.2 | 2.6 | 2.6 |
Viscosity index | 198 | 175 | 229 |
Position/Parameter | Description |
---|---|
Engine designation | Renault R9M |
Engine configuration | In-line |
Number of cylinders | 4 |
Displacement | 1598 cm |
Power output | 100 kW at 4000 rpm |
Torque output | 320 Nm at 1750 rpm |
Bore | 80 mm |
Stroke | 79.5 mm |
Compression ratio | 15.4:1 |
Valve Train | DOHC using a roller cam follower |
Valve | 4 valves per cylinder |
Pistons | Steel |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sander, D.E.; Knauder, C.; Allmaier, H.; Damjanović-Le Baleur, S.; Mallet, P. Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol. Lubricants 2017, 5, 9. https://doi.org/10.3390/lubricants5020009
Sander DE, Knauder C, Allmaier H, Damjanović-Le Baleur S, Mallet P. Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol. Lubricants. 2017; 5(2):9. https://doi.org/10.3390/lubricants5020009
Chicago/Turabian StyleSander, David E., Christoph Knauder, Hannes Allmaier, Slavitsa Damjanović-Le Baleur, and Philippe Mallet. 2017. "Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol" Lubricants 5, no. 2: 9. https://doi.org/10.3390/lubricants5020009
APA StyleSander, D. E., Knauder, C., Allmaier, H., Damjanović-Le Baleur, S., & Mallet, P. (2017). Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol. Lubricants, 5(2), 9. https://doi.org/10.3390/lubricants5020009