Tribological and Thermal Transport Performance of SiO2-Based Natural Lubricants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanofluids Preparation
3. Experimental Details
3.1. Thermal Experimentation
3.2. Tribological Experimentation
4. Results and Discussion
4.1. Thermal Performance
4.2. Tribological Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belluco, W.; De Chiffre, L. Surface integrity and part accuracy in reaming and tapping stainless steel with new vegetable based cutting oils. Tribol. Int. 2002, 35, 865–870. [Google Scholar] [CrossRef]
- Srikant, R.R.; Rao, P.N. Use of Vegetable-Based Cutting Fluids for Sustainable Machining. In Sustainable Machining; Davim, J.P., Ed.; Springer: Eschlikon, Switzerland, 2017; pp. 31–46. [Google Scholar]
- Mang, T.; Gosalia, A. Lubricants and Their Market. In Lubricants and Lubrication, 3rd ed.; Mang, T., Dresel, W., Eds.; Wiley-Vch: Weinheim, Germany, 2017; pp. 1–9. [Google Scholar]
- Shashidhara, Y.M.; Jayaram, S.R. Vegetable oils as a potential cutting fluid-An evolution. Tribol. Int. 2010, 43, 1073–1081. [Google Scholar] [CrossRef]
- Heikal, E.K.; Elmelawy, M.S.; Khalil, S.A.; Elbasuny, N.M. Manufacturing of environment friendly biolubricants from vegetable oils. Egypt. J. Pet. 2017, 26, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kumar, R.; Tyagi, S.; Rao, P.V.C. Production of biolubricant base stock. Pet. Technol. Q. 2012, 4, 1–6. [Google Scholar]
- Koh, M.Y.; Ghazi, T.I.M.; Idris, A. Synthesis of palm based biolubricant in an oscillatory flow reactor (OFR). Ind. Crop. Prod. 2014, 52, 567–574. [Google Scholar] [CrossRef]
- Adhvaryu, A.; Erhan, S.Z.; Liu, Z.S.; Perez, J.M. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 2000, 364, 87–97. [Google Scholar] [CrossRef]
- Reeves, C.J.; Siddaiah, A.; Menezes, P.L. A Review on the Science and Technology of Natural and Synthetic Biolubricants. J. Bio Tribo Corros. 2017, 3, 11. [Google Scholar] [CrossRef]
- Somashekaraiah, R.; Gnanadhas, D.P.; Kailas, S.V.; Chakravortty, D. Eco-Friendly, Non-Toxic Cutting Fluid for Sustainable Manufacturing and Machining Processes. Tribol. Online 2016, 11, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 2017, 190, 328–350. [Google Scholar] [CrossRef]
- Petlyuk, A.M.; Adams, R.J. Oxidation stability and tribological behavior of vegetable oil hydraulic fluids. Tribol. Trans. 2004, 47, 182–187. [Google Scholar] [CrossRef]
- Erhan, S.Z.; Sharma, B.K.; Perez, J.M. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind. Crop. Prod. 2006, 24, 292–299. [Google Scholar] [CrossRef]
- Fox, N.J.; Stachowiak, G.W. Vegetable oil-based lubricants—A review of oxidation. Tribol. Int. 2007, 40, 1035–1046. [Google Scholar] [CrossRef]
- Adhvaryu, A.; Erhan, S.Z.; Perez, J.M. Wax appearance temperatures of vegetable oils determined by differential scanning calorimetry: Effect of triacylglycerol structure and its modification. Thermochim. Acta 2003, 395, 191–200. [Google Scholar] [CrossRef]
- Liu, Z.; Sharma, B.K.; Erhan, S.Z.; Biswas, A.; Wang, R.; Schuman, T.P. Oxidation and low temperature stability of polymerized soybean oil-based lubricants. Thermochim. Acta 2015, 601, 9–16. [Google Scholar] [CrossRef]
- Quinchia, L.A.; Delgado, M.A.; Franco, J.M.; Spikes, H.A.; Gallegos, C. Low-temperature flow behaviour of vegetable oil-based lubricants. Ind. Crop. Prod. 2012, 37, 383–388. [Google Scholar] [CrossRef]
- Bart, J.C.J.; Gucciardi, E.; Cavallaro, S.; Bart, J.C.J.; Gucciardi, E.; Cavallaro, S. Biolubricant Product Groups and Technological Applications; Woodhead Publishing Ltd: Cambridge, UK, 2013; pp. 565–711. [Google Scholar]
- Debnath, S.; Reddy, M.M.; Yi, Q.S. Environmental friendly cutting fluids and cooling techniques in machining: A review. J. Clean. Prod. 2014, 83, 33–47. [Google Scholar] [CrossRef]
- Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 2018, 82, 80–102. [Google Scholar] [CrossRef]
- Mannekote, J.K.; Kailas, S.V. The Effect of Oxidation on the Tribological Performance of Few Vegetable Oils. J. Mater. Res. Technol. 2012, 1, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.S.; Patel, S. The performance and oxidation stability of sustainable metalworking fluid derived from vegetable extracts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 2027–2040. [Google Scholar] [CrossRef]
- Rapeti, P.; Pasam, V.K.; Rao, G.K.M.; Revuru, R.S. Performance evaluation of vegetable oil based nano cutting fluids in machining using grey relational analysis-A step towards sustainable manufacturing. J. Clean. Prod. 2018, 172, 2862–2875. [Google Scholar] [CrossRef]
- Mendoza, G.; Igartua, A.; Fernandez-Diaz, B.; Urquiola, F.; Vivanco, S.; Arguizoniz, R.; Arguizoniz, R. Vegetable oils as hydraulic fluids for agricultural applications. Grasas y Aceites 2011, 62, 29–38. [Google Scholar] [Green Version]
- Kumar, G.K.; Ravi, S.M. Past and Current Status of Eco-Friendly Vegetable Oil Based Metal Cutting Fluids. Mater. Today Proc. 2017, 4, 3786–3795. [Google Scholar] [CrossRef]
- Abbasian, A.A.A.; Amani, J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp. Therm. Fluid Sci. 2013, 44, 520–533. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Narayanan, T.N.; Gao, G.; Rohde, M.; Tsentalovich, D.A.; Pasquali, M.; Ajayan, P.M. Electrically insulating thermal nano-oils using 2D fillers. ACS Nano 2012, 6, 1214–1220. [Google Scholar] [CrossRef]
- Taha-Tijerina, J. Thermal transport and Challenges on Nanofluids Performance. In Microfluidics and Nanofluidics, 1st ed.; Kandelousi, M.S., Ed.; InTech: Rijeka, Croatia, 2018; pp. 215–256. [Google Scholar]
- Krishnam, M.; Bose, S.; Das, C. Boron nitride (BN) nanofluids as cooling agent in thermal management system (TMS). Appl. Therm. Eng. 2016, 106, 951–958. [Google Scholar] [CrossRef]
- Arulprakasajothi, M.; Elangovan, K.; Hema, C.R.K.; Suresh, S. Heat Transfer Study of Water-based Nanofluids Containing Titanium Oxide Nanoparticles. Mater. Today Proc. 2015, 2, 3648–3655. [Google Scholar] [CrossRef]
- Kalyani, V.J.; Rastogi, R.B.; Kumar, D. The investigation of different particle size magnesium-doped zinc oxide (Zn0.92Mg0.08O) nanoparticles on the lubrication behavior of paraffin oil. Appl. Nanosci. 2015, 7, 275–281. [Google Scholar] [CrossRef]
- Peng, D.; Chen, C.; Kang, Y.; Chang, Y.; Chang, S. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind. Lubr. Tribol. 2010, 62, 111–120. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, C.; Choi, Y.; Cheong, S.; Kim, D.; Lee, K.; Lee, J.; Kim, S.H. Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J. Mech. Sci. Technol. 2011, 25, 2853–2857. [Google Scholar] [CrossRef]
- Khedkar, R.S.; Kiran, A.S.; Sonawane, S.S.; Wasewar, K.; Umre, S.S. Thermo–Physical Characterization of Paraffin based Fe3O4 Nanofluids. Procedia Eng. 2013, 51, 342–346. [Google Scholar] [CrossRef]
- Abdolbaqi, M.K.; Sidik, N.A.C.; Aziz, A.; Mamat, R.; Azmi, W.H.; Yazid, M.N.A.W.M.; Najafi, G. An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids. Int. Commun. Heat Mass Transf. 2016, 77, 22–32. [Google Scholar] [CrossRef]
- Kumar, M.S.; Vasu, V.; Gopal, A.V. Thermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various basefluids. J. Taiwan Inst. Chem. Eng. 2016, 66, 321–327. [Google Scholar] [CrossRef]
- Ozcelik, B.; Kuram, E.; Huseyin, C.M.; Demirbas, E. Experimental investigations of vegetable based cutting fluids with extreme pressure during turning of AISI 304L. Tribol. Int. 2011, 44, 1864–1871. [Google Scholar] [CrossRef]
- Kumar, B.S.; Padmanabhan, G.; Krishna, P.V. Experimental Investigations of Vegetable Oil Based Cutting Fluids with Extreme Pressure Additive in Machining of AISI 1040 Steel. Manuf. Sci. Technol. 2015, 3, 1–9. [Google Scholar]
- Zhang, J.L.; Rao, P.N. Green/Sustainable Manufacturing–Evaluation of a Soybean-Based Metal Cutting Fluid in Turning Operation. Appl. Mech. Mater. 2013, 392, 925–930. [Google Scholar] [CrossRef]
- Zhang, J.; Rao, P.N.; Eckman, M. Evaluation of bio-based cutting fluids in using multiple quality characteristics through taguchi design method. Int. J. Mod. Eng. 2012, 12, 35–44. [Google Scholar]
- Trajano, M.F.; Moura, E.I.F.; Ribeiro, K.S.B.; Alves, S.M. Study of oxide nanoparticles as additives for vegetable lubricants. Mater. Res. 2014, 17, 1124–1128. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, I.; Shipway, P. Triblology: Friction and Wear of Engineering Materials, 2nd ed.; Butterworth-Heinemann: London, UK, 2017; p. 412. [Google Scholar]
- Adhvaryu, A.; Erhan, S.Z.; Perez, J.M. Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants. Wear 2004, 257, 359–367. [Google Scholar] [CrossRef]
- Zhan, W.; Song, Y.; Ren, T.; Liu, W. The tribological behaviour of some triazine-dithiocarbamate derivatives as additives in vegetable oil. Wear 2004, 256, 268–274. [Google Scholar] [CrossRef]
- Aluyor, E.; Ori-Jesu, M. The use of antioxidants in vegetable oils—A review. Afr. J. Biotechnol. 2008, 7, 4836–4842. [Google Scholar]
- Meybodi, M.K.; Naseri, S.; Shokrollahi, A.; Daryasafar, A. Prediction of viscosity of water-based Al2O3, TiO2, SiO2, and CuO nanofluids using a reliable approach. Chemom. Intell. Lab. Syst. 2015, 149, 60–69. [Google Scholar] [CrossRef]
- Chiam, H.W.; Azmi, W.H.; Usri, N.A.; Mamat, R.; Adam, N.M. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 2017, 81, 420–429. [Google Scholar] [CrossRef]
- Sui, T.; Song, B.; Wen, Y.-H.; Zhang, F. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant. Sci. Rep. 2016, 6, 22696. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Xia, Y.; Cao, Z. Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease. Tribol. Int. 2015, 92, 454–461. [Google Scholar] [CrossRef]
- Vivero-Escoto, J. Silica Nanoparticles: Preparation, Properties, and Uses; Nova Science Publishers: Hauppauge, NY, USA, 2012; p. 288. [Google Scholar]
- Alves, S.M.; Barros, B.S.; Trajano, M.F.; Ribeiro, K.S.B.; Moura, E. Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol. Int. 2013, 65, 28–36. [Google Scholar] [CrossRef]
- Vaskova, H.; Buckova, M. Thermal degradation of vegetable oils: Spectroscopic measurement and analysis. Procedia Eng. 2015, 100, 630–635. [Google Scholar] [CrossRef]
- Roegiers, M.; Zhmud, B. Tribological performance of ionised vegetable oils as lubricity and fatty oiliness additives in lubricants and fuels. Lubr. Sci. 2009, 21, 169–182. [Google Scholar] [CrossRef]
- Noureddini, H.; Teoh, B.C.; Davis Clements, L. Viscosities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc. 1992, 69, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Szczerek, M.; Tuszynski, W. A method for testing lubricants under conditions of scuffing. Part I. Presentation of the method. Tribotest 2002, 8, 273–284. [Google Scholar] [CrossRef]
- Peña-Parás, L.; Taha-Tijerina, J.; García, A.; Maldonado, D.; Nájera, A.; Cantú, P.; Ortiz, D. Thermal transport and tribological properties of nanogreases for metal-mechanic applications. Wear 2015, 332, 1322–1326. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Peña-Paras, L.; Narayanan, T.N.; Garza, L.; Lapray, C.; Gonzalez, J.; Palacios, E.; Molina, D.; García, A.; Maldonado, D.; et al. Multifunctional nanofluids with 2D nanosheets for thermal and tribological management. Wear 2013, 302, 1241–1248. [Google Scholar] [CrossRef]
- Peña-Parás, L.; Taha-Tijerina, J.; García, A.; Maldonado, D.; González, J.A.; Molina, D.; Palacios, E.; Cantú, P. Antiwear and Extreme Pressure Properties of Nanofluids for Industrial Applications. Tribol. Trans. 2014, 57, 1072–1076. [Google Scholar]
- Peña-Parás, L.; Taha-Tijerina, J.; Maldonado-Cortés, D.; García-Pineda, P.; Garza, G.T.; Irigoyen, M.; Gutiérrez, J.; Sánchez, D. Extreme pressure properties of nanolubricants for metal-forming applications. Ind. Lubr. Tribol. 2016, 68, 30–34. [Google Scholar] [CrossRef]
- Guo, W.; Li, G.; Zheng, Y.; Dong, C. Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method. Thermochim. Acta 2018, 661, 84–97. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.J.; Narayanan, T.N.; Tiwary, C.S.; Lozano, K.; Chipara, M.; Ajayan, P.M. Nanodiamond based thermal fluids. ACS Appl. Mater. Interfaces 2014, 6, 4778–4785. [Google Scholar] [CrossRef]
- Baby, T.T.; Sundara, R. Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids. J. Phys. Chem. C 2011, 115, 8527–8533. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Narayanan, T.N.; Avali, S.; Ajayan, P.M. 2D Structures-based Energy Management Nanofluids. In Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition (IMECE 2012), Houston, TX, USA, 9–15 November 2012; p. 87890. [Google Scholar]
- Taha-Tijerina, J.; Peña-Parás, L.; Maldonado, D. 2D-Based Nanofluids: Materials Evaluation and Performance. In Two-Dimensional Materials-Synthesis, Characterization and Potential Applications; Nayak, P.K., Ed.; InTech: Rijeka, Croatia, 2016; pp. 153–198. [Google Scholar]
- Taha-Tijerina, J.; Cadena-De, N.L.P.; Cue-Sampedro, R.; Rivera-Solorio, C. Thermo-physical evaluation of dielectric mineral oil-based nitride and oxide nanofluids for thermal transport applications. J. Therm. Sci. Technol. 2019, 14, JTST0007. [Google Scholar] [CrossRef]
- Iqbal, S.M.; Raj, C.S.; Michael, J.J.; Irfan, A.M. A Comparative Investigation of Al2O3/H2O, SiO2/H2O and ZrO2/H2O Nanofluid for Heat Transfer Applications. Dig. J. Nanomater. Biostruct. 2017, 12, 255–264. [Google Scholar]
- Battez, A.H.; Viesca, J.L.; González, R.; Blanco, D.; Asedegbega, E.; Osorio, A. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear 2010, 268, 325–328. [Google Scholar] [CrossRef]
- Reeves, C.J.; Reeves, C.J.; Menezes, P.L.; Jen, T.; Lovell, M.R. Evaluating the Tribological Performance of Green Liquid Lubricants and Powder Additive Based Green Liquid Lubricants. In Proceedings of the 2012 STLE Annual Meeting & Exhibition, St. Louis, MO, USA, 6–10 May 2012; pp. 1–3. [Google Scholar]
- Mosleh, M.; Shirvani, K.A. In-situ nanopolishing by nanolubricants for enhanced elastohydrodynamic lubrication. Wear 2013, 301, 137–143. [Google Scholar] [CrossRef]
- Nunn, N.; Mahbooba, Z.; Ivanov, M.G.; Ivanov, D.M.; Brenner, D.W.; Shenderova, O. Tribological properties of polyalphaolefin oil modified with nanocarbon additives. Diam. Relat. Mater. 2015, 54, 97–102. [Google Scholar] [CrossRef]
- Sayuti, M.; Sarhan, A.A.D.; Salem, F. Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J. Clean. Prod. 2014, 67, 265–276. [Google Scholar] [CrossRef]
- Diabb, J.; Rodríguez, C.A.; Mamidi, N.; Sandoval, J.A.; Taha-Tijerina, J.; Martínez-Romero, O.; Elías-Zúñiga, A. Study of lubrication and wear in single point incremental sheet forming (SPIF) process using vegetable oil nanolubricants. Wear 2017, 376, 777–785. [Google Scholar] [CrossRef]
- Kotia, A.; Rajkhowa, P.; Rao, G.S.; Ghosh, S.K. Thermophysical and tribological properties of nanolubricants: A review. Heat Mass Transf. 2018, 54, 1–16. [Google Scholar] [CrossRef]
Materials | Properties | |||
---|---|---|---|---|
Base Fluids | Density @ 20 °C (g/cm3) | Viscosity @ 24 °C (m·Pa·s) | Viscosity @ 40 °C (m·Pa·s) | Viscosity @ 100 °C (m·Pa·s) |
Soybean Oil | 0.9604 | 54.3 | 32.93 | 6.79 |
Paraffinic Oil | 0.8900 | 37.8 | 24.0 | 4.80 |
Corn Oil | 0.9100 | 52.3 | 30.8 | 6.57 |
Sunflower Oil | 0.9197 | 68.0 | 40.05 | 8.65 |
Nanoparticles | ||||
SiO2 | Morphology: Spherical. Size: 10–20 nm |
Parameters | ITEePib Polish Method |
---|---|
Time | 18 s |
Velocity (RPM) | 500 |
Temperature (°C) | 24 |
Applied Force (N) | 0–7200 (linear increment) |
Oils | Pure | @0.05 wt % | @0.10 wt % | @0.15 wt % | @0.20 wt % | @0.25 wt % |
---|---|---|---|---|---|---|
COF-µ | ||||||
Soybean Oil | 0.0385 ± 0.0011 | 0.0355 ± 0.0006 | 0.0344 ± 0.0006 | 0.0337 ± 0.0007 | 0.0328 ± 0.0008 | 0.0316 ± 0.0007 |
Paraffinic Oil | 0.0429 ± 0.0005 | 0.0409 ± 0.0005 | 0.0403 ± 0.0007 | 0.0402 ± 0.0010 | 0.0395 ± 0.0007 | 0.0389 ± 0.0006 |
Corn Oil | 0.0485 ± 0.0007 | 0.0429 ± 0.0006 | 0.0413 ± 0.0011 | 0.0409 ± 0.0005 | 0.0394 ± 0.0005 | 0.0385 ± 0.0005 |
Sunflower Oil | 0.0437 ± 0.0007 | 0.0399 ± 0.0008 | 0.0388 ± 0.0008 | 0.0392 ± 0.0006 | 0.0384 ± 0.0007 | 0.0370 ± 0.0007 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha-Tijerina, J.; Aviña, K.; Diabb, J.M. Tribological and Thermal Transport Performance of SiO2-Based Natural Lubricants. Lubricants 2019, 7, 71. https://doi.org/10.3390/lubricants7080071
Taha-Tijerina J, Aviña K, Diabb JM. Tribological and Thermal Transport Performance of SiO2-Based Natural Lubricants. Lubricants. 2019; 7(8):71. https://doi.org/10.3390/lubricants7080071
Chicago/Turabian StyleTaha-Tijerina, Jaime, Karla Aviña, and Jose Manuel Diabb. 2019. "Tribological and Thermal Transport Performance of SiO2-Based Natural Lubricants" Lubricants 7, no. 8: 71. https://doi.org/10.3390/lubricants7080071
APA StyleTaha-Tijerina, J., Aviña, K., & Diabb, J. M. (2019). Tribological and Thermal Transport Performance of SiO2-Based Natural Lubricants. Lubricants, 7(8), 71. https://doi.org/10.3390/lubricants7080071