Synergistic Behavior of Graphene and Ionic Liquid as Bio-Based Lubricant Additive
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physicochemical Properties of Lubricant Samples
3.2. Dispersion Stability of Graphene-IL in Bio-Based Lubricant
3.3. Tribological Behavior of IL–Graphene Contained Lubricant
3.4. Synergy between Graphene and Ionic Liquid in Bio-Based Lubricant
4. Conclusions
- Only minor changes in the bio-based lubricant physical properties were observed after the addition of graphene and ionic liquid.
- The addition of the ionic liquid stabilizes the graphene suspension in the bio-based lubricant, hence increasing its dispersion stability.
- The combination of the graphene–IL additive exhibited superior tribological properties when compared to samples with the graphene additive alone.
- Though the ionic liquid alone can improve the frictional performance of the TMP ester, the improvement was as significant as TMP + G + IL, which indicates the presence of synergistic behavior between the two lubricant additives.
- Ionic liquid does not only allow a better supply of graphene in the contact area due to it higher dispersion stability, but it also plays a role in the TMP + G + IL lubricating mechanism.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
FESEM | field emission scanning electron microscope |
EDX | energy dispersive x-ray spectroscopy |
HFRR | high frequency reciprocating rig |
IL | ionic liquid |
NPG | neopentyl glycol |
PE | pentaerythritol |
SEM | scanning electron microscope |
TMP | trimethylolpropane |
References
- Ismail, M.; Moghavvemi, M.; Mahlia, T.; Muttaqi, K. Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis. Renew. Sustain. Energy Rev. 2015, 42, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Soni, S.; Agarwal, M. Lubricants from renewable energy sources—A review. Green Chem. Lett. Rev. 2014, 7, 359–382. [Google Scholar] [CrossRef]
- Syahir, A.; Zulkifli, N.; Masjuki, H.; Kalam, M.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.; Harith, M. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Zahid, R.; Yunus, R. Dispersion Stability and Tribological Characteristics of TiO2/SiO2 Nanocomposite-Enriched Biobased Lubricant. Tribol. Trans. 2016, 60, 1–11. [Google Scholar] [CrossRef]
- Kumar, R.; Oh, J.-H.; Kim, H.-J.; Jung, J.-H.; Jung, C.-H.; Hong, W.G.; Kim, H.-J.; Park, J.-Y.; Oh, I.-K. Nanohole-Structured and Palladium-Embedded 3D Porous Graphene for Ultrahigh Hydrogen Storage and CO Oxidation Multifunctionalities. ACS Nano 2015, 9, 7343–7351. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Singh, D.P.; Joanni, E.; Yadav, R.M.; Moshkalev, S.A. Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications. Coord. Chem. Rev. 2017, 342, 34–79. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Kumar, R.; Savu, R.; Moshkalev, S.; Kawamura, G.; Matsuda, A.; Shafiei, M. Hydrogen gas sensing properties of microwave-assisted 2D Hybrid Pd/rGO: Effect of temperature, humidity and UV illumination. Int. J. Hydrogen Energy 2021, 46, 7653–7665. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Maegawa, K.; Tan, W.K.; Kawamura, G.; Kar, K.K.; Matsuda, A. Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 2020, 39, 47–65. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Yadav, R.M.; Verma, R.K.; Singh, D.P.; Tan, W.K.; Del Pino, A.P.; Moshkalev, S.A.; et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. Sci. 2019, 75, 100786. [Google Scholar] [CrossRef]
- Kumar, R.; Joanni, E.; Singh, R.K.; Singh, D.P.; Moshkalev, S.A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog. Energy Combust. Sci. 2018, 67, 115–157. [Google Scholar] [CrossRef]
- Kumar, R.; Alaferdov, A.V.; Singh, R.K.; Singh, A.K.; Shah, J.; Kotnala, R.K.; Singh, K.; Suda, Y.; Moshkalev, S.A. Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Compos. Part B Eng. 2019, 168, 66–76. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Dubey, P.K.; Kumar, P.; Tiwari, R.S.; Oh, I.-K. Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability. J. Nanopart. Res. 2013, 15, 1847. [Google Scholar] [CrossRef]
- Demirtas, S.; Kaleli, H.; Khadem, M.; Kim, D.-E. Characterization of the friction and wear effects of graphene nanoparticles in oil on the ring/cylinder liner of internal combustion engine. Ind. Lubr. Tribol. 2019, 71, 642–652. [Google Scholar] [CrossRef]
- Zulkifli, N.; Azman, S.; Kalam, A.; Masjuki, H.; Yunus, R.; Gulzar, M. Lubricity of bio-based lubricant derived from different chemically modified fatty acid methyl ester. Tribol. Int. 2016, 93, 555–562. [Google Scholar] [CrossRef]
- Wu, D.; Xu, Y.; Yao, L.; You, T.; Hu, X. Tribological behaviour of graphene oxide sheets as lubricating additives in bio-oil. Ind. Lubr. Tribol. 2018, 70, 1396–1401. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Y.; Xiang, X.; Zheng, G.; Zeng, X.; Li, Z.; Ren, T.; Zhang, Y. Tribological performances of highly dispersed graphene oxide derivatives in vegetable oil. Tribol. Int. 2018, 126, 39–48. [Google Scholar] [CrossRef]
- Dou, X.; Koltonow, A.R.; He, X.; Jang, H.D.; Wang, Q.; Chung, Y.-W.; Huang, J. Self-dispersed crumpled graphene balls in oil for friction and wear reduction. Proc. Natl. Acad. Sci. USA 2016, 113, 1528–1533. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Chen, X.; Zhang, C.; Zhang, J.; Luo, J.; Zhang, J. Modified graphene as novel lubricating additive with high dispersion stability in oil. Friction 2021, 9, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Han, J.-S.; Choi, J.-Y.; Yoo, M.; Lee, C.-S. Synthesis, Dispersion, and Tribological Performance of Alkyl-functionalized Graphene Oxide as an Oil Lubricant Additive and Synergistic Interaction with IF-WS2. Bull. Korean Chem. Soc. 2020, 41, 518–529. [Google Scholar] [CrossRef]
- Li, X.; Gan, C.; Han, Z.; Yan, H.; Chen, D.; Li, W.; Li, H.; Fan, X.; Li, D.; Zhu, M. High dispersivity and excellent tribological performance of titanate coupling agent modified graphene oxide in hydraulic oil. Carbon 2020, 165, 238–250. [Google Scholar] [CrossRef]
- Sarno, M.; Cirillo, C.; Senatore, A.; Scarpa, D.; Mustafa, W.A.A. Anti-Friction and Anti-Wear Surfactant-Assisted Nano-Carbons Stable Formulations for Easy Industrialization. Tribol. Online 2021, 16, 1–15. [Google Scholar] [CrossRef]
- Azman, S.S.N.; Zulkifli, N.W.M.; Masjuki, H.; Gulzar, M.; Zahid, R. Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. J. Mater. Res. 2016, 31, 1932–1938. [Google Scholar] [CrossRef]
- Devi, A.; Khatkar, B.S. Physicochemical, rheological and functional properties of fats and oils in relation to cookie quality: A review. J. Food Sci. Technol. 2016, 53, 3633–3641. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Ning, W.; Zhang, J.; Qiao, X.; Zhang, J.; He, J.; Liu, C.-Y. Stable dispersions of reduced graphene oxide in ionic liquids. J. Mater. Chem. 2010, 20, 5401–5403. [Google Scholar] [CrossRef]
- Wang, J.; Chu, H.; Li, Y. Why Single-Walled Carbon Nanotubes Can Be Dispersed in Imidazolium-Based Ionic Liquids. ACS Nano 2008, 2, 2540–2546. [Google Scholar] [CrossRef]
- Lhermerout, R.; Diederichs, C.; Perkin, S. Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective. Lubricants 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Sanes, J.; Avilés, M.-D.; Saurín, N.; Espinosa, T.; Carrión, F.-J.; Bermúdez, M.-D. Synergy between graphene and ionic liquid lubricant additives. Tribol. Int. 2017, 116, 371–382. [Google Scholar] [CrossRef]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Harith, M.H.; Yusoff, M.N.A.M.; Zulfattah, Z.M.; Jamshaid, M. Tribological Improvement Using Ionic Liquids as Additives in Synthetic and Bio-Based Lubricants for Steel–Steel Contacts. Tribol. Trans. 2019, 63, 235–250. [Google Scholar] [CrossRef]
- Zhou, Y.; Leonard, D.N.; Guo, W.; Qu, J. Understanding Tribofilm Formation Mechanisms in Ionic Liquid Lubrication. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Eswaraiah, V.; Sankaranarayanan, V.; Ramaprabhu, S. Graphene-Based Engine Oil Nanofluids for Tribological Applications. ACS Appl. Mater. Interfaces 2011, 3, 4221–4227. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 2013, 54, 454–459. [Google Scholar] [CrossRef]
- Mungse, H.P.; Kumar, N.; Khatri, O.P. Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets. RSC Adv. 2015, 5, 25565–25571. [Google Scholar] [CrossRef]
- Shebanova, O.N.; Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J. Solid State Chem. 2003, 174, 424–430. [Google Scholar] [CrossRef]
- Kumar, R.; Abdel-Galeil, M.M.; Ya, K.Z.; Fujita, K.; Tan, W.K.; Matsuda, A. Facile and fast microwave-assisted formation of reduced graphene oxide-wrapped manganese cobaltite ternary hybrids as improved supercapacitor electrode material. Appl. Surf. Sci. 2019, 481, 296–306. [Google Scholar] [CrossRef]
- Kumar, R.; Youssry, S.M.; Soe, H.M.; Abdel-Galeil, M.M.; Kawamura, G.; Matsuda, A. Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J. Energy Storage 2020, 30, 101539. [Google Scholar] [CrossRef]
- Frost, R.L.; Martens, W.; Williams, P.A.; Kloprogge, J.T. Raman and infrared spectroscopic study of the vivianite-group phosphates vivianite, baricite and bobierrite. Miner. Mag. 2002, 66, 1063–1073. [Google Scholar] [CrossRef]
- Quinn, T.F.J. Role of oxidation in the mild wear of steel. Br. J. Appl. Phys. 1962, 13, 33–37. [Google Scholar] [CrossRef]
Name | Graphene Nanoplatelet |
---|---|
Appearance (Form) | Powder |
Appearance (Color) | Black |
Purity (%) * | 99 |
Morphology * | Non-spherical, multilayer |
Thickness * | ~5 nm |
Surface area * | 120 m2/g |
Parameter | Value |
---|---|
Duration | 3600 s/1 h |
Frequency | 10 Hz |
Temperature | 75 °C |
Load | 100 N |
Stroke length | 5 mm |
Samples | Kinematic Viscosity @40 °C | Kinematic Viscosity @100 °C | Viscosity Index | Density |
---|---|---|---|---|
Pure NPG | 26.086 | 6.3539 | 210.8 | 0.9084 |
NPG + G | 26.217 | 6.3612 | 209.7 | 0.9080 |
NPG + G + IL | 27.568 | 6.6109 | 209.9 | 0.9100 |
Pure TMP | 48.447 | 9.648 | 188.9 | 0.9196 |
TMP + G | 49.312 | 9.7751 | 188.6 | 0.9198 |
TMP + G + IL | 51.814 | 9.9973 | 183.8 | 0.9200 |
Pure PE | 63.407 | 11.855 | 186.1 | 0.9295 |
PE + G | 63.216 | 11.815 | 185.8 | 0.9295 |
PE + G + IL | 65.366 | 11.886 | 178.9 | 0.9298 |
Elements | Fe | C | O | P |
---|---|---|---|---|
TMP | 89.36 | 6.32 | 2.51 | - |
TMP + G | 75.71 | 15.45 | 8.83 | - |
TMP + G + IL | 59.99 | 30.83 | 9.04 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasnul, M.H.; Mohd Zulkifli, N.W.; Hassan, M.; Zulkifli, S.A.; Mohd Yusoff, M.N.A.; Zakaria, M.Z. Synergistic Behavior of Graphene and Ionic Liquid as Bio-Based Lubricant Additive. Lubricants 2021, 9, 46. https://doi.org/10.3390/lubricants9050046
Hasnul MH, Mohd Zulkifli NW, Hassan M, Zulkifli SA, Mohd Yusoff MNA, Zakaria MZ. Synergistic Behavior of Graphene and Ionic Liquid as Bio-Based Lubricant Additive. Lubricants. 2021; 9(5):46. https://doi.org/10.3390/lubricants9050046
Chicago/Turabian StyleHasnul, Muhammad Harith, Nurin Wahidah Mohd Zulkifli, Masjuki Hassan, Syahir Amzar Zulkifli, Mohd Nur Ashraf Mohd Yusoff, and Muhammad Zulfattah Zakaria. 2021. "Synergistic Behavior of Graphene and Ionic Liquid as Bio-Based Lubricant Additive" Lubricants 9, no. 5: 46. https://doi.org/10.3390/lubricants9050046
APA StyleHasnul, M. H., Mohd Zulkifli, N. W., Hassan, M., Zulkifli, S. A., Mohd Yusoff, M. N. A., & Zakaria, M. Z. (2021). Synergistic Behavior of Graphene and Ionic Liquid as Bio-Based Lubricant Additive. Lubricants, 9(5), 46. https://doi.org/10.3390/lubricants9050046