Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films under Lubricated Sliding Contacts
Abstract
:1. Introduction
2. Modeling Concept, Materials and Methods
2.1. Materials
2.2. Molecular Dynamics
2.3. Finite-Element Modeling
3. Numerical Models
3.1. Molecular Dynamics Models
3.2. Finite-Element Contact Model
4. Results
4.1. Molecular Dynamics of Different DLC Coatings
4.2. Microscale Contact, Micromechanics and DLC Film Fracture
5. Discussion
6. Summary and Conclusions
- The utilized methodology linking MD modeling to micromechanical FE elements was found able to capture the effects of friction to coating failure behavior, producing a workflow where causal relations linking DLC tribochemistry to its mechanical endurance can be investigated quantitatively.
- The studied DLC films of a-C:H and ta-C type (a-C:H with and without graphene lubrication) yielded analysis results comparable to their expected tribochemistry, superlubricity-like conditions were best obtained with graphene lubricated a-C:H films for the greatest range of applied loading.
- The increased friction reduces the first principal tensile stresses on the top of the surface and rather influences the bond layer and its interface to the DLC film and the underlying substrate, thus reducing the lifetime of the coated system.
- The introduced modeling methodology will require and will be next validated over more complex conditions and in an effort to try to expand the degree of information that can be bridged from atomistic to microstructural scale modeling.
- The proposed methodology enables one to investigate the characteristics of DLC films, their tribochemistry and lubrication and bridge these results all the way to the product scale (microstructural scale) tribocontact and coating performance. The approach due to its simple scale bridging capabilities enables one to better investigate and design DLC films with an eye on application performance.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 39, R311–R327. [Google Scholar] [CrossRef]
- Holmberg, K.; Matthews, A. (Eds.) Coatings Tribology: Properties Techniques and Applications in Surface Engineering; Tribol-ogy Series; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Holmberg, K.; Laukkanen, A.; Ronkainen, H.; Waudby, R.; Stachowiak, G.; Wolski, M.; Podsiadlo, P.; Gee, M.; Nunn, J.; Gachot, C.; et al. Topographical orientation effects on friction and wear in sliding DLC and steel contacts, part 1: Experimental. Wear 2015, 330-331, 3–22. [Google Scholar] [CrossRef]
- Gao, G.T.; Mikulski, P.T.; Chateauneuf, A.G.M.; Harrison, J.A. The Effects of Film Structure and Surface Hydrogen on the Properties of Amorphous Carbon Films. J. Phys. Chem. B 2003, 107, 11082–11090. [Google Scholar] [CrossRef]
- Holmberg, K.; Ronkainen, H.; Laukkanen, A.; Wallin, K. Friction and wear of coated surfaces - scales, modelling and simula-tion of tribomechanisms. Surf. Coat. Technol. 2007, 202, 1034–1049. [Google Scholar] [CrossRef]
- Liu, Y.; Erdemir, A.; Meletis, E. An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surf. Coatings Technol. 1996, 86-87, 564–568. [Google Scholar] [CrossRef]
- Xu, J.; Kawaguchi, M.; Kato, T. Evolution of transfer layers on steel balls sliding against hydrogenated amorphous carbon coatings in ambient air. Tribol. Int. 2014, 70, 42–51. [Google Scholar] [CrossRef]
- Merkle, A.; Erdemir, A.; Eryilmaz, O.; Johnson, J.; Marks, L. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon 2010, 48, 587–591. [Google Scholar] [CrossRef]
- Haque, T.; Morina, A.; Neville, A.; Kapadia, R.; Arrowsmith, S. Non-ferrous coating/lubricant interactions in tribological con-tacts: Assessment of tribofilms. Tribol. Int. 2007, 40, 1603–1612. [Google Scholar] [CrossRef]
- De Barros’Bouchet, M.; Martín, J.; Le-Mogne, T.; Vacher, B. Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 2005, 38, 257–264. [Google Scholar] [CrossRef]
- Kano, M. Super low friction of DLC applied to engine cam follower lubricated with ester-containing oil. Tribol. Int. 2006, 39, 1682–1685. [Google Scholar] [CrossRef]
- Vercammen, K.; Van Acker, K.; Vanhulsel, A.; Barriga, J.; Arnšek, A.; Kalin, M.; Meneve, J. Tribological behaviour of DLC coatings in combination with biodegradable lubricants. Tribol. Int. 2004, 37, 983–989. [Google Scholar] [CrossRef]
- Vengudusamy, B.; Green, J.H.; Lamb, G.D.; Spikes, H.A. Behaviour of MoDTC in DLC/DLC and DLC/steel contacts. Tribol. Int. 2012, 54, 68–76. [Google Scholar] [CrossRef]
- Abdullah Tasdemir, H.; Wakayama, M.; Tokoroyama, T.; Kousaka, H.; Umehara, N.; Mabuchi, Y.; Higuchi, T. Ultra-lowfriction of tetrahedral amorphous diamond-like carbon (ta-C DLC) under boundary lubrication in poly alpha-olefin (PAO) with additives. Tribol. Int. 2013, 65, 286–294. [Google Scholar] [CrossRef]
- Kržan, B.; Novotny-Farkas, F.; Vizintin, J. Tribological behavior of tungsten-doped DLC coating under oil lubrication. Tribol. Int. 2009, 42, 229–235. [Google Scholar] [CrossRef]
- Masuko, M.; Ono, T.; Aoki, S.; Suzuki, A.; Ito, H. Friction and wear characteristics of DLC coatings with different hydrogen content lubricated with several Mo-containing compounds and their related compounds. Tribol. Int. 2015, 82, 350–357. [Google Scholar] [CrossRef]
- Kogovšek, J.; Kalin, M. Lubrication performance of graphene-containing oil on steel and DLC-coated surfaces. Tribol. Int. 2019, 138, 59–67. [Google Scholar] [CrossRef]
- Wang, S.; Wu, T.; Wu, H.; Kwok, N. ModelingWear State Evolution Using Real-TimeWear Debris Features. Tribol. Tran. 2017, 60, 1022–1032. [Google Scholar] [CrossRef]
- Simonovic, K.; Kalin, M. Methodology of a statistical and DOE approach to the prediction of performance in tribology – A DLC boundary-lubrication case study. Tribol. Int. 2016, 101, 10–24. [Google Scholar] [CrossRef]
- Pagnoux, G.; Fouvry, S.; Peigney, M.; Delattre, B.; Mermaz-Rollet, G. A model for single asperity perturbation on lubricated sliding contact with DLC-coated solids. Tribol. Int. 2015, 82, 423–430. [Google Scholar] [CrossRef]
- Laukkanen, A.; Holmberg, K.; Ronkainen, H.; Stachowiak, G.; Podsiadlo, P.; Wolski, M.; Gee, M.; Gachot, C.; Li, L. Topo-graphical orientation effects on surface stresses influencing on wear in sliding DLC contacts, Part 2: Modelling and simulations. Wear 2017, 388–389, 18–28. [Google Scholar] [CrossRef]
- Hakala, T.J.; Laukkanen, A.; Suhonen, T.; Holmberg, K. A finite-element model for a paste lubricated steel wire vs cast iron contact. Tribol. Int. 2020, 150, 106362. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Gong, Y.; Zhang, J.; Zeng, D. Finite Element Modeling and Experimental Validation of Fretting Wear Scars in a Press-Fitted Shaft with an Open Zone. Tribol. Trans. 2018, 61, 585–595. [Google Scholar] [CrossRef]
- AlMotasem, A.; Posselt, M.; Bergström, J. Nanoindentation and nanoscratching of a ferrite/austenite iron bi-crystal: An atom-istic study. Tribol. Int. 2018, 127, 231–239. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, G.; Lu, Z.; Bai, L. Frictional behaviors of diamond-like carbon films under water lubrication: A molecular dynamics study. Tribol. Int. 2021, 153, 106609. [Google Scholar] [CrossRef]
- Lan, H.; Kato, T.; Liu, C. Molecular dynamics simulations of atomic-scale tribology between amorphous DLC and Si-DLC films. Tribol. Int. 2011, 44, 1329–1332. [Google Scholar] [CrossRef]
- Song, J.; Zhao, G. A molecular dynamics study on water lubrication of PTFE sliding against copper. Tribol. Int. 2019, 136, 234–239. [Google Scholar] [CrossRef]
- Bai, L.; Srikanth, N.; Zhao, B.; Liu, B.; Liu, Z.; Zhou, K. Lubrication mechanisms of graphene for DLC films scratched by a di-amond tip. J. Phys. D Appl. Phys. 2016, 49, 485302. [Google Scholar] [CrossRef]
- Ryan, K.E.; Keating, P.L.; Jacobs, T.D.B.; Grierson, D.S.; Turner, K.T.; Carpick, R.W.; Harrison, J.A. Simulated Adhesion be-tween Realistic Hydrocarbon Materials: Effects of Composition, Roughness, and Contact Point. Langmuir 2014, 30, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K.; Laukkanen, A.; Hakala, T.; Ronkainen, H.; Suhonen, T.; Wolski, M.; Posiadlo, P.; Stachowiak, G.; Gachot, C.; Li, L. Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments under dry and lu-bricated conditions. Wear 2021. submitted. [Google Scholar]
- Wolski, M.; Podsiadlo, P.; Stachowiak, G.; Holmberg, K.; Laukkanen, A.; Ronkainen, H.; Gee, M.; Nunn, J.; Gachot, C.; Li, L. Multiscale characterisation of 3D surface topography of DLC coated and uncoated surfaces by directional blanket covering (DBC) method. Wear 2017, 388-389, 47–56. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.; White, C.; Colton, R.; Brenner, D. Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces. Surf. Sci. 1992, 271, 57–67. [Google Scholar] [CrossRef]
- Harrison, J.A.; White, C.T.; Colton, R.J.; Brenner, D.W. Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics. Thin Solid Films 1995, 260, 205–211. [Google Scholar] [CrossRef]
- Harrison, J.A.; Perry, S.S. Friction in the Presence of Molecular Lubricants and Solid/Hard Coatings. MRS Bull. 1998, 23, 27–31. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, R.; Rokkam, S.; Desai, T.; Keblinski, P. Generation of amorphous carbon models using liquid quench method: A reactive molecular dynamics study. Carbon 2017, 113, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Laukkanen, A.; Pinomaa, T.; Holmberg, K.; Andersson, T. Effective interface model for design and tailoring of WC–Co mi-crostructures. Powder Metall. 2016, 59, 20–30. [Google Scholar] [CrossRef]
- Lindroos, M.; Cailletaud, G.; Laukkanen, A.; Kuokkala, V.T. Crystal plasticity modeling and characterization of the defor-mation twinning and strain hardening in Hadfield steels. Mater. Sci. Eng. A 2018, 720, 145–159. [Google Scholar] [CrossRef]
- Wallin, K.; Laukkanen, A. Aspects of cleavage fracture initiation – relative influence of stress and strain. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 788–798. [Google Scholar] [CrossRef]
- Holmberg, K.; Laukkanen, A.; Turunen, E.; Laitinen, T. Wear resistance optimisation of composite coatings by computational microstructural modelling. Surf. Coatings Technol. 2014, 247, 1–13. [Google Scholar] [CrossRef]
- Holmberg, K.; Laukkanen, A.; Ghabchi, A.; Rombouts, M.; Turunen, E.; Waudby, R.; Suhonen, T.; Valtonen, K.; Sarlin, E. Computationalmodelling based wear resistance analysis of thick composite coatings. Tribol. Int. 2014, 72, 13–30. [Google Scholar] [CrossRef]
- Laukkanen, A.; Holmberg, K.; Ronkainen, H.; Wallin, K. Cohesive Zone Modeling of Initiation and Propaga-tion of Multiple Cracks in Hard Thin Surface Coatings. Fatig. Fract. Mech. 2011, 37, 646–674. [Google Scholar]
DLC Coated Surface | Symbol (Unit) | |
---|---|---|
Total coating thickness | h (μm) | 1.76 ± 0.04 |
Surface hardness (nano) | H (GPa) | 18 ± 1.3 |
Surface elastic modulus (nano) | E (GPa) | 205 ± 10 |
Surface Poisson’s ratio | v (-) | 0.202 |
Surface roughness | Ra (μm) | 0.01 |
Surface roughness VOT | Mean FS0/FS45/ FS90/StrS | 2.55/2.66/2.78/0.58 |
Steel substrate | ||
Surface elastic modulus (nano) | E (GPa) | 205 ± 10 |
Surface Poisson’s ratio | v (-) | 0.3 |
Surface roughness | Ra (µm) | 0.01 |
Yield strength (0.2% strain) | MPa | 2100 |
Tensile strength | MPa | 2200 |
Tangent modulus | GPa | 22.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakala, T.J.; Holmberg, K.; Laukkanen, A. Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films under Lubricated Sliding Contacts. Lubricants 2021, 9, 30. https://doi.org/10.3390/lubricants9030030
Hakala TJ, Holmberg K, Laukkanen A. Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films under Lubricated Sliding Contacts. Lubricants. 2021; 9(3):30. https://doi.org/10.3390/lubricants9030030
Chicago/Turabian StyleHakala, Timo J., Kenneth Holmberg, and Anssi Laukkanen. 2021. "Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films under Lubricated Sliding Contacts" Lubricants 9, no. 3: 30. https://doi.org/10.3390/lubricants9030030
APA StyleHakala, T. J., Holmberg, K., & Laukkanen, A. (2021). Coupling Molecular Dynamics and Micromechanics for the Assessment of Friction and Damage Accumulation in Diamond-Like Carbon Thin Films under Lubricated Sliding Contacts. Lubricants, 9(3), 30. https://doi.org/10.3390/lubricants9030030